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Abstract

A set of expressions for the evaluation of the activation energy from ®rst and second derivative temperature-programmed

desorption (DTPD) have been presented for different values of the order of kinetics. Taking into consideration a large number

of computer generated DTPD curves of different order of kinetics it is shown that the value of the activation energy obtained

by using the present set of expressions are in good agreement with its actual value. # 1998 Elsevier Science B.V.

Keywords: Derivative temperature-programmed desorption (DTPD); Activation energy; Order of kinetics; Pre-exponential

factor

1. Introduction

Temperature-programmed desorption (TPD) is an

indispensable tool in the ®eld of catalytic research for

the exhaustive study of the number of adsorption

forms on the surface and their relative stability. The

resolving power of the TPD curves can be enhanced by

using a derivative TPD (DTPD). Hu et al. [1] sug-

gested a method for the determination of activation

energy and pre-exponential factor from ®rst and sec-

ond DTPD curves. In their work they have used an

asymptotic expansion of the integral
R T

0
exp�ÿE=RT�

dT (E�activation energy, R�Universal gas con-

stant, T�absolute temperature) known as temper-

ature integral. They have dealt only with two cases

of order of kinetics (n), namely ®rst and second (n�1

and n�2).

In the present paper we report a number of expres-

sions for the determination of the activation energy

from the ®rst and second DTPD curves not only for

n�1 and n�2 but also for some other values of n. The

present set of expressions for the evaluation of the

activation energy unlike those of Hu et al. [1] involve

only the characteristic temperatures not the higher

order derivatives which require a very tedious method

of evaluation. The suitability of the present set of

expressions have been tested by computing the activa-

tion energies of some computer generated DTPD

curves.
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2. Theory

According to Hu et al. [1] the mathematical equa-

tion for TPD can be expressed as

ÿ d�

dt
� Aexp�ÿE=RT��n (1)

where A is the pre-exponential factor, � the surface

coverage and t the time. For a linear heating scheme

one gets

ÿ d�

dT
� A

�
exp�ÿE=RT��n (2)

where � is the constant heating rate. The curve con-

necting �T � ÿ d�
dT

and T is called a TPD curve. So the

curve connecting ÿ d2�
dT2 � _�T and T is the ®rst DTPD

curve and that connecting ÿ d3�
dT3 � ��T and that T

represents the second DTPD curve. Now following

Hu et al. [1] one can write

�T � A

�
exp�ÿE=RT�exp�ÿF�T���0�n � 1�

(3)

and

�T � A

�
exp�ÿE=RT� �nÿ 1�F�T��

��1ÿn
0

�ÿ n
nÿ1�n 6� 1� (4)

where

F�T� � A

�

Z T

0

exp�ÿE=RT�dT (5)

The integral
R T

0
exp�ÿE=RT�dT can not be evaluated

exactly. Hu et al. [1] have used an asymptotic expan-

sion of the integral in terms of X � E=RT . In the preset

paper, following Devi [2] we express the temperature

integral in terms of the second exponential integral

E2�X� [3]. According to Devi [2]

F�T� � A

�

Z T

0

exp�ÿE=RT�dT � AE

�RX
E2�X�

(6)

Devi [2] has also developed a rigorous computer code

for the evaluation of E2(X) by expressing it in terms of

continued fraction [4]. The method converges rapidly

and permits a very high precision. Now after some

elementary mathematical manipulations Eqs. (3) and

(4) can be expressed as

I � �T

��T�m
� exp Xm ÿ X � F�X;Xm�� � �n � 1�

(7)

and

I � �T

��T�m
� exp�Xm ÿ X�

� 1ÿ nÿ 1

n
F�X;Xm�

� �ÿ n
nÿ1

�n 6� 1� (8)

where��T�m is the maximum value of�T � ÿ d�
dT

and

F�X;Xm� � X2
mexp�Xm� E2�Xm�

Xm

ÿ E2�X�
X

� �
(9)

with Xm � E=RTm. Tm is the temperature where �T

becomes maximum.

