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Abstract

A statistical thermodynamic model for the interpretation of the equilibria in solution is based on the principle that the

representative statistical ensembles can be characterized by two types of molecular distribution, one for non-reacting systems

and another for reacting ones, respectively. Non-reacting and reacting ensembles correspond at the molecular level to one or a

couple of potential curves, respectively. The properties of the thermodynamic model for solutions can be set up following

some rules. These concern the statistical extension of the microscopic model to the whole ensemble and the successive

averaging to get a mean partition function. The mean partition function is linked to the experimental domain of concentrations,

dilutions and equilibrium constants (probability space) and to that of calorimetry, chemical work, and potentiometry

(thermodynamics space). The formal connection between probability and thermodynamic space and the conformity of thermal

equivalent dilution with the formulations of statistical thermodynamics are also shown. # 1998 Elsevier Science B.V.
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Statistical model

A statistical thermodynamic model [1] has been

proposed for the interpretation of the equilibria in

solution. The model is based on the idea that two types

of ensembles represent the systems, one for non-

reacting and another for reacting systems. The former

type corresponds to a molecular distribution where no

outstanding enthalpy level can be identi®ed and the

latter to a molecular distribution where at least two

distinct enthalpy levels are present.

We want now to show how the de®nitions of proper-

ties of the ensembles adopted conform to the phase

space introduced by Gibbs and to the general treat-

ments of the theory of ¯uids [2±8].

The fundamental problem in statistical mechanics is

to use a knowledge of the interparticle interactions of a

system to predict the thermodynamic properties of that

system. Intermolecular potential theory is based upon

the two apparently well-founded assumptions: ®rst

that the intermolecular potentials are a function of

intermolecular separation alone; and, second, that the

total potential energy of a system of N atoms may be

written as a sum of two-body, three-body, four-

body,. . ., potential functions. In general, for the study

of dense ¯uids, the main concern is with the one-

particle distribution function, the number density �
and with a particular form of the two-body distribution
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function, the radial distribution function n(r). The

two-body distribution function determines the second

coef®cient B(T) of the virial equation of state for real

gases

PV=�NkBT� � �1� B�T��� C�T��2 � . . .

(1)

The virial equation is a power series of the number

density � each power being multiplied by a proper

coef®cient. The virial coef®cients are related to inte-

grals that can be solved by approximate calculations.

In particular, the second virial coef®cient B(T) can be

calculated in terms of Mayer f-bond. The Mayer f-

bonds and other functions are very often visually

represented by means of the graph theory which plays

a prominent role in the description of the properties of

¯uids [9,10].

In non-reacting ensembles, the correlation function

takes the form [3]

g�r� � exp �ÿU�r�=kT�f ��� (2)

where U(r) is the potential of mean force between one

particle and the many adjacent particles and f(�) a

function of the number density �

f ��� � �1� �x1�r� � �2sx2�r� � . . .� (3)

The functions x1(r), x2(r),. . ., which represent discon-

tinuous distributions of entropy, are integrals that must

be approximated. The main methods of approximation

have been proposed by Yvon [11] and, independently,

by Born and Green [12] and Kirkwood [13].

In solution thermodynamics, the distribution of the

species over different levels of free energy [14±18] is

represented by a binding polynomial or partition

function. This system is represented by a reacting

ensemble. For a receptor M with three sites, a typical

partition function, ZM, for reacting ensemble is given

by

ZM � 1� �1�A� � �2�A�2 � �2�A�3 (4)

where �1, �2, and �3 are operative cumulative forma-

tion constants or phenomenological coef®cients.

Eq. (4) is a series expansion in powers of [A], similar

to Eqs. (1) and (3). Each term of Eq. (4) corresponds

to one-body, two-body, . . ., (i�1)-body interaction,

respectively.

The operative cumulative constant or phenomeno-

logical coef®cient �i is approximately equal to

�i�[MAi]/([M][A]i). The thermodynamic cumulative

constants �0
i , as functions of activity are pure numbers

and are de®ned in Appendix A, where the approxima-

tions assumed to de®ne �i are also given. According to

the relationships in the Appendix A, the cumulative

constants �i have dimensions of concÿi. Each term of

Eq. (4) is a pure number that can be obtained as the

ratio between two dilutions, namely between �i and

(1/[A]), i.e. �i[A]i��i/[A]ÿi. The same dimensions are

associated with the products of activity coef®cients as

those for the cumulative constants.

