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Abstract

In determining the kinetics of thermally stimulated solid-state transformations by non-isothermal techniques, there is, as

yet, one unsurmountable barrier to establishing separate values of E, A, and f(�). By employing logarithmic plots of various

expressions; reaction rate at one heating rate, �, i.e. Arrhenius analysis, isoconversional reaction rates at several heating rates,

i.e. Friedman analysis, one easily obtains the value of E, from the plot slope. However, the plot intercept is the logarithm of the

product of A and f(�), and over the entire extent of a singular reaction should mirror the behavior of the f(�) parameter

de®ning the mechanism. In examining experimental non-isothermal data, either DSC or TG, obtained by either procedure, this

behavioral pattern should assist in identifying the probable reaction mechanism. Rate and extent of reaction data for singular

model systems, generated over a wide range of Ein, Ain, and � for seven f(�) mechanisms, have been employed as vehicles for

isoconversional Friedman analysis in an attempt to verify the several model-dependent paradigms in the EF±ln(AF)±f(�)

relationships over the 0.01���0.99 range. Isoconversational data resulting from analyses of simulated single solid-state

reactions have also been employed to test the utility of proposed `Kissinger-type' relationships for so-called `model-free'

kinetics. The isoconversional procedure has also been employed to investigate the behavioral patterns observed in the analyses

of the three steps in a thermogravimetric study of the degradation of calcium oxalate monohydrate. # 1998 Elsevier Science

B.V.

1. Theoretical considerations

Eq. (1a) represents the generally accepted logarith-

mic expression for the rate of a non-isothermally

stimulated solid-state reaction at a set extent of reac-

tion, �, at a temperature, T� [1].

ln�d�=dt�� � ln�A� � Tm
� � f���� ÿ E�=RT�

(1a)

where f(�) is the analytical function of the reaction

extent, �, descriptive of the reaction mechanism. E�
and A� are the so-called energy of activation and pre-

exponential factor, respectively, and R is the general

gas constant. In light of the remarks of Dollimore and

Reading [2], it is considered reasonable to use the

m�0 approximation. This approach has been followed

in this study.

ln�d�=dt�� � ln�A� � f���� ÿ E�=RT� (1b)

Although recently heavily criticized by Zsako [3],

the isoconversional procedure is highly popular. In this

method, a set of actual or model-simulated experi-

ments are performed at different linear heating rates.

The rates and temperatures of reaction at a pre-de®ned

extent of reaction are measured, and ®tted to Eq. (1b).
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The major premise underlying the use of the isocon-

versional method is that one is dealing with a single

effective reaction with �-invariant kinetics para-

meters, E� and A�, over the entire extent of reaction

range, 0���1. Although it is possible to generate

(d�/dt, T�) data sets for a simulated single reaction,

which will yield a linear Eq. (1b) plot, it is highly

unlikely that, in reality, experimentally measured

data characterize a single reaction. Budrugeac et al.

[4] have recently discussed some of the problems

inherent in the application of the isoconversional

technique.

In the early stages of the development of this

analytical procedure, Friedman [5] employed the

nth order model (2) to represent f(�).

f��� � �1ÿ ��n (2)

It has been demonstrated [6] that extent (�) and rate

(d�/dt) of reaction data for various solid-state models

can be analyzed using this empirical model. The

resulting �±T and d�/dt±T data for both the actual

and the nth order equivalent model are identical.

Furthermore, despite large discrepancies in the mag-

nitude of the actual solid-state model kinetics (E, A)

parameters compared with the nth order equivalent

values (En, An), extents of reaction as a function of

temperature at any heating rate are superimposable

with those generated using isoconversionally deter-

mined parameters with model-corrected pre-exponen-

tial factors [7].

Table 1

Solid-state reaction kinetics model parameters, f(�) and g(�)

Model f(�) g(�)a

nth order (1ÿ�)n [1ÿ(1ÿ�)1ÿn]/(1ÿn)

An (n�2 or 3) n(1ÿ�)�[ÿln(1ÿ�)]1ÿ1/n [ÿln(1ÿ�)]1/n

Rn (n�2 or 3) n(1ÿ�)1ÿ1/n 1ÿ(1ÿ�)1/n

D2 ÿ1/[ln(1ÿ�)] (1ÿ�)�ln(1ÿ�)��
D3 [(3/2)�(1ÿ�)2/3]/[1ÿ(1ÿ�)1/3] [1ÿ(1ÿ�)1/3]2

D4 [(3/2)�(1ÿ�)1/3]/[1ÿ(1ÿ�)1/3] 1ÿ(2�/3)ÿ(1ÿ�)2/3

ag(�)�Rd�/f(�).

Table 2

ln [f(�)] for seven solid-state reaction kinetics models

� A2 A3 R2 R3 D2 D3 D4

0.05 ÿ0.8432 ÿ0.9328 0.6675 1.0644 2.9702 4.4486 4.4657

0.10 ÿ0.5374 ÿ0.5070 0.6405 1.0284 2.2504 3.7017 3.7368

0.15 ÿ0.3779 ÿ0.2752 0.6119 0.9903 1.8170 3.2397 3.2938

0.20 ÿ0.2800 ÿ0.1245 0.5816 0.9498 1.4999 2.8922 2.9666

0.25 ÿ0.2175 ÿ0.0197 0.5493 0.9068 1.2459 2.6058 2.7016

0.30 ÿ0.1790 0.0547 0.5148 0.8608 1.0309 2.3561 2.4750

0.35 ÿ0.1587 0.1064 0.4778 0.8114 0.8422 2.1300 2.2736

0.40 ÿ0.1535 0.1400 0.4377 0.7581 0.6717 1.9192 2.0895

0.45 ÿ0.1619 0.1578 0.3942 0.7001 0.5144 1.7179 1.9172

0.50 ÿ0.1833 0.1611 0.3466 0.6365 0.3665 1.5218 1.7528

0.55 ÿ0.2179 0.1501 0.2936 0.5663 0.2250 1.3296 1.5931

0.60 ÿ0.2669 0.1240 0.2350 0.4878 0.0874 1.1295 1.4349

0.65 ÿ0.3324 0.0812 0.1682 0.3987 ÿ0.0486 0.9254 1.2754

0.70 ÿ0.4180 0.0184 0.0912 0.2960 ÿ0.1856 0.7098 1.1111

0.75 ÿ0.5298 ÿ0.0699 0.0000 0.1744 ÿ0.3266 0.4754 0.9375

0.80 ÿ0.6783 ÿ0.1936 ÿ0.1116 0.0257 ÿ0.4759 0.2115 0.7480

0.85 ÿ0.8838 ÿ0.3716 ÿ0.2554 ÿ0.1661 ÿ0.6403 ÿ0.1014 0.5309

0.90 ÿ1.1924 ÿ0.6480 ÿ0.4581 ÿ0.4364 ÿ0.8340 ÿ0.5057 0.2619

0.95 ÿ1.7540 ÿ1.1657 ÿ0.8047 ÿ0.8985 ÿ1.0972 ÿ1.1322 ÿ0.1336
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Irrespective of the isoconversional procedure

employed, either the differential or integral (vide

infra) approach, the activation energy of the assumed

single reaction is obtained from the slope of the

logarithmic plots, Eq. (1b) in the differential method,

at various degrees of conversion. However, one cannot

calculate the pre-exponential factor without a knowl-

edge of the f(�) function, which, as will be shown,

varies signi®cantly and differently with � for all solid-

state models. Budrugeac et al. [4] have discussed their

views regarding how the investigator should proceed

by suggesting criteria for establishing correct f(�)

functions when dealing with actual experimental data.

Furthermore, they indicate their preference for using

Fig. 1. (a) f(�) as a function of � for the solid-state models A2, A3, R2, and R3. (b) f(�) as a function of � for the solid-state models D2, D3,

and D4.
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the differential rather than the integral approach, if one

wishes to test quickly for constant E�. Zsako [3], who

employs the empirical nth order model, Eq. (2), and, it

appears, the integral approach, observes that much of

the experimental data employed in support of his

critique, show a systematic decrease in both calculated

E� and A�, and an increase in the reaction order,

`n', with increasing heating rate. Furthermore, it is

stated that in performing model analyses, more rea-

listic TG data, exhibiting such heating rate-dependent

characteristics should be employed in investigating

the utility of the `many curves' method. It is consid-

ered that such a selection protocol defeats the purpose

of establishing the correctness of the isoconversional

procedure. One should not be too surprised at his

conclusions.

Fig. 2. g(�) as a function of � for the solid-state models A2, A3, R2, R3, D2, D3, and D4.

Table 3

ln [g(�)] for seven solid-state reaction kinetics models

� A2 A3 R2 R3 D2 D3 D4

0.05 ÿ1.4851 ÿ0.9901 ÿ3.6761 ÿ4.0773 ÿ6.6677 ÿ8.1547 ÿ8.1661

0.10 ÿ1.1252 ÿ0.7501 ÿ2.9697 ÿ3.3665 ÿ5.2638 ÿ6.7330 ÿ6.7563

0.15 ÿ0.9085 ÿ0.6057 ÿ2.5505 ÿ2.9425 ÿ4.4347 ÿ5.8851 ÿ5.9209

0.20 ÿ0.7500 ÿ0.5000 ÿ2.2484 ÿ2.6355 ÿ3.8404 ÿ5.2710 ÿ5.3200

0.25 ÿ0.6229 ÿ0.4153 ÿ2.0101 ÿ2.3921 ÿ3.3744 ÿ4.7842 ÿ4.8470

0.30 ÿ0.5155 ÿ0.3436 ÿ1.8119 ÿ2.1884 ÿ2.9892 ÿ4.3768 ÿ4.4545

0.35 ÿ0.4211 ÿ0.2807 ÿ1.6411 ÿ2.0117 ÿ2.6594 ÿ4.0234 ÿ4.1168

0.40 ÿ0.3359 ÿ0.2239 ÿ1.4899 ÿ1.8543 ÿ2.3697 ÿ3.7085 ÿ3.8188

0.45 ÿ0.2572 ÿ0.1715 ÿ1.3533 ÿ1.7110 ÿ2.1104 ÿ3.4221 ÿ3.5504

0.50 ÿ0.1833 ÿ0.1222 ÿ1.2279 ÿ1.5784 ÿ1.8745 ÿ3.1569 ÿ3.3048

0.55 ÿ0.1125 ÿ0.0750 ÿ1.1112 ÿ1.4538 ÿ1.6572 ÿ2.9075 ÿ3.0769

0.60 ÿ0.0437 ÿ0.0291 ÿ1.0009 ÿ1.3349 ÿ1.4546 ÿ2.6697 ÿ2.8627

0.65 0.0243 0.0162 ÿ0.8955 ÿ1.2199 ÿ1.2639 ÿ2.4397 ÿ2.6589

0.70 0.0928 0.0619 ÿ0.7935 ÿ1.1069 ÿ1.0823 ÿ2.2139 ÿ2.4628

0.75 0.1633 0.1089 ÿ0.6931 ÿ0.9941 ÿ0.9078 ÿ1.9883 ÿ2.2716

0.80 0.2379 0.1586 ÿ0.5928 ÿ0.8790 ÿ0.7379 ÿ1.7580 ÿ2.0821

0.85 0.3202 0.2134 ÿ0.4899 ÿ0.7579 ÿ0.5702 ÿ1.5157 ÿ1.8903

0.90 0.4170 0.2780 ÿ0.3801 ÿ0.6239 ÿ0.4009 ÿ1.2478 ÿ1.6898

0.95 0.5486 0.3657 ÿ0.2531 ÿ0.4595 ÿ0.2229 ÿ0.9190 ÿ1.4656
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For single reactions with �-invariant kinetics para-

meters, the intercepts of the Eq. (1b) plots should

mirror the behavioral pattern of the f(�) mechanistic

functions over the entire �-range. It is the purpose of

this investigation to verify this fact by describing the

®ndings of a set of isoconversional calculations of

simulated singular non-isothermal reactions conform-

ing to seven solid-state models A2, A3, R2, R3, D2,

D3 and D4 [8]. A wide range of constant E and A input

parameters was used to generate extent and rate of

reaction±temperature data at several linear heating

rates from 1 to 1008C/min. Friedman isoconversional

analyses were performed using a general purpose

fortran program, KINMOD1, previously employed

by the author to investigate several mutually indepen-

dent multiple reaction systems [9]. All calculations

used the m�0 temperature exponent approximation.

The original program has been modi®ed by employing

Fig. 3. ln[f(�)] as a function of � for the solid-state models A2, A3, R2, R3, D2, D3, and D4.

Fig. 4. ln[g(�)] as a function of � for the solid-state models A2, A3, R2, R3, D2, D3, and D4.
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the fourth degree rational approximation of Senum

and Yang [10] to compute the p(E/RT) function used to

calculate the f(�) and the inverse integral function

g(�) employed at various stages in the data analyses.

Recently, integral procedures have been described

which purport to generate reaction kinetics parameters

without specifying the f(�) functional model, the so-

called `model-free' kinetics [11], utilizing Vyazov-

kin's `Kissinger-like' Eq. (3).

lnf��=�T��2g � lnf�A� � R�=�E� � g����g
ÿ E�=RT� (3)

It appears that Vyazovkin employs the ®rst two

terms of the polynomial expression for the tempera-

ture integral p(E/RT) function [1,12] in developing

this equation for E/2RT>>1. It is expected that the

isoconversional logarithmic intercept of this equation

will vary with � in a manner similar to that expected

for the comparable intercept in the more simple

Eq. (1b). Calculations have been carried out in an

attempt to verify this expectation.

2. Model calculations

Table 1 lists the f(�) and g(�) i.e. [
R

d�/f(�)]

functions for seven solid-state models [2]. Fig. 1(a)

and (b), and Fig. 2, show the f(�) and g(�) functions,

respectively, over the complete �-range. The differ-

ences in the �-dependencies of the several f(�) and

g(�) functions are immediately obvious. Tables 2 and

Table 3 list ln[f(�)] and ln[g(�)] as functions of � for

these seven models, and Figs. 3 and 4 show the

dependencies. With Ein�220 kJ/mol and

Ain�1.25�1015 minÿ1 as input parameters, �ÿT

and d�/dtÿT curves were generated, and from the

Friedman isoconversional analyses, EF and AF values

computed. Fig. 5(a±c) show the logarithmic intercepts

as functions of � for the A2, R3 and D4 solid-state

models. As can be seen, they almost exactly mirror the

ln[f(�)] variations depicted in Fig. 3 for these models.

The results are summarised in Table 4. As can be seen,

the activation energies are essentially constant at

�99.9% of the correct value. Similarly, the logarithms

of the pre-exponential factors are constant at �99.9%

of the correct value. Similar results were obtained with

other input parameters. It is proposed that in dealing

with experimental multi-heating rate TG/DSC data,

one should use the characteristic �-dependency of the

intercept of the logarithmic isoconversional plot to

establish by pattern recognition the probable f(�)

mechanistic parameter. If this is inconclusive, and

Fig. 5. (a) Eq. (1b) isoconversional logarithmic intercepts as a

function of � for the A2 solid-state model with input parameters,

E�220 kJ/mol and A�1.25�1015 minÿ1. (b) Eq. (1b) isoconver-

sional logarithmic intercepts as a function of � for the R3 solid-

state model with input parameters, E�220 kJ/mol and

A�1.25�1015 minÿ1. (c) Eq. (1b) isoconversional logarithmic

intercepts as a function of � for the D4 solid-state model with

input parameters, E�220 kJ/mol and A�1.25�1015 minÿ1.
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furthermore, if E� is not constant, then one is probably

dealing with either a change in mechanism as the

reaction proceeds or a more compex situation such as a

mutually independent multiple, competitive or con-

secutive reaction system. Using these isoconversion-

ally derived parameters, the logarithmic intercepts of

the integral Eq. (3) were calculated and are listed in

Table 5 for the several models and displayed in Fig. 6.

As is seen, there is noticeable curvature at ca. ��0.1

dependent upon the model. In general, as shown in

Table 6, there is an approximate linear relationship

between the logarithmic intercept and �.

3. Experimental data calculations

The application of the isoconversional analysis

procedure to the three steps in the sequential degrada-

tion of calcium oxalate monohydrate, thermogravime-

trically is presented [6]. The experimental TG data,

previously described, are shown in Fig. 7. Table 7

summarizes the data at �� intervals from 0.05 to

0.95. As previously indicated [6], the input data were

obtained by ®tting the experimental TG data as a

function of temperature, monitored over a 100%

change in heating rates, to an nth order model using

the instrumental system software. In agreement with

Table 4

Isoconversional EF and In (AF) values. Ein�220 kJ/mol,

Ain�1.25�1015 minÿ1, ln(Ain)�34.7619

Model EF (kJ/mol) ln(AF)

Mean value � Mean value �

A2 219.7 0.57 34.735 0.091

A3 219.8 0.55 34.753 0.086

R2 219.7 0.60 34.739 0.100

R3 219.7 0.59 34.739 0.099

D2 219.7 0.59 34.728 0.109

D3 219.6 0.65 34.727 0.113

D4 219.6 0.65 34.726 0.114

Table 5

ln{[A��R]/E��g(�)]} values for seven solid-state kinetics models [11]

� A2 A3 R2 R3 D2 D3 D4

0.05 25.9608 25.4736 28.2671 28.8582 31.1269 32.6406 32.6597

0.10 25.6055 25.2844 27.3851 27.8442 29.6441 31.3358 31.1359

0.15 25.4672 25.2558 26.9502 27.4116 28.9133 30.4076 30.4274

0.20 25.2845 25.2020 26.6930 26.9880 28.5790 29.7065 29.7728

0.25 25.2897 24.9118 26.6297 26.9936 27.9320 29.3407 29.4327

0.30 24.9009 24.9236 26.1835 26.7012 27.5968 28.8091 29.1225

0.35 24.9918 24.8451 26.2917 26.1752 27.2199 28.6861 28.8801

0.40 24.9347 24.8297 26.0612 26.6346 27.0618 28.0836 28.4620

0.45 24.7649 24.6474 26.0358 26.2153 26.5347 27.8170 28.2007

0.50 24.6705 24.8121 25.8348 26.2637 26.4254 27.6901 27.9047

0.55 24.6440 24.6118 25.7605 26.0082 26.2652 27.4833 27.6743

0.60 24.6814 24.4433 25.5517 25.8953 25.8683 27.4065 27.5670

0.65 24.5386 24.4113 25.4978 25.6321 25.8927 26.9945 27.2163

0.70 24.5709 24.4308 25.2817 25.6660 25.6911 26.7588 26.8973

0.75 24.4465 24.6117 25.3033 25.5162 25.4607 26.7267 26.7862

0.80 24.3657 24.4383 25.0955 25.5417 25.3360 26.3046 26.7942

0.85 24.2965 24.2917 25.0282 25.3208 25.0680 26.1178 26.5164

0.90 23.9632 24.1508 25.0223 25.2330 25.1149 25.7724 26.2899

0.95 23.9570 24.2128 24.8662 25.0735 24.6436 25.5784 26.0534

Table 6

Summary of `model-free kinetics' equation ln{[A��R]/

[E��g(�)]}�K1�K2��
Model �-range # of pairs K1 K2 r2

A2 0.05±0.95 19 25.7264 ÿ1.8387 0.9686

A3 0.05±0.95 19 25.3806 ÿ1.3098 0.9608

R2 0.05±0.95 19 27.5032 ÿ3.0338 0.9510

R3 0.05±0.95 19 27.9478 ÿ3.2670 0.9376

D2 0.05±0.95 19 29.8017 ÿ5.8799 0.9519

D3 0.05±0.95 19 31.3600 ÿ6.5453 0.9594

D4 0.05±0.95 19 31.3385 ÿ6.0672 0.9582
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Zsako [3], the parameters En and ln(An) decreased

with increase in the heating rate but the reaction order,

n, remained relatively constant. Since no assumption

was made as to the reaction mechanism of each step in

generating the input parameter set, [En, ln(An), n], it is

considered to be in order in this application to use such

empirically generated extent and rate of reaction

®gures since it has been shown that, after sample

weight normalization, they were essentially superim-

posable on the original weight change curves. For each

Fig. 6. Eq. (3) isoconversional logarithmic intercepts as a function of � for the solid-state model A2, A3, R2, R3, D2, D3, and D4 with input

parameters, E�220 kJ/mol and A�1.25�1015 minÿ1.

Fig. 7. Experimental non-isothermal TG curves of the three steps in the thermal degradation of calcium oxalate monohydrate at three heating

rates, 0.25, 2.5 and 258C/min.
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step, at each of the heating rates, the Friedman plot

regression analyses showed excellent correlation coef-

®cients, as indicated at each �. One observes in

Fig. 8(a) that, for all three steps, E� is not constant

but changes monotonically with �, implying that one

is monitoring an effective but not a singular reaction.

The isoconversional logarithmic plot intercepts,

shown in Fig. 8(b), indicate that the overall reactions

conform best to the models:

Step 1 ± loss of water ± D4

Step 2 ± loss of carbon monoxide ± R3

Step 3 ± loss of carbon dioxide ± D4

as originally proposed, based upon `peak analysis-

determined' models [6]. Fig. 8(c) shows the computed

logarithms of the pre-exponential factors.

4. Conclusions

� The procedure described should be considered as

integral-differential, since its use necessitates inte-

gral methods in generating the Friedman data for

the isoconversional analysis. Isoconversional ana-

lyses of modelled solid-state reactions demonstrate

that the intercepts of logarithmic rate equations

mirror exactly the characteristic f(�) functions

describing the reaction mechanism, confirming

the utility of the procedure in assisting the inves-

tigator to ascribe a mechanism descriptive of mon-

itored non-isothermally generated thermoanaly-

tical behavior.

� The isoconversional logarithmic intercept of the

integral Eq. (3) does exhibit �-variant behavior in a

manner similar to that shown for the comparable

term in the more simple differential Eq. (1b) inves-

tigated in this study.

� Applications of the procedure in the analysis

of non-isothermally generated experimental

degradative data show that, in spite of the fact

that the calculated effective reaction activation

energy can vary slightly as the reaction proceeds

to conclusion, the logarithmic plot intercept

conforms well to realistic f(�) functional be-

havior.

Table 7

Friedman analyses: Calcium oxalate monohydrate three-step degradation [6]

� Step 1 ±H2O r2�0.989 Step 2 ±CO r2�0.998 Step 3 ±CO2 r2�0.998

Model D4 Model R3 Model D4

E� ln[A��f(�)] A��10ÿ7 E� ln[A��f(�)] A��10ÿ17 E� ln[A��f(�)] A��10ÿ8

(kJ/mol) (minÿ1) (kJ/mol) (minÿ1) (kJ/mol) (minÿ1)

0.05 99.3 26.600 410.030 256.4 39.439 0.463 229.3 25.417 12.557

0.10 92.5 24.310 86.043 258.1 39.793 0.684 218.7 24.012 6.386

0.15 89.3 23.524 46.632 259.5 40.042 0.911 211.9 23.120 4.078

0.20 86.7 22.043 27.622 263.1 40.630 1.710 208.1 22.641 3.504

0.25 84.2 21.620 16.442 261.8 40.408 1.429 204.6 22.192 2.914

0.30 82.0 20.916 10.205 265.3 40.960 2.599 201.7 21.817 2.513

0.35 81.3 20.672 9.782 262.8 40.509 1.740 199.3 21.494 2.226

0.40 80.1 20.308 8.172 264.1 40.686 2.190 196.6 21.150 1.895

0.45 78.6 19.486 6.114 264.9 40.786 2.565 195.5 20.994 1.927

0.50 77.9 19.578 5.514 265.7 40.860 2.943 193.8 20.762 1.800

0.55 77.7 19.475 5.833 267.1 41.021 3.708 192.3 20.556 1.719

0.60 76.0 18.955 4.063 267.5 41.035 4.070 191.3 20.392 1.709

0.65 76.1 18.920 4.604 266.0 40.713 3.223 189.5 20.133 1.547

0.70 74.8 18.487 3.517 266.6 40.712 3.569 188.3 19.934 1.495

0.75 74.2 18.267 3.360 267.7 40.785 4.355 187.0 19.717 1.432

0.80 72.9 17.822 2.600 268.6 40.784 5.023 186.5 19.580 1.510

0.85 72.5 17.601 2.591 267.6 40.437 4.301 184.7 19.269 1.373

0.90 71.8 17.245 2.375 268.7 40.361 5.228 183.8 19.000 1.373

0.95 70.2 16.514 1.699 268.1 39.819 4.825 182.2 18.537 1.284
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� The effective first and third stages in the thermal

degradation of calcium oxalate monohydrate

appear to conform to the three-dimensional diffu-

sion (Ginstling±Brounshtein D4) model, while the

second stage appears to conform to the three-

dimensional phase boundary movement (R3)

model. (See Elder [1] for detailed references.)

� It is considered unnecessary in modelling solid-

state degradative reaction systems to employ as

input parameters decreasing activation energies

pre-exponential factors, and increasing reaction

orders, rather than constant values, at different

heating rates, as has been proposed [3], and it is

considered that there is virtue in the use of the

referred-to `many curves' methods.
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Fig. 8. (a) Isoconversional activation energy-� profiles for the

three steps in the thermal degradation of calcium oxalate

monohydrate. (b) Isoconversional logarithmic intercept-� profiles

for the three steps in the thermal degradation of calcium oxalate

monohydrate. (c) Isoconversional logarithm of the pre-exponential

factor-� profiles for the three steps in the thermal degradation of

calcium oxalate monohydrate.

238 J.P. Elder / Thermochimica Acta 318 (1998) 229±238