Xm can be obtained from the following equations

X2
m �

AE

�R
exp�ÿXm� �n � 1� (10)

�nÿ1�AEE2�Xm�
�RXm

�1� nAE

�RX2
m

exp�ÿXm� �n 6� 1�
(11)

The equations for the ®rst DTPD can be written as

_I � dI

dT
� RX2

E
exp�Xm ÿ X� Gÿ dG

dX

� �
�n 6� 1�

(12)

and

_I � dI

dT
� RX2

E
I 1ÿ dF

dX

� �
�n � 1� (13)

For the second DTPD one can write

�I � d2I

dT2
� R2X3

E2
exp�Xm ÿ X�

X
d2G

dX2
ÿ 2�X ÿ 1� dG

dX
j�X ÿ 2�G

� �
�n 6� 1�

(14)
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and

�I � d2I

dT2
� R2X3

E2
I

d2F

dX2
� dF

dX
ÿ 1

� ��
� X

dF

dX
ÿ 1

� �
ÿ 2

� ��
�n � 1� (15)

where

G � Dÿ
n

nÿ1 (16)

D � 1ÿ n

nÿ 1
F (17)

F � F�X;Xm� (18)

dG

dX
� ÿ n

nÿ 1

G

D

dD

dX
(19)

d2G

dX2
�ÿ n

nÿ 1

1

D

dG

dX
ÿ G

D2

dD

dX

� �
dD

dX
� G

D

d2D

dX2

� �
(20)

dF

dX
� Xm

X

� �2

exp�Xm ÿ X� (21)

d2F

dX2
� ÿ 1� 2

X

� �
dF

dX
(22)

dD

dX
� ÿ nÿ 1

n

dF

dX
(23)

d2D

dX2
� ÿ nÿ 1

n

d2F

dX2
(24)

The peaks of the ®rst DTPD curve is given by

d2I

dT2
� 0 (25)

and those of the second DTPD curve is given by

d3I

dT3
� 0 (26)

Eqs. (23) and (24) have been solved numerically by

Newton±McAuley method [5] (see Appendix A).
Some simple relations were searched for connecting

the quantities in each of the following pairs of vari-

ables (X1, X2) and (Xd1, Xd2) where Xi � E=RTi and

Xdi � E=RTdi; i�1,2. Ti and Tdi represent respectively,

the peak temperatures of the ®rst and second DTPD

curves. A plot of X1 as a function of X1=�X1 ÿ X2�was

found to be very linear for any value of n so that one

can write

X1 � C1
X1

X1 ÿ X2

� C0 (27)

where C1 and C0 depend on the order of kinetics. We

have not found out C1 and C0 by using the conven-

Fig. 2. Same as Fig. 1 but for Y2(� Xd1) against �� X1=
�X1 ÿ X2��.

Fig. 1. Linear plot of Y1(�X1) against Z1�� X1=�X1 ÿ X2�� for

second order kinetics (n�2).
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tional linear least square method [6] but by using the

technique developed by Chakravarty [7] in which the

maximum of the absolute value of the fractional error

in X1 is minimized. Similarly we can write

Xd1 � Cd1
Xd1

Xd1 ÿ Xd2

� Cd0 (28)

3. Results and discussions

We illustrate the linear plot of Y1 (�X1) against

Z1�� X1=�X1 ÿ X2�� in Fig. 1 for n�2. In Fig. 2 we

show the corresponding linear plot between Y2�� Xd1�
and Z2 � Xd1=�Xd1 ÿ Xd2�� �.

Now Eqs. (27) and (28) can be written in terms of

temperatures as

E � C1RT1T2

�T2 ÿ T1� � C0RT1 (29)

E � Cd1RTd1Td2

�Td2 ÿ Td1� � C0RTd1 (30)

The coef®cients C0, C1, Cd0 and Cd1 are tabulated in

Table 1 for different order of kinetics. We have

already mentioned that the temperatures T1, T2, . . .

Table 1
Coefficients C0, C1, Cd0 and Cd1 occuring in Eqs. (27) and (28) for
the determination of activation energy (E) for various orders of
kinetics (n).

n C0 C1 Cd0 Cd1

0.7 ÿ0.1409 1.6278 0.7034 2.0004

1.0 ÿ0.5965 1.9246 0.3229 2.0895

1.5 ÿ1.2911 2.3168 ÿ1.0464 4.0170

2.0 ÿ1.9172 2.6317 ÿ1.8670 4.5769

2.5 ÿ2.4870 2.8968 ÿ2.5341 5.0354

3.0 ÿ3.0092 3.1263 ÿ3.6182 5.5487

Table 2
Comparison of the values of the activation energy and pre-exponential factor for first DTPD curves using present sets of formulas with those of
Hu et al. [1]

n Input A (sÿ1) Values E (kJ) A (sÿ1) Calculated Values E (kJ)

Present Hu et al. Present Hu et al.

0.7 1013 41.842 1013 ± 41.845 ±

0.7 1013 62.763 1013 ± 62.767 ±

0.7 1013 83.684 1013 ± 83.688 ±

0.7 1013 104.605 1013 ± 104.611 ±

0.7 1013 125.526 1013 ± 125.534 ±

0.7 1013 146.447 1013 ± 146.455 ±

0.7 1013 167.368 1013 ± 167.378 ±

0.7 105 83.684 105 ± 83.680 ±

0.7 108 83.684 108 ± 83.688 ±

0.7 1010 83.684 1010 ± 83.676 ±

0.7 1015 83.684 1015 ± 83.688 ±

1.0 1013 41.842 1013 3.22�1013 41.845 43.561

1.0 1013 62.763 1013 5.78�1013 62.767 65.254

1.0 1013 83.684 1013 5.57�1013 83.689 86.885

1.0 1013 104.605 1013 5.08�1013 104.611 108.672

1.0 1013 125.526 1013 5.81�1013 125.534 130.516

1.0 1013 146.447 1013 5.68�1013 146.456 152.094

1.0 1013 167.368 1013 5.79�1013 167.379 173.850

1.0 105 83.684 105 6.24�105 83.680 90.225

1.0 108 83.684 108 6.11�108 83.688 88.513

1.0 1010 83.684 1010 5.33�1010 83.689 87.841

1.0 1015 83.684 1015 5.59�1015 83.689 86.695
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etc. have been computed by Newton±McAuley

method. As a further check of our computer code

we have also computed those temperatures directly

from ®rst and second DTPD curves by using the Cubic

Spline method [5,8] and obtained very good agree-

ment.

In order to test the suitability of the expressions

Eqs. (29) and (30) for the activation energy we eval-

uate the activation energies of some computer gener-

ated ®rst and second DTPD peaks. We also calculate

pre-exponential factor by using Eqs. (10) and (11).

The results are presented in Tables 2±7. In these tables

the values of the activation energy and pre-exponential

factor obtained by Hu et al. [1] (which are in fact the

average of different E and A values, respectively) are

also shown. A close inspection of Tables 2±7 reveal

that in all most all the cases the present values of E and

A are in excellent agreement with the actual value.

Moreover, when comparison of present results are

made with those of Hu et al. we ®nd that the present

result exhibit superior agreement with the actual

values of E and A.

4. Conclusion

In the present paper we have proposed a method for

the determination of the activation energy and pre-

exponential factor of ®rst and second DTPD curves for

different order of kinetics. We have applied the

method to number of computer simulated ®rst and

second DTPD curves and have found that reliable

values of activation energies and pre-exponential fac-

tors can be obtained. The present results are somewhat

better than those of Hu et al. [1]. This might be due to

the fact that in the present calculation very accurate

values of temperature integral developed by Devi [2]

have been employed whereas Hu et al. [1] have ®nally

retained only two terms in the asymptotic expansion of

the temperature integral in their calculation.

Acknowledgements

Thanks are due to Prof. R.K. Gartia, Dr. Th. Basanta

Singh and Dr. T.K. Chakrabarty for their keen interest

in the problem.

Table 3
Comparison of the values of the activation energy and pre-exponential factor for first DTPD curves using present sets of formulas with those of
Hu et al. [1]

n Input A (sÿ1) Values E (kJ) A (sÿ1) Calculated Values E (kJ)

Present Hu et al. Present Hu et al.

1.5 1013 41.842 1013 ± 41.850 ±

1.5 1013 62.763 1013 ± 62.775 ±

1.5 1013 83.684 1013 ± 83.700 ±

1.5 1013 104.605 1013 ± 104.625 ±

1.5 1013 125.526 1013 ± 125.549 ±

1.5 1013 146.447 1013 ± 146.474 ±

1.5 1013 167.368 1013 ± 167.399 ±

1.5 105 83.684 105 ± 83.670 ±

1.5 108 83.684 108 ± 83.696 ±

1.5 1010 83.684 1010 ± 83.700 ±

1.5 1015 83.684 1015 ± 83.698 ±

2.0 1013 41.842 1013 2.25�1014 41.895 44.292

2.0 1013 62.763 1013 2.20�1014 62.789 66.384

2.0 1013 83.684 1013 2.20�1014 83.719 88.410

2.0 1013 104.605 1013 2.15�1014 104.648 110.425

2.0 1013 125.526 1013 2.15�1014 125.578 132.516

2.0 1013 146.447 1013 2.25�1014 146.507 154.671

2.0 1013 167.368 1013 2.15�1014 167.437 176.638

2.0 105 83.684 105 2.15�106 83.649 92.628

2.0 108 83.684 108 2.15�109 83.707 90.311

2.0 1010 83.684 1010 2.15�1011 83.717 89.402

2.0 1015 83.684 1015 2.25�1016 83.716 87.887
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Appendix A

Numerical evaluation of the peak temperatures of

the ®rst and second DTPD curves.

Peak temperatures of the ®rst DTPD curve can be

obtained by solving the equation

f �X� � 2
dI

dX
� X

d2I

dX2
� 0 (31)

Eq. (31) has been solved by Newton±McAuley

method [5]. This method requires the derivative of

f(X) which is given by

df

dX
� X

d3I

dX3
� 3

d2I

dX2
(32)

where for n�1

dI

dX
� I

dF

dX
ÿ 1

� �
(33)

d2I

dX2
ÿ dI

dX

dF

dX
ÿ 1

� �
� I

d2F

dX2
(34)

d3I

dX3
� d2I

dX2

dF

dX
ÿ 1

� �
� 2

dI

dX

d2F

d2X
� I

d3F

dX3

(35)

and for n 6� 1

dI

dX
� ÿI � dG

dX
exp�Xm ÿ X� (36)

d2I

dX2
ÿÿ2

dI

dX
ÿ I � d2G

dX2
exp�Xm ÿ X� (37)

d3I

dX3
� ÿI ÿ 3

dI

dX
ÿ 3

d2I

dX2
� exp�Xm ÿ X� d

3G

dX3

(38)

Similarly the peak temperatures of the second DTPD

curve can be obtained by solving the equation

g�X� � X2 d3I

dX3
� 6X

d2I

dX2
� 6

dI

dX
� 0 (39)

The first derivative of g(X) which is also required for

the computation in Newton±McAuley method is given

Table 4
Comparison of the values of the activation energy and pre-exponential factor for first DTPD curves using present sets of formulas with those of
Hu et al.

n Input A (sÿ1) Values E (kJ) A (sÿ1) Calculated Values E (kJ)

Present Hu et al. Present Hu et al.

2.5 1013 41.842 1013 ± 41.871 ±

2.5 1013 62.763 1013 ± 62.807 ±

2.5 1013 83.684 1013 ± 83.742 ±

2.5 1013 104.605 1013 ± 104.678 ±

2.5 1013 125.526 1013 ± 125.613 ±

2.5 1013 146.447 1013 ± 146.549 ±

2.5 1013 167.368 1013 ± 167.484 ±

2.5 105 83.684 105 ± 83.619 ±

2.5 108 83.684 108 ± 83.718 ±

2.5 1010 83.684 1010 ± 83.738 ±

2.5 1015 83.684 1015 ± 83.739 ±

3.0 1013 41.842 1013 ± 41.885 ±

3.0 1013 62.763 1013 ± 62.827 ±

3.0 1013 83.684 1013 ± 83.769 ±

3.0 1013 104.605 1013 ± 104.712 ±

3.0 1013 125.526 1013 ± 125.654 ±

3.0 1013 146.447 1013 ± 146.596 ±

3.0 1013 167.368 1013 ± 167.538 ±

3.0 105 83.684 105 ± 83.583 ±

3.0 108 83.684 108 ± 83.731 ±

3.0 1010 83.684 1010 ± 83.763 ±

3.0 1015 83.684 1015 ± 83.765 ±
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by

dg

dX
� x2 d4I

dX4
� 8X

d3I

dX3
� 12

d2I

dX2
(40)

where for n�1

d4I

dX4
� d3I

dX3

dF

dX
ÿ 1

� �
� 3

d2I

dX2

d2F

dX2

� 3
dI

dX

d3F

dX3
� I

d4F

dX4
(41)

and for n 6� 1

d4I

dX4
� ÿI ÿ 4

dI

dX
ÿ 6

d2I

dX2
ÿ 4

d3I

dX3

� exp�Xm ÿ X� d
4G

dX4
(42)

with

d3G

dX3
� ÿ n

nÿ 1
T1

dD

dX
� T2

d2D

dX2
� T3

d3D

dX3

� �
(43)

where

T1 � 1

D

d2G

dX2
ÿ 2

D2

dD

dX

dG

dX
� 2G

d3

dD

dX

� �2

ÿ G

D2

d2D

dX2

(44)

T2 � 2
1

D

dG

dX
ÿ G

D2

dD

dX

� �
(45)

T3 � G

D
(46)

Again

d4G

dX4
�ÿ n

nÿ1
T3

d4D

dX4
�T4

d3D

dX3
�T5

d2D

dX2
�T6

dD

dX

� �
(47)

with

T4� 3

D

dG

dX
ÿ 3G

D2

dD

dX
(48)

T5� 3

D

d2G

dX2
ÿ 6

D2

dD

dX

dG

dX
� 6

D3

dD

dX

� �2

ÿ 3

D2

d2D

dX2

" #
G

(49)

Table 5
Comparison of the values of the activation energy and pre-exponential factor for second DTPD curves using present sets of formulas with
those of Hu et al.

n Input A (sÿ1) Values E (kJ) A (sÿ1) Calculated Values E (kJ)

Present Hu et al. Present Hu et al.