The description of the state of the solution depends

on the level of de®nition needed to interpret the

experimental data. The Born±Oppenheimer level of

description of ionic solution considers the particles

Na�, Clÿ and water molecules. The MacMillan±

Mayer level of description of the ionic solutions

considers the particles Na�, Clÿ with water as a

continuum. Our level of description is concerned with

the concentration of species of order 10ÿ3 mol dmÿ3

or less, where the species are bases and acids, proto-

nated species and complexes, dimers, trimers, macro-

molecules, etc. The solvent is considered as an inert

background unless it takes part in a reaction in which

case it is considered as a ligand. We want to show how

these distributions of species conform to the general

framework outlined by Gibbs for thermodynamic

statistical distributions. Some further rules will be

added to help de®ne the behaviour of the systems.

The two basic postulates of Gibbs are the following:

Postulate I (Gibbs microcanonical distribution). An

observable thermodynamic property re¯ects some

particular time-averaged behaviour of the system

components. Gibbs' idea of statistical ensemble is a

device for conceptually avoiding the time averaging

process. The time-averaged value of a single system

property is replaced by the instantaneous average

property value taken over a large number of systems

each of which is an exact microscopic replication of

the original system. This large collection of systems is

the ensemble. The number of ensemble elements is

taken suf®ciently large to represent meaningful

averages. The distribution in the cells of phase space

that the molecules of an ensemble can assume at any

one instant of time is exactly equal to the positions that

each molecule can take in successive instants of time.

The postulate can be expressed, by taking enthalpy as

the property under consideration, as follows: the
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equilibrium distribution of macroscopic states of a

conservative system consists in a uniform distribution

on the enthalpy surface of all the microscopic ele-

ments of the ensemble [2].

Postulate II (Gibbs canonical distribution). In an

ensemble representative of a thermodynamic system

coupled to a heat reservoir, the distribution of the cells

of phase space over different levels is uniform.

The ultimate purpose of statistical thermodynamics

is to express the interactions between components by

the sum of pair potentials, starting from the properties

of the element of phase space up to the properties of

the macroscopic system.

The distinction between non-reacting and

reacting ensembles can be referred to an appro-

priate type of potential. The potential for a non-

reacting closed ensemble is drawn in Fig. 1. The

curve is supposed to follow some type of Lennard±

Jones potential, but this is not strictly necessary. The

minimum of the curve is ÿ�0/kBT (�0 is enthalpy per

molecule and kB the Boltzmann constant) and evalu-

ates the total potential energy. At a distance along r

axis, suf®ciently large from the minimum, the poten-

tial energy has reduced to zero and all the potential

energy has been transformed into kinetic energy or s0/

kB (entropy per molecule). At any point along the r

axis, the sum of potential and kinetic energy is con-

stant

ÿ�=�kBT� � s=KB � S0=kB (5)

By differentiating Eq. (5), one obtains

dfÿ�=�kBT�g � dfs=kBg � 0 (6)

and, hence,

df�=kBg � Tdfs=kBg (7)

(see Appendix B). By dividing both sides of Eq. (7)

by dln T, one obtains

�1=T�qfÿ�=kBg=@ln T � qfs=kBg=qln T (8)

Both sides of Eq. (8) can be multiplied by (NL/NL),

where NL is Avogadro number. From the RHS of

Eq. (8), one obtains Cp which is the isobaric heat

capacity

qfS=Rg=qln T � Cp=R (9)

with S�(sNL) as molar entropy. The LHS of Eq. (8),

with H�(@NL) as molar enthalpy, can be transformed

as follows into the derivative with respect to T

qfH=Rg=Tqln T � qfH=Rg=qT � Cp=R (10)

whereby it is shown that, in non-reacting ensembles,

the isobaric heat capacity Cp is a measure of a change,

either of entropy (Eq. (9)) or of enthalpy (Eq. (10)),

without any possibility of distinguishing between

them by thermodynamic means.

The reference molecular potential of a reacting

ensemble is a couple of potential functions (Fig. 2).

Fig. 1. Pair-potential function for a non-reacting ensemble (kB,

Boltzmann constant).

Fig. 2. Couple of pair-potential functions in a reacting ensmble

(re). The existence of the enthapy difference �� is a necessary

condition for an equilibrium reaction and, hence, for having a

reaction ensemble. (kB, Boltzmann constant). Note that the

formation of the complex in this example is an exothermic process

and is analogous to an emission spectroscopic process.
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Even at this level of description, the existence of a

de®nite enthalpy difference between the minima of a

couple of potential curves is the necessary condition to

distinguish a reacting from a non-reacting ensemble.

The de®nite enthalpy difference is necessary to have

an equilibrium between species in the experimental

system.

In order to get a better de®nition of the properties of

the statistical model for solutions, the two postulates

can be integrated by the four following rules.

Rule I (Probability space). The probability of the

states of any cell or cluster of cells of the phase space

is described in the probability space. Any intensive

variable or weighting coef®cient is independent of the

size of the system. Possible probability functions

satisfying this condition are the Boltzmann functions

exp �ÿ��=kBT� � exp �ÿ2��=2kBT�
� . . . exp �ÿn��kBT� � . . . exp �ÿ�H=RT�

(11)

where �� is the enthalpy per molecule, kB the Boltz-

mann constant, �H the enthalpy per mole and R the

gas constant. In reacting ensembles, sums of Boltz-

mann functions can form probability functions, such

as the molecular partition function

aM � 1� exp �ÿ�g=kBT� � 1� k�a� (12)

where �g is the free energy per molecule, k a speci®c

site binding constant and [a]�nA/�0 the number of

molecules per unit volume with �0�V0/NL, where V0

is 1000 cm3. Alternatively, the probability can be

represented by the molar partition function

AM � 1� exp �ÿ�G=RT� � 1� k�A� (13)

where �G is free energy per mole and [A] the number

of moles per unit volume V0. Note that zM�ZM, the

molecular partition function of Eq. (12) and the molar

partition function of Eq. (13) are numerically equal.

The equality is valid in the thermodynamic limit

`̀ which simply means that the thermodynamic quan-

tities as entropy, heat capacity, free energy, etc. are

asymptotically proportional to the size of the system''

[2].

The justi®cation of the equality of Eqs. (12) and

(13) is that zM and ZM are actually weighting factors of

the unit cell �0 of phase space (zM) and of the unit

volume V0 of the real space (ZM), respectively. The

weighting factors of probability space are independent

from the size of the system. In fact, if in each j part of

the total J parts of the whole ensemble, clusters lj of

size tl are formed, then one can calculate the partition

function as

zM�1=J�
Xj�J

j�1

Ylj

lj�1

�zlj�tl
8<:

9=;
1=
P

tl� �
(14)

where the product
Q

refers to all clusters l of one

group j and the summation
P

refers to all J parts of the

ensemble.

If J�1 and tl�
P

tl�N, i.e. there is a unique cluster

of size N, then by substituting into Eq. (14), one

obtains

zM � �x1�N�1=N� � hhz1ii (15)

where hh ii indicates a geometric average. If J�N and

tl�
P

tl�N (i.e. N parts each with a unique cluster of

size N) then the following partition function is

obtained (cf. Eq. (26) below)

ZM � �1=N�
Xj�N

j�1

hhziii � h�hhziii�i (16)

which becomes the molar partition function, when

N�NL. The function zM is geometrically averaged

(hhziii) over the size of cluster N, whereas ZM is

further arithmetically averaged (h i) over N or NL

replicas. Both zM and ZM are referred to one cell of the

phase space and then the approximate equality holds

zM�ZM. In the thermodynamic limit zM�AM, as for

Eqs. (12) and (13) above.

Fermi±Dirac statistics is applicable to the probabil-

ity space for reacting ensembles (gce). In fact, che-

mical combinations of reactants in gce are represented

in the probability space by products of probability

factors or products of partition functions which is on

the scale of molecules

zM � �1� exp�ÿ�g=RT��it � �1� k�a��it
(17)

and the scale of moles

ZM � �1� exp�ÿ��=RT��it � �1� k�A��it
(18)
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The total probability polynomials of Eqs. (17) and

(18) contain coef®cients that are obtained from the

rules of the Fermi±Dirac statistics, e.g. for it � 3, on

the macroscopic molar scale

ZM � �1� k�A��3 � 1� 3k�A� � 3�k�A��2

� �k�A��3 (19)

Each term of the polynomial in Eq. (19) is related to

the occupation probability of two enthalpy levels. The

occupation probability is proportional to the number

of molecules occupying that level. On the contrary, the

probability of the state is inversely proportional to the

occupation probability and is proportional to dilution.

In this way, in reacting ensembles, the probability

for each level i corresponding to one species MAi

relative to the ground state represented by the species

M is expressed on the macroscopic scale by the molar

dilution ratio

�M�ÿ1=�MAj�ÿ1 � �i�A�i (20)

Both sides of Eq. (20) are pure numbers, although

each factor has the dimension of dilution or (con-

centration)ÿ1. The constant �i indicates how much the

free ligand [A] has been diluted when bound to M.

Rule II (Thermodynamics space). The microscopic

element, or a cluster of elements of a statistical

ensemble, is related to the macroscopic system by a

transformation (subdivision) in the thermodynamic

space of extensive variables and functions. Any exten-

sive variable, e.g. volume, free energy, enthalpy, etc.

undergoes the same transformation. The extensive

variable is given as the ratio between the energy (or

volume, or entropy, etc.) of a group of elements with

the energy content, "id�kBT (or entropy content,

sid�kB) of an equal number of elements of an ideal

gas, (n"id�nkBT). Therefore,

"="id � "=kBT � 2"=2kBT � 3"=3kBT . . .

� n"=nkBT . . . � NL"=RT (21)

where kB is the Boltzmann constant, R�kBNL the gas

constant.

The ratios of Eq. (21) are consistent with the gen-

eral principles of statistical thermodynamics. In fact,

the molecular partition function is set in statistical

thermodynamics [3] as

z � V0=�m � �1=�m�=�1=V0� (22)

which is, for a gas, equal to the ratio between the

volume V0 accessible by one mole of ideal gas at STP

(22 414 cm3) and the volume �m accessible by one real

molecule (Fig. 3). The accessible volume is inversely

proportional to dilution, 1/�m, which, in turn, is

proportional to the probability of the state; (1/V0)

is, therefore, proportional to the probability of unitary

standard state. The volume �m is related to molecular

momentum � by

�m � �f ��� (23)

if ���3, where ��h(2�mkT)ÿ1/2 is the De Broglie

thermal wavelength, and f(�) is a probability weight-

ing function depending on the enthalpy of the reaction,

then �m has the dimension of volume. f(�) is a function

of the reciprocal of the con®guration integral Zc and

represents in �m the factor of virtual dilution.

The molecular partition function z is an extremely

large number (e.g. z�exp (67.2)�1.53�1029 for gas-

eous helium), representing the dilution combined with

the virtual dilution due to bindings as given by f(�) of

the volume �m (accessible by one molecule) from one

to all the cells (�NL) contained in one volume of gas at

STP. Alternatively, the molecular partition function z

can be interpreted as the dilution of one molecule from

�m to the corresponding standard volume �0 by

Fig. 3. Accessible volume and probability of state. Vm, portion of

the original standard volume V0 that, before dilution, contains the

same number of moles as the whole volume V0 after dilution. �m,

an infinitesimal portion of V0 that contains before dilution the same

number of molecules as the whole volume V0 after dilution.

Probability of state (molecular): z�(1/�m)/(1/V0), Probability of

state (molar): ZM�(1/Vm)/(1/V0), Probability of state (molecular):

zM�(1/�m)/(1/�0); �0�V0/NL; zM�ZM�z/NL.
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repeating the dilution N times. For a solution, the

volume V0 is set equal to 1000 cm3.

The molar partition function is set [3] as

Z � zN=N! (24)

which according to the Stirling approximation

(ln N!�Nln NÿN) yields

ln Z � Nln �ze=N� (25)

Z is an inconceivably large number. We can, however,

reduce it to a reasonable size if we consider some

mean similar to the geometric mean, calculated for

clusters in Eq. (16). If we take the geometric mean

Z(1/N), we consider a statistical average of N events

concerning the dilution or reaction (1 : 1) of one

molecule with one cell of volume �0�V0/N. This

means that we remove the effect of dilution from

�0 to V0 and we are left with virtual dilution from

�m to �0 only due to binding. In fact, by rearranging

Eq. (25) one obtains

Z�1=N�=e � z=N � �V0=N��m � �0=�m

� �1=�m�=�1=�0� (26)

If N�NL, then the ratio is between the accessible cell

volume �0 at STP by one molecule of ideal gas and the

volume �m accessible by one molecule of a real gas. In

a solution (V0�1000 cm3) the ratio of Eq. (26) is

between the unit volume �0�1000/NL and the statis-

tical average accessible volume �m of one solute

molecule. The probability of the average event is

related to the free energy of the reaction by

Z�1=N�=c � exp �ÿ�g=kBT� (27)

where Z(1/N)�1 if �g�kBT. This indicates that the

ratio of the LHS of Eq. (27) is the mean probability

ratio with respect to the system presenting the dis-

tribution of the ideal gas (kBT).

On comparing Eqs. (26) and (27), one concludes

that (i) on the scale of molecules it is possible to

compare the probability of reaction with a ratio of

accessible molecular volumes (i.e. dilutions)

exp �ÿ�g=kBT� � �1=�m�=�1=�0� (28)

and (ii) on the molar scale the probability of reaction

with a ratio of molar accessible volumes

exp �ÿ�G=RT� � �0N=��mN�
� �1=Vm�=�1=V0� (29)

where Vm is the statistical average accessible volume

of 1 mole. It can be stressed the point that the ratio of

accessible volumes is a ratio between probabilities of

states which are typical intensive variables of the

probability space.

The couples (V0, �0), (Vm, �m), and (ÿ�G, ÿ�g)

are proportional to the ratios R/KB/NL. Therefore, the

ratios

Vm=R � �m=kB (30)

and

V0=R � �0=kB (31)

are comparable with the ®rst and last ratios of

Eq. (21). Their equality is again valid on the assump-

tion of the existence of the thermodynamic limit [2].

The same arguments can be used to explain how the

molar reaction partition function ZM conforms to

general statistical thermodynamics. In fact, ZM is pro-

portional to dilution of the receptor. With reference to

a simple reaction M�A�MA, the partition function or

binding polynomial is

ZM � �M�ÿ1=f�M� � �MA�gÿ1
(32)

and

ZM � exp ��G=RT� (33)

From Eq. (29) one obtains

ZM � V0=Vm � �1=Vm�=�1=V0� (34)

and from Eqs. (26) and (28)

ZM � z=N (35)

which shows how the binding polynomial obtained

from the experiment is actually a mean molar partition

function coincident with the geometric mean of clas-

sical partition function of Eq. (24).

Finally, by recalling Eqs. (28)±(31), the molecular

partition function comes out to represent a ratio of

probabilities of states on the molecular scale

zM � exp �ÿ�g=kBT� � �1=�m�=�1=�0�
(36)

which is a mean molecular partition function related

to the classical statistical molecular partition function

z by

z � zMN (37)

Therefore, zM of Eq. (36) represents the probability of
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dilution or reaction (1 : 1) of one molecule with

accessible volume �m with one cell of volume �0.

By analogy, ZM of Eq. (35) represents the probability

of dilution or reaction (1 : 1) of N molecules (1 mole if

N�NL) with accessible volume Vm and with solution

volume N�0�V0. The partition functions zM and ZM

are numerically equal as are exp (ÿ�g/kBT) and

exp (ÿ�G/RT), again on the assumption of the valid-

ity of the thermodynamic limit.

The relative variables of the thermodynamic space

can be transformed into absolute thermodynamic

values. The units are different if they are obtained

by multiplying the relative variables by R

(J molÿ1 Kÿ1) or by kB (J moleculeÿ1 Kÿ1). It is

obvious that the experimental size is obtained by

reference to R rather than kB.

Rule III (Distribution moments). If the probability

of states is statistically distributed, then the thermo-

dynamics space functions are the ®rst moments of the

probability space distributions. In this respect, the

Boltzmann function in the probability space is an

eligible function to obtain the extensive variable of

the thermodynamics space. In fact, if we search for a

function, for which df(x)/f(x)�dx, we ®nd that the

Boltzmann function satis®es this condition

�exp �ÿ�G=RT��ÿ1
d�exp �ÿ�G=RT�

� dln �exp �ÿ�G=RT�� � d�ÿ�G=RT� (38)

Analogous equations can be written on the molecular

scale, e.g d(ÿ�G/RT)�d(ÿ�g/kBT).

Other intensive variables as pressure, concentration,

dilution or partition functions ®nd their extensive

counterpart in the logarithm of the intensive variable

or function, respectively. The logarithmic function is

the explicit form of the relationship SA/R�f(dA) or sa/

kB�f(da) between the dilution of the probability space

and the entropy SA/R or sa/kB of the thermodynamic

space

dSA=R � ÿdln �A� (39)

For the entropy also, as for any other extensive vari-

able, there is the possibility to write equations like

Eq. (21). For instance, the mixing entropy can be

de®ned on the microscopic scale [8] by

S=kB � ÿ
X

filn fi (40)

and on the macroscopic scale [10] by

S=R � ÿ
X

xln xi (41)

Eqs. (40) and (41) correspond to equal numbers

because they can be transformed into one another

by the relation

s=kB � �NLs�=NLkB� � S=R (42)

This relation for entropy is analogous to Eq. (21) for

energy and to Eqs. (30) and (31) for dilution.

Note how the Eqs. (40) and (41) are not equivalent

to s=kB � ÿ
P

ln f
fi
l and S=R � ÿP ln xxi

l , respec-

tively, because the coef®cients of the thermodynamic

space do not commute with the exponents of the

probability space. The two classes of numbers have

different properties. The coef®cients of the thermo-

dynamic space are indicative of extensive amounts of

substance and can assume any rational value, either

integer or not. The coef®cients of the probability space

refer to molecular reactions in the probability space

and can assume only integer values indicating inter-

actions between a ®nite number of particles.

In probability space, the equality Eq. (42) becomes

exp�s=kB� � exp �S=R� (43)

The second moments of the intensive distribution

functions or variables, can be calculated as second

derivatives with respect to either variable. Reacting

ensembles, re, also admit mixed derivatives with

respect to temperature and concentrations.

Rule IV (Thermal equivalent dilution). The inten-

sive variables, temperature T and dilution dA�1/[A],

produce equivalent entropic changes

�dSA�T � ÿRdln �A� (44)

�dST�A � ÿCpdln T (45)

and obvious analogous expressions for the micro-

scopic molecular scale. If the dilution of A is kept

constant but the temperature is changed, a virtual

change of dilution or thermal equivalent dilution

(TED) is effective

�dSA;virt�T � �dST�A (46)

Being the change of the temperature obtained by

exchanging heat with the system, there is a correspon-
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dence between a change of energy and a change of

entropy.

A demonstration is the following. By recalling

Eq. (29) applied to n molecules of solute, one can

write

ÿ�G=RT � lnf�0N=��mNn�g
� ln�1=Vm�=�n=V0� (47)

where Vm�N�3�N(h2/2�mkT)3/2 is the statistical

average volume of one mole of ideal gas at any

temperature. The free energy of mixing is equivalent

to an entropy of mixing

�S=R � ln f�V0=n�=��mN�g
� lnf�1=N�3�=�A�g (48)

where 1/[A] has been substituted for (V0/n). By taking

the logarithm of 1/Vm, one obtains

ln �Nÿ1�ÿ 3� � ln f�h2=2�mkN�ÿ3=2g
� �3=2�ln T (49)

and then

�S=R � ln f�1=�A�� � ln f�h2=2�mR�ÿ3=2g
� �3=2�ln T (50)

which is the Sakur±Tetrode equation. By differentiat-

ing Eq. (50) and remembering that Cv,id�(3/2)R for an

ideal gas, one obtains

d��S� � Rdln �1=�A�� � Cv;iddln T (51)

At constant pressure, by considering that, in Eq. (48)

dln V0�dln T, one can write

d��S� � Rfdln �1=�A�� � �3=2� 1�dln Tg
(52)

Then, by remembering that Cp�(5/2)R for an ideal

gas, one obtains for real solution

d��S� � R dln �1=�A�� � Cpdln T (53)

which is the sum of the two changes of entropy in

Eqs. (45) and (46), respectively.

A corollary to the Rule IV is that any enthalpy

change can be associated to an equivalent change of

dilution, but not vice versa.

1. Conclusions

An analysis of the statistical thermodynamics

model for solutions has shown how the types of

ensembles, namely non-reacting or reacting are con-

sistent with the basic principles of statistical thermo-

dynamics. The distinction into the two classes on the

basis of absence or existence of separated enthalpy

levels ®nds its correspondence in the different types

of pair-potential functions in the element of the

phase space. The rules given to build-up the whole

thermodynamic model complete the framework into

which the properties of the thermodynamic system

can be properly understood in terms of molecular

processes.

2. List of symbols

� number density

n(r) radial distribution function

g(r) correlation function

B(T), C(T),. . . coefficients of the virial equation

p pressure

V volume

N large number

NL Avogadro number

U(r) potential of mean force

f(�) function of the number density �
�1, �2, . . .�i. . . operational formation constants,

�i�[MAi]/([M][A]i)

�0
1, �0

2,. . .�0
i thermodynamic formation con-

stants �0
i � aMAi

=�aMai
A�

x1�r�,x2�r� . . . integrals

�� enthalpy difference at molecular

scale

�H enthalpy difference at molar scale

�g free energy difference at molecu-

lar scale

�s entropy difference at molecular

scale

�S entropy difference at molar scale

�SH entropy equivalent of the reaction

enthalpy �H/T

k specific site binding constant

M receptor

A ligand

aA, aM. . . activity of A, M, etc.
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dA, dM. . . dilution of A, M, etc.

"id energy difference at molecular

scale in ideal gas

V0 volume of solvent accessible by

one mole

Vm volume (virtual) of solvent acces-

sible by bound moles

�0 volume of solvent accessible by

one ideal molecule

�m volume (virtual) of solvent acces-

sible by bound molecules

� De Broglie wavelength

h Plank constant

m molecular mass

z molecular partition function

Z molar partition function

ZM mean molar partition function or

binding polynomial

zM mean molecular partition function

fi molecular fractions

xi molar fractions

Cv isochoric molar heat capacity

TED thermal equivalent dilution

�0 enthalpy per molecule (ground

level)

r(T) average radius (function of T)

s0 molecular entropy (ground level)

n integer number

j jth portion of ensemble

J maximum j

lj index of cluster in jth portion

tl size of cluster l

�� chemical potential

it maximum index i

� molecular momentum

f(�) function of enthalpy

Zc configuration integral

e base of natural logarithm

T absolute temperature

kB Boltzmann constant

CP isobaric heat capacity

S entropy

R gas constant

H enthalpy

�G free energy difference at molar

scale

� reacted molar fraction

d dilution
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Appendix A

Activity and activity coefficients

The thermodynamic cumulative formation constant

�0
i of the species MAi, which is a pure number, is

expressed as the function of activities of the species

�0
i � aMAi

=�aMai
A� (A.1)

where the activity of species A is related to the

concentration [A] by the activity coef®cient fA

aA � �A�fA (A.2)

the activity of species MAi is related by the activity

coef®cient fMAi

aMAi
� �MAi�fMAi

; (A.3)

the activity of species M is related by the activity

coef®cient fM

aM � �M�fM (A.4)

where

fM � �0
0 (A.5)

The relationship between the thermodynamic constant

�0
i and the phenomenological coef®cient bi of Eq. (4)

is given by

�i � �0
i f i

A (A.6)

which by recalling Eq. (A.1) can be transformed

into

�i � �aMAi
=aM��fMAi

=fM�=�A�i (A.7)

From Eq. (7), one can calculate that the dimensions

of �i are the same as those of concentration [A] raised

to the power ÿi. For example, if the concentrations

are expressed in mol dmÿ3, then the cumulative con-

stants �i have dimensions (mol dmÿ3)ÿi�molÿi dm3i

which are the dimensions of products of the solution

volume associated to one mole of ligand. These are
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dimensions of the dilution which, in probability space,

is directly proportional to the entropy probability

factor.

If one assumes that

�fMAi=fM� � 1 (A.8)

then the operational cumulative constant can be cal-

culated

�i � �MAi�=��M��A�i� (A.9)

For the sake of simplicity, we assume that the activity

coef®cient fA is unitary and, thus, preserves the dimen-

sionality of the constant.

Appendix B

Differentials of enthalpy

The differential of enthalpy H/R on the molar scale

or the differential of molecular enthalpy �/kB have

different expressions in reacting and in non-reacting

ensembles, respectively. We develop here the relation-

ships for the molar ensembles. The transformation

from molar to molecular relationships is obtained by

division by NL.

In an open reacting ensemble, the enthalpy change

ÿ�rH obtained from the van't Hoff equation as

derivative of ln K with respect to 1/T, is equal to an

entropy change T�SH. The entropy change �SH/R is

obtained in the thermodynamics space [15,16] dia-

gram as the orthogonal projection of ÿ�rH/RT onto

the entropy axis. The two quantities �SH/R and

ÿ�rH/RT are necessarily equal, by construction.

ÿ��
rH � T�SH (B.1)

which can be differentiated

d�ÿ�rH
�� � Td��SH� (B.2)

with partial derivative

@�ÿ�rH
��=@��SH� � T (B.3)

The function �SH is the projection onto the entropy

axis of the thermodynamics space [15,16] of the

reaction enthalpy. Alternatively, by considering that

ÿ�rH
� � ÿ�rG

� ÿ T�rS
� (B.4)

one obtains the differential

d�ÿ�rH
�� � d�ÿ�rG

� ÿ T�rS
�� (B.5)

with partial derivative

q�ÿ�rG
��=qT � �ÿ�rG

�=T� � �1=T�
� q�ÿ�rG

�=T�=q�1=T� (B.6)

which is related to the standard entropy by

q�ÿ�rG
��=qT � �rS

� (B.7)

Eq. (B.6) becomes the Gibbs±Helmholtz equation

by considering that @(ÿ�rG
f/T)/@(1/T)�ÿ�rH

f

q�ÿ�rG
��=qT � �ÿ�rG

�=T�
� �1=T��ÿ�rH

�� (B.8)

The difference between �SH and �rS
f must be

stressed upon. The difference is even more evident

from further derivation

q�ÿ�rH
��=qT � �rCp (B.9)

and

q��SH�=qln T � �rCp (B.10)

For the reaction entropy, however, one has [18]

q��S=S�=qln T � q�=qln T � �rCp;app=R

(B.11)

with

�rCp;app � ÿf��1ÿ ���ÿ�rH
�=T � Cp;Ag

(B.12)

In closed non-reacting ensembles, the relationship

between the differentials of enthalpy and entropy is

dH � T dS (B.13)

where the enthalpy change is directly proportional to

the entropy change with the absolute temperature T as

the proportionality factor. This leads to the partial

derivative

qH=qS � T (B.14)

By further derivation with respect to the temperature,

one obtains the isobaric heat capacity Cp either from

entropy (Eq. (9)) or from enthalpy (Eq. (10)). On the

other hand, a relationship like Eq. (B.12) does not

exist for non-reacting systems.
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The validity of Eq. (B.14) for all systems has been

questioned by Weber [19,20] who puts forward some

warning in the application of van't Hoff equation to all

systems. While studying the interactions between

protein subunits, he speaks of thermally activated

motions, brought about by the increased probability

of bond breakage with temperature. These thermally

activated motions form a non-reacting subset in the

biochemical system.
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