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Abstract

The method of estimation of kinetic exponent of the Johnson±Mehl±Avrami (JMA) model from non-isothermal DTA or

DSC data introduced by Augis and Bennett has been analyzed. It is shown that this method gives reasonably accurate

estimations provided that it has been checked by an independent method that the data really correspond to the JMA model.

Otherwise, the Augis and Bennett method can lead to wrong interpretation of experimental data. A simple testing method

which allows veri®cation of the applicability of this method is proposed. These methods were successfully applied to analysis

of non-isothermal crystallization of Ge0.3Sb1.4S2.7 glass. # 1998 Elsevier Science B.V.
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1. Introduction

Twenty years ago Augis and Bennett [1] suggested a

convenient method of calculation of kinetic exponent,

m, for the Johnson±Mehl±Avrami (JMA) model from

non-isothermal DTA or DSC data. The method is

based on a simple equation:

m � 2:5RT2
p

Ea�T
(1)

where Tp is the maximum of DTA or DSC peak, �T

the peak halfwidth and Ea the activation energy. This

method became quite popular (more than 130 citation

of original paper [1] to date) and it is frequently used

for the estimation of parameter m from non-isothermal

data [2±6]. However, the JMA model was developed to

describe nucleation-growth processes in isothermal

conditions and it can be applied to the description

of non-isothermal DTA or DSC data only in a limited

number of special cases. From this point of view the

applicability of the JMA model should be carefully

examined before the Augis and Bennett method is used.

The aim of this paper is to analyze practical limits of

validity of Eq. (1) in non-isothermal kinetics of solid-

state processes.

2. Theory

The theoretical basis for the description of isother-

mal solid-state transformations involving both nuclea-
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tion and growth phases was formulated by Johnson

and Mehl [7], Avrami [8,9] and Kolmogorov [10]. The

resulting equation describes the time dependence of

the fractional extent of the process, �, and it is known

as the Johnson±Mehl±Avrami equation:

� � 1ÿ exp�ÿ�Kt�m� (2)

where K and m are constants with respect to time t. For

some simple cases of solid-state transformation it is

possible to ®nd a characteristic value of the kinetic

exponent m [11,12].

By differentiation of Eq. (2) with respect to time the

isothermal transformation rate equation is obtained:

d�

dt

� �
� Km�1ÿ ���ÿln�1ÿ ���1ÿ1=m

(3)

It has been shown [12,13] that the validity of

Eqs. (2) and (3) can be extended to non-isothermal

conditions provided that a new crystalline phase

grows from a constant number of nuclei and all

nucleation is completed prior to crystal growth in

macroscopic scale. Usually, it is expected that the

rate constant K exhibits a simple Arrhenius tempera-

ture dependence K(T)�A exp(ÿEa/RT). The rate

equation for non-isothermal conditions then can be

expressed:

d�

dt

� �
� A exp�ÿEa=RT�f ��� (4)

where f(�)�m(1ÿ�) [ÿln(1ÿ�)]1ÿ1/m is the kinetic

function for the JMA model.

Usually, it is assumed that the rate (d�/dt) is pro-

portional to the measured quantity (temperature dif-

ference for DTA or heat ¯ow for DSC technique).

Fig. 1 shows a typical DTA or DSC peak associated

with a constant scan rate experiment. At the half

maximum of this peak we can write the following

condition using Eq. (4):

A exp�ÿEa=RT1�f ��1� � A exp�ÿEa=RT2�f ��2�
(5)

Eq. (5) can be rewritten after converting it into

logarithmic form and assuming that T1T2 � T2
p

RT2
p

Ea�T
� ln

f ��1�
f ��1�
� �� �ÿ1

(6)

where �T�T2ÿT1 is the peak halfwidth. This equa-

tion is formally identical with Eq. (1) assuming that

{ln[f(�1)/f(�2)]}ÿ1�m/2.5. This assumption not

seems to be so straightforward as stated in Ref.[1].

Therefore, we will examine it in more detail in Sec-

tion 3.

Fig. 1. Analysis of a typical DSC curve according to the method suggested by Augis and Bennett [1].
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3. Results and discussion

Theoretical DSC curves can be obtained by numer-

ical solution of the differential Eq. (4). Fig. 2 shows

an error of estimation of kinetic exponent m if these

DSC curves calculated for the JMA model are ana-

lyzed using Eq. (1). The error is de®ned in the follow-

ing way:

Error �%� � mcalc ÿ m

m
� 100 (7)

where m is the true value of kinetic exponent and mcalc

the value calculated from Eq. (1). It is seen that the

error decreases with the reduced activation energy, Ea/

RTp, and increases with the value of parameter m.

Nevertheless, it is below 10% for m�4 and Ea/

RTp�30. These conditions are usually ful®lled for

most practical cases where the JMA equation can

be applied. It seems, therefore, that Eq. (1) can pro-

vide reasonably accurate estimation of the parameter

m for most cases of non-isothermal solid-state pro-

cesses. However, as anticipated in Section 1, the JMA

equation can be applied to the description of non-

isothermal data only in a limited number of special

cases and the kinetic model corresponding to a parti-

cular data set is usually not known `a priori'. Eq. (1)

always provides a value of kinetic exponent for any

DTA or DSC peak. Nevertheless, if the analyzed DTA

or DSC curve does not correspond to the JMA model

then the Augis and Bennett method can lead to a

wrong interpretation of experimental data. Therefore,

it seems that the validity of the JMA model should

carefully be examined before any practical application

of Eq. (1) is made. A very simple and reliable method

testing the applicability of the JMA model is based on

the mathematical properties of the z(�) function which

can easily be obtained by a simple transformation of

DTA or DSC data [14]:

z��� � d�

dt

� �
T2 (8)

It can be shown that the function z(�) has a max-

imum at �1p which should be con®ned to the interval

0.62<�1p <0.64 for the JMA model [14]. Strictly

speaking, only in this case can the Augis and Bennett

method be applied and Eq. (1) gives reliable value of

exponent m. It was found [15±19], however, that in

many cases crystallization processes in non-isother-

mal conditions cannot be described by the JMA model

(�1p �0.62) and that the empirical Sestak±Berggren

(SB) model [20] provides a more satisfactory descrip-

Fig. 2. Error of kinetic exponent m (calculated using (Eq. (1)) as a function of reduced activation energy. The numbers correspond to the

values of parameter m of theoretically calculated DSC curves used for analysis as shown in Fig. 1.
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tion of experimental data. In these cases, Eq. (1)

evidently cannot be applied for the estimation of a

meaningful parameter m.

According to Eq. (1), the term RT2
p=Ea�T should

be a linear function of the kinetic exponent m for the

JMA model. Augis and Bennett [1] claimed that the

slope of such a plot should be equal to 1/2.5. In fact

this slope is greater and it varies slightly with a

reduced activation energy, being 1/2.18 for Ea/

RTp�15 and 1/2.35 for Ea/RTp�55. These plots,

obtained by analysis of theoretically calculated

DSC curves, are shown in Fig. 3. It seems, therefore,

that Eq. (1) should rather be written in the following

form:

m � cRT2
p

Ea�T
(9)

where c is a parameter which depends on the reduced

activation energy as shown in Fig. 4. The value of

c�2.44 corresponds to in®nite reduced activation

energy (Ea/RTp!1) and it is still considerably lower

than the value of 2.5 reported by Augis and Bennett

[1]. If the kinetic exponent m for the JMA model is

calculated using Eq. (9) instead of Eq. (1) then the

error mentioned above (see Fig. 2 and corresponding

discussion) will be practically eliminated.

In any practical application of Augis and Bennett

method of analysis of real data, the accuracy of the

estimated parameter m also depends on the experi-

mental errors which affect the correct determination of

Tp and �T. It is also very important to have a correct

determination of the activation energy which should

be invariant with respect to fractional conversion �
(this is also essential for other methods of determina-

tion of the kinetic exponent [22]). The isoconversional

method of calculation of Ea [21] is recommended as it

provides the possibility of verifying this invariance.

While the Augis and Bennett method of estimation of

the parameter m of the JMA model is valid under the

speci®c aforementioned conditions, a more determi-

nistic method of evaluation of this parameter is usually

preferred. An outline of such methods can be found,

for example, in Refs. [12,22±24].

Fig. 5 shows non-isothermal DSC data correspond-

ing to crystallization of bulk Ge0.3Sb1.4S2.7 glass [25].

The normalized z(�) function calculated using Eq. (8)

is shown in the inset. The maximum of this function

agrees with the value predicted for the JMA model

and, therefore, the Augis and Bennett method can be

used for the estimation of the value of kinetic expo-

nent. From Fig. 5, we ®nd the peak temperature of

656.4 K and the peak halfwidth of 16.6 K, respec-

Fig. 3. The dependence of parameter RT2
p=Ea�T as a function of the kinetic exponent m for the JMA model. Full lines were obtained for

theoretically calculated DSC curves for Ea/RTp�15 and 55. Broken line corresponds to Eq. (1).
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tively. The value of activation energy reported pre-

viously [25,26] is 160 kJ/mol and, therefore, Ea/

RTp�29.3. From Fig. 4 this value of the reduced

activation energy corresponds to c�2.31. Then the

value of the kinetic exponent estimated using Eq. (9)

was found to be m�3.1. This value is very close to a

Fig. 4. The dependence of parameter c in Eq. (9) as a function of reduced activation energy. Broken line shows a limiting value for Ea/

RTp!1.

Fig. 5. DSC curve of crystallization of bulk Ge0.3Sb1.4S2.7 glass measured at heating rate 5 K/min. Inset shows the normalized z(�)

dependence calculated from DSC data using Eq. (8). The position of the maximum typical for the JMA model is marked with broken lines.
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previously reported value (m�3.05) obtained by other

methods [25] and it is also in agreement with observed

growth of spherulitic crystals of Sb2S3 phase. A some-

what higher value of kinetic exponent (m�3.37) is

obtained from original Augis and Bennett formula

expressed by Eq. (1).

4. Conclusions

The method of estimation of kinetic exponent of the

JMA model from the shape of DTA or DSC curve

introduced by Augis and Bennett has been analyzed. It

is shown that Eq. (1) reported in the original paper of

Augis and Bennett can provide reasonably accurate

estimation of kinetic exponent (within 10% error)

though the more precise Eq. (9) gives even better

results. Nevertheless, this simple method of estimation

of the kinetic exponent is valid only in the case

that the analyzed DTA or DSC data really correspond

to the JMA model. Otherwise, the Augis and

Bennett method can lead to wrong interpretation

of experimental data. A simple testing method which

allows to verify the applicability of the JMA model

is suggested.

These methods have been successfully applied to

analysis of non-isothermal crystallization of bulk

Ge0.3Sb1.4S2.7 glass.
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