0.7 1013 41.842 1013 ± 41.869 ±

0.7 1013 62.763 1013 ± 62.803 ±

0.7 1013 83.684 1013 ± 83.738 ±

0.7 1013 104.605 1013 ± 104.672 ±

0.7 1013 125.526 1013 ± 125.605 ±

0.7 1013 146.447 1013 ± 146.540 ±

0.7 1013 167.368 1013 ± 167.474 ±

0.7 105 83.684 105 ± 83.636 ±

0.7 108 83.684 108 ± 83.722 ±

0.7 1010 83.684 1010 ± 83.737 ±

0.7 1015 83.684 1015 ± 83.733 ±

1.0 1013 41.842 1013 6.71�1013 41.873 43.150

1.0 1013 62.763 1013 7.41�1013 62.809 64.789

1.0 1013 83.684 1013 7.41�1013 83.745 86.330

1.0 1013 104.605 1013 7.44�1013 104.681 107.946

1.0 1013 125.526 1013 7.31�1013 125.617 129.482

1.0 1013 146.447 1013 7.48�1013 146.553 151.332

1.0 1013 167.368 1013 7.48�1013 167.489 172.728

1.0 105 83.684 105 7.26�105 83.630 88.747

1.0 108 83.684 108 7.37�108 83.727 87.521

1.0 1010 83.684 1010 7.10�1010 83.743 86.826

1.0 1015 83.684 1015 7.52�1015 83.739 86.157
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Table 6
Comparison of the values of the activation energy and pre-exponential factor for second DTPD curves using present sets of formulas with
those of Hu et al.

n Input A (sÿ1) Values E (kJ) A (sÿ1) Calculated Values E (kJ)

Present Hu et al. Present Hu et al.

1.5 1013 41.842 1013 ± 41.861 ±

1.5 1013 62.763 1013 ± 62.791 ±

1.5 1013 83.684 1013 ± 86.721 ±

1.5 1013 104.605 1013 ± 104.651 ±

1.5 1013 125.526 1013 ± 125.581 ±

1.5 1013 146.447 1013 ± 146.511 ±

1.5 1013 167.368 1013 ± 167.441 ±

1.5 105 83.684 105 ± 83.659 ±

1.5 108 83.684 108 ± 83.714 ±

1.5 1010 83.684 1010 ± 83.722 ±

1.5 1015 83.684 1015 ± 83.717 ±

2.0 1013 41.842 1013 4.75�1014 41.871 44.005

2.0 1013 62.763 1013 4.65�1014 62.805 65.944

2.0 1013 83.684 1013 4.75�1014 83.740 87.823

2.0 1013 104.605 1013 4.85�1014 104.673 109.862

2.0 1013 125.526 1013 4.64�1014 125.607 131.585

2.0 1013 146.447 1013 4.65�1014 146.541 153.577

2.0 1013 167.368 1013 4.75�1014 167.475 175.607

2.0 105 83.684 105 5.52�106 83.646 92.291

2.0 108 83.684 108 5.29�109 83.728 90.037

2.0 1010 83.684 1010 5.05�1011 83.741 88.927

2.0 1015 83.684 1015 4.65�1016 83.733 87.433

Table 7
Comparison of the values of the activation energy and pre-exponential factor for second DTPD curves using present sets of formulas with
those of Hu et al.

n Input A (sÿ1) Values E (kJ) A (sÿ1) Calculated Values E (kJ)

Present Hu et al. Present Hu et al.

2.5 1013 41.842 1013 ± 41.875 ±

2.5 1013 62.763 1013 ± 62.811 ±

2.5 1013 83.684 1013 ± 83.747 ±

2.5 1013 104.605 1013 ± 104.682 ±

2.5 1013 125.526 1013 ± 125.625 ±

2.5 1013 146.447 1013 ± 146.560 ±

2.5 1013 167.368 1013 ± 167.495 ±

2.5 105 83.684 105 ± 83.757 ±

2.5 108 83.684 108 ± 83.801 ±

2.5 1010 83.684 1010 ± 83.786 ±

2.5 1015 83.684 1015 ± 83.725 ±

3.0 1013 41.842 1013 ± 41.902 ±

3.0 1013 62.763 1013 ± 62.850 ±

3.0 1013 83.684 1013 ± 83.797 ±

3.0 1013 104.605 1013 ± 104.744 ±

3.0 1013 125.526 1013 ± 125.590 ±

3.0 1013 146.447 1013 ± 146.635 ±

3.0 1013 167.368 1013 ± 167.579 ±

3.0 105 83.684 105 ± 83.833 ±

3.0 108 83.684 108 ± 83.935 ±

3.0 1010 83.684 1010 ± 83.833 ±

3.0 1015 83.684 1015 ± 83.755 ±
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where
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