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Abstract

The general theory of transformation kinetics is largely con®ned to isothermal reactions. Several attempts have however

been made to apply that theory to non-isothermal nucleation and growth transformations as well. Unfortunately, this has lead

to some confusion and misunderstandings when thermal analysis experiments, such as DSC and DTA, associated with

Kissinger- or Ozawa-like relationships, are used for the extraction of the kinetic parameters of the non-isothermal

transformations. The present Part II of this paper widens the scope of the discussed issues, assesses the correct way of applying

the theory of isothermal kinetics to non-isothermal transformations, stresses the sources of confusion and points to the

mathematical and physical errors that commonly appear in the literature. It is shown that only `site saturated' transformations,

i.e. those where the nucleation rate is zero, can be properly analyzed. The general non-isothermal equation for the fraction

transformed is proven to be the sound and sole foundation for the correct deduction of the transformation kinetic parameters.

# 1998 Elsevier Science B.V. All rights reserved.

Keywords: Non-isothermal integral equation; Non-isothermal nucleation and growth phase transformation kinetics; Rule of
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1. Introduction

In Part I of this paper [1], attention has been brought

to the apparent `̀ confusion that has arisen during the

years about the application of the Kissinger [2] (and

Ozawa [3]) methods, or the Avrami formalism [4,5], to

non-isothermal nucleation and growth transformation

kinetics'' [1]. There are two reasons for that confusion.

(a) There is a frequent overruling of the limitations

involved in the application of the isothermal Avrami

rate equation to non-isothermal kinetics, as clearly

stated by Henderson [5]. The essential limitation is

that the use of the Avrami equation for non-isothermal

kinetics must be restricted to the so-called `site satura-

tion' transformations solely. (b) As there is an explicit

time t dependence of the temperature T in the growth

function G, the differentiation of the integral on

G(T(t)) is not straightforward. The often used relation

d=dt
R t

0
G�T�t��d� � G�T�t�� when differentiating

the basic non-isothermal equation for the fraction

transformed �,(T,t) namely: ��T ; t� � 1ÿ exp�ÿgN0R t

0
G�T����d�� 	n� is incorrect [1].The general theory

of transformation kinetics is largely con®ned to iso-

thermal reactions. Several attempts have been made to

apply that theory to non-isothermal transformation as

well. However, as explicitly mentioned in a classical

text by Christian [6]: `̀ the dif®culties in treating non-
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isothermal reactions are mainly due to the independent

variations of growth and nucleation rate with tem-

perature.... The problem is tractable only when the

instantaneous transformation rate can be shown to be a

function solely of the amount of transformation and

the temperature.'' This leads to the concept of addi-

tivity, or the one of a true kinetic equation, discussed

in Section 2 below.

It is the purpose of this paper to complete the

reassessment [1] of the applicability of the commonly

used thermal analysis methods to non-isothermal

nucleation and growth transformation kinetics.

2. Theoretical

Two distinctive approaches have been used during

the years for the formulation of non-isothermal trans-

formation kinetics. In this paper, as in Part I, the

discussion is restricted to nucleation and growth

transformations.

2.1. The integral equation formulation

The general non-isothermal transformation kinetic

equation for the fraction transformed is:

��T; t� � 1ÿ exp ÿg

Zt
0

I�T�t0��
24

�
Zt
t0

G�T����d�
8<:

9=;
n

dt0

35 (1)

I(T(t)) and G(T(t)) are the nucleation and the growth

rates, T the temperature and g a geometrical factor that

depends on the dimensionality of growth [4,7,8]. For

an interface-controlled growth n is an integer; for a

diffusion-controlled growth n takes either integer or

half-integer values [6]. In the so-called `site satura-

tion' [9] case, when heterogeneous nucleation takes

place at randomly distributed pre-existing nucleation

sites N0, the nucleation rate being therefore zero,

Eq. (1) is reduced to:

��T; t� � 1ÿ exp ÿgN0

Zt
0

G�T����d�
8<:

9=;
n24 35

(2)

The growth function is generally assumed to be of

Arrhenius type, e.g. to exhibit an exponential depen-

dence on temperature. If the heating rate � in thermal

analyses is maintained constant, the growth function

integral can therefore be written as:Zt
0

G�T����d� � G0

Zt
0

exp ÿ Eg

RT���
� �

d�

� G0

ZT
T0

exp ÿ Eg

RT

� �
dT

�
(3)

where T0 is the temperature at time t�0, G0 the pre-

exponential factor of the growth function and Eg the

activation energy for growth solely.

Eq. (3) implies that an exponential integral has to be

evaluated when solutions to Eq. (1) are sought. The

commonly used approximations to the exponential

integral are those proposed by either Doyle [10]:ZT
T0

exp ÿ Eg

RT

� �
dT � 10ÿ2:315ln 10

Eg

R
exp

� ÿ1:052
Eg

RT

� �
� C

Eg

R
exp ÿ1:052

Eg

RT

� �
(4)

or by Murray and White (MW) [11]:ZT
T0

exp ÿ Eg

RT

� �
dT � R3T2

E3
g

exp ÿ Eg

RT

� �
(5)

Both Doyle and MW approximations may be intro-

duced either directly into the general basic Eq. (2) or

after having taken its ®rst derivative with time. For

reasons explained in section B below, many authors

consider the transformation rate, rather than the trans-

formed fraction, to be the basic variable. It is therefore

of interest to examine (in sub-section A.b below) what

happens if either the Doyle or the MW approximations

are introduced after having taken the time derivative of

Eq. (2).

Case A.a, direct insertion into Eq. (2):

(A.a.1) If introduced directly into Eq. (2), the Doyle

approximation leads to the Ozawa relationship [3], as

has been shown in Part I of this paper [1]:

ln � � C0 � ÿ1:052
Eg

RTm

(6)
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This result has been obtained by assuming in the

calculations that 1.052 nEg/RTm�2. (Tm is the tem-

perature at which a peak is observed when heating rate

� is practised in a thermal analysis experiment).

(A.a.2) If the MW approximation is introduced

directly into Eq. (2), one obtains the following rela-

tionship between the heating rates and the peak tem-

peratures. (See mathematical details in the

Appendix A):

ÿ Eg

RTm

� ln
�

T2
m

� C (7)

which is identical to the one proposed by Kissinger

[2]. This result is obtained by assuming in the calcula-

tions that the entities: Eg�/Tm, Eg�/RTm, nEg/Tm and

2nEg/RTm are all �2.

Case A.b, insertion of the approximations into

Eq. (8), the ®rst time derivative of Eq. (2), gives

the following rate equation:

d��T����
dt

� ÿexp ÿgN0

Zt
0

G�T����d�
8<:

9=;
n24

� ÿngN0

Zt
0

G�T����d�
8<:

9=;
nÿ10@ 1A35

�
Zt
0

dG�T����
dt

d� � G�T�t��
24 35 (8)

Eq. (8) contains a term which cannot be evaluated

straightforwardly, namely:Zt
0

dG�T����
dt

d� � G�T�t��
24 35 (9)

Due to that dif®culty, or eventually to other reasons,

many authors simply substitute G(T(t)) to the term (9),

probably assuming (misleadingly) that d=dt
R t

0
G�T�t��

d� � G�T�t��. Eq. (8) then erroneously reads:

d��T����
dt

� ÿexp ÿgN0

Zt
0

G�T����d�
8<:

9=;
n24

� ÿngN0

Zt
0

G�T����d�
8<:

9=;
nÿ10@ 1A35G�T�t�� (10)

(A.b.1) Nevertheless, if introduced directly into

Eq. (10), the MW approximation surprisingly leads,

without need for any numerical assumption, to the

correct Kissinger relationship [2], despite the fact that

Eq. (10) is erroneous.

(A.b.2) However, if the Doyle approximation is

introduced directly into Eq. (10), one obtains the

following relationship between the heating rates and

the peak temperatures, without any additional numer-

ical assumption either:

ln � � C0 � ÿ1:052
nEg

RTm

(11)

which differs from the Ozawa relationship, Eq. (6).

The fact that Eq. (11) is not identical to Eq. (6) might

be due to the use of the incorrect Eq. (10).

2.2. The true kinetic equation formalism

The condition for additivity implies that the kinetic

equation applied to non-isothermal transformations

should be isokinetic (in the Avrami sense [4]), or

expressed by a true kinetic equation, as discussed

by Cahn [9] and mentioned by Graydon [12]. A

reaction that involves two distinctive time±temper-

ature parameters, such as in nucleation associated with

growth reactions, will however not necessarily be

additive. Moreover, the formal theory of transforma-

tions itself is not generally isokinetic. But, if the

nucleation sites saturate early in the transformation,

or the nucleation rate is zero (`site saturation'), and if

the growth rate is a function of the instantaneous

temperature only, the reaction will be additive indeed

[9]. That condition can be expressed by Eq. (12)

below, that shows that the instantaneous transform-

ation rate is expressed at a product of two functions,

one of temperature, the other of fraction transformed:

d��T; t�
dt

� K�T�f ���T ; t�� (12)

There is another restriction implied by the requirement

of additivity. As stated by Christian [6], the kinetics of

a transformation in which the nucleation sites saturate

can be describe by an Eq. (12) type, only if the number

of initial nuclei N0 is not only constant, but also

independent of the temperature. This is an additional

restriction for the application of non-isothermal

kinetics.
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When dealing with the general transformation rate

Eq. (12) in non-isothermal kinetics, one has to choose

the expressions for the right-hand side terms. There

are different ways to do that, as detailed in the

following sub-sections.

(B.a.) Several authors have started kinetic treat-

ments by using Eq. (12) as an initial stage (Ref.

[12], as an example). It is then assumed that the

function f[�(T,t)] is independent of the thermal history

and that the temperature dependence of the rate of

transformation is exponential. The Doyle approxima-

tion then leads to the Ozawa relationship, Eq. (6),

while the MW approximation results in the Kissinger

relationship, Eq. (7).

(B.b.) In Ref. [12], the second condition mentioned

is the one that requires the rate of transformation

temperature dependence to be exponential. This is

indeed the case when the transformation rate is

deduced from the isothermal Avrami kinetic equation

[13]:

��T; t� � 1ÿ exp�ÿK�T�tn� (13)

K(T) is de®ned as an effective overall reaction rate. As

shown by Avrami [4] and Cahn [9], Eq. (13) is iso-

kinetic, e.g. ful®lls the additivity condition. It should

be stressed again and again that, in non-isothermal

conditions, Eq. (13) is valid only for `site saturation'

transformations [5].

The time derivative of Eq. (13) reads:

d��T; t�
dt

� nK�T�1=n�1ÿ ��T ; t��

� ln
1

1ÿ ��T; t�
� �� �nÿ1=n

� K�T�f ���T ; t�� (14)

Eq. (14) is sometimes referred to as the Johnson±

Mehl±Avrami (JMA) transformation rate equation

[5]. In that case, there is no exponential integral to

be approximated. K(T) is legitimately interpreted as a

function of an overall activation energy Ea for the

considered reaction. This has also been the case for the

equation chosen by Kissinger, though he dealt with

solid)solid�gas reactions [14]. It should be however

stressed that the overall activation energy for any

considered transformation is not identical to the

energy for growth of the new phase. If there is no

nucleation, and the transformation is activated solely

by growth of a new phase, i.e. through a moving

interface or a diffusion mechanism, then, and only

then are both the energies Eg and Ea equivalent, as

there are no separate nucleation En and growth Eg

energies to be considered. The general activation

energy Ea for a nucleation and growth transformation

is a contribution of both En and Eg.

The temperature dependence of the rate of trans-

formation K(T) is expressed by an exponential, Arrhe-

nius-type relationship [15]:

K�T� � K0exp ÿ Eg

RT

� �
(15)

It can be shown [17] that K(T) is proportional to

I(T)1/n�1G(T)1/n. Hence, assuming an Arrhenian tem-

perature dependence of K(T) implies therefore that

both I(T) and G(T) also vary in an Arrhenian manner

with temperature [16]. Such a dependence is not

always the case: in many cases, the temperature

dependence of the nucleation frequency is far from

Arrhenian [6]. When a broad range of temperature is

considered, the temperature dependence of the crystal

growth is not Arrhenian either [16]. As already men-

tioned by De Bruijn et al. [19], using the derivative of

Eq. (13), after insertion of Eq. (14), for analyzing

non-isothermal experiments, is incorrect. Such a pro-

cedure, however, results in the correct kinetic para-

meters if, and only if, reactions with growth of a

constant number of nuclei are considered, i.e. in the

`site saturation' case.

Many authors have used this approach for the

interpretation of thermal analysis experiments. Hen-

derson [5] has obtained an Eq. (12) ± like relationship,

by de®ning a rate equation based upon the isothermal

Avrami kinetic Eq. (13):

d��T�
dt
� nK�T�1=n�1ÿ ��T��
� fln�1ÿ ��T��ÿ1gnÿ1=n

(16)

and then derived a modi®ed Kissinger relationship for

the dependence of the peak temperatures in thermal

analysis experiments on the heating rates:

ln
�

T2
m

� �
� ÿ Eg

nRTm

� C (17)

The slope of a plot of ln��=T2
m� versus 1/Tm

yield the value of Eg/n. An additional equation
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will be needed for the separate evaluation of n and Eg

[17].

Matusita et al. [18] have studied the kinetics of non-

isothermal crystallization processes. They tackle the

issue by deriving a relation between the radius r of the

forming crystallites and the temperature and obtain the

following rate equation (with the Doyle approxima-

tion for the exponential integral):

d��T�
dt
� C
�1ÿ ��T��
��nÿ1� exp ÿ 1:052mEg

RT

� �
(18)

derived from the more general expression:

ÿln�1ÿ ��T�� � gN0

�n
exp ÿ 1:053mEg

RT

� �
(19)

where n�m�1 for a quenched glass containing no

nuclei and n�m for the site saturation case, i.e. a glass

containing a suf®ciently large number of nuclei (m�3,

2 or 1 for three-, two- or one-dimensional growth,

respectively). The Matushita et al. relationship

between the peak temperatures in thermal analysis

experiments and the heating rates is then derived

(using the Doyle approximation for the exponential

integral):

n
�n

T2
m

� �
� ÿ1:052m

Eg

RTm
� C0 (20)

A critical review of additional applications of ther-

moanalytical techniques to the study of crystallization

in glass-forming liquids, by Piloyan and Borchart,

Coats, Redfern and Sestak, Takhor, Augis and Bennet,

is given in Ref. [16].

(B.c.) The starting rate equation can be the deriva-

tive of Eq. (2) into which either the Doyle or the MW

approximations have been introduced prior to deriva-

tion. Let us examine both cases.

(B.c.1.) If the MW approximation is used, Eq. (2)

transforms to:

��T� � 1ÿ exp ÿ gN0Gn
0

�n

� � ZT
T0

exp ÿ Eg

RT

� �
dT

8<:
9=;

n

� 1ÿ exp ÿ gN0Gn
0R3nT2n

�nE3n
g

exp ÿ nEg

RT

� �" #
(21)

N0 is taken here as temperature independent. The rate

equation is then:

d��T�t��
dt

� �1ÿ ��T�t���C exp ÿ nEg

Rt

� �
� 2� Eg

RT

� �
T2nÿ1

�nÿ1
(22)

where C � gnN0Gn
0 R3n=E3n

g

(B.c.2.) If the Doyle approximation is used, Eq. (2)

transforms to:

��T� � 1ÿ exp ÿ gN0Gn
0En

g10ÿ2:315n�ln 10�n
�nRn

"

� exp ÿ nEg

RT

� ��
(23)

The rate equation is then:

d��T�t��
dt

� �1ÿ ��T�t��� C0

�nÿ1

� exp ÿ1:052
nEg

RT

� �
1

T2
(24)

where C0 � gnN0Gn
0En�1

g =Rn�11:052�10ÿ2:315ln 10�n.

Eqs. (22) and (24) afford evidence that the basic

non-isothermal kinetic Eq. (2) ful®lls the additivity

requirement. These are true kinetic equations, in the

sense that the temperature dependence is separable

from the fraction transformed function, though that

dependence is now not purely exponential. That

restriction seems therefore not to be necessary for

the correct treatment of non-isothermal transform-

ation kinetics.

3. Discussion

3.1. Derivation of the kinetic parameters

The interpretation of all experimental thermal ana-

lysis methods is based on the formal non-isothermal

transformation kinetics formalisms as derived in Sec-

tion 2. The common thrust is to manipulate the various

equations, in order to extract two parameters (heating

rate � versus peak temperature Tm) which, when

plotted against each other, enable the evaluation of

the activation energy Ea and the reaction order n. This

is how the above derived Kissinger, modi®ed Kis-

singer, Ozawa, modi®ed Ozawa and Matusita et al.

relationships have been used in the literature.
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In the Matusita et al. approach, the n-value and the

activation energy Eg can be obtained from the plot of

ln[ÿln(1ÿx)] against ln� at a speci®c temperature,

after solving Eq. (19).

An analogue approach is taken when the non-iso-

thermal integral Eq. (2) serves as the expression of the

correct, unrestricted kinetic starting equation. Eq. (21)

can easily be transformed to (MW approximation):

ln�ln�1ÿ ��T��� � ln�ÿC0�

ÿ n ln � � 1:052
Eg

RTm

� �
(25)

where C0 � gN0Gn
0En�1

g =Rn�11:052�10ÿ2:315ln 10�n
In the same way, Eq. (23) is equivalent to (Doyle

approximation):

ln�ln�1ÿ ��T��� � ln�ÿC� � n ln
T2

m

�
ÿ Eg

RTm

� �
(26)

where C � gN0Gn
0R3n=E3n

g

Extraction of the activation energy for growth and

the reaction order is made by using a double set of

equations: either the Ozawa relationship with

Eq. (26), or the Kissinger relationship with Eq. (25).

It is important to note that Eqs. (25) and (26) are

based on straight non-isothermal kinetic foundations,

without any additional physical or mathematical

assumptions, except the Doyle or MW approximations

to the exponential integral. The questions what differ-

ences in n and Eg values are obtained with each of the

methods described above, and which are the ones that

correctly represents the true physical situation, still

remain open. The fact that many authors report values

for the order parameter n which are not in agreement

with the nature of the transformation (values not being

integers or half integers, as required by the theory)

may hint to the fact that those reports have overruled

the restrictions mentioned in this paper. The studied

transformation though must be single-phased without

secondary crystallization, must not proceed with acti-

vation of mixed nucleation modes and exclude any

geometrical anisotropy in crystal growth.

Some papers reported changing values of the

Avrami exponent n during ongoing crystallization

of metallic glasses [20] analyzed by DSC. This ®nding

is attributed to `̀ changing populations of pre-existing

nuclei''. This seems clearly to be a violation of the

requirements for applying any isothermal kinetics

formalism, such as the Avrami equation, to non-iso-

thermal transformations.

3.2. Summary of restrictions to the application of

thermoanalytic techniques to non-isothermal

nucleation and growth transformation kinetics

The main requirement for applying non-isothermal

formalism to the study of the kinetics of nucleation

and growth transformations is to consider only the

`site saturation'; case, i.e. to deal only with a reaction

that exhibits a zero nucleation rate. Even then, the

number of pre-existing nuclei has to be temperature

independent. These two restrictions ensure ful®lling

the additivity condition, and consecutively provide a

true kinetic equation for the transformation rate.

Additional physical restrictions exclude any sec-

ondary crystallization mechanism, and complete geo-

metrical isotropy of the new phase growth.

The integral equation formalism appears to be the

only one that satis®es the previous restrictions, and

therefore enables the correct evaluation of the activa-

tion energy for growth Eg and the reaction order n. Use

of the integral equation formalism does not infer

mathematical assumptions, except the Doyle or

MW approximations to the exponential integral.

Though the rate Eq. (10) derived from the general

integral equation is mathematically incorrect, it is

often used for the interpretation of thermoanalytical

experiments. It makes use of various numerical

approximations, without knowing a priori if these

approximations comply with the true physical nature

of the investigated transformation. Surprisingly

though, this procedure leads to the Kissinger relation-

ship between the peak temperatures in thermal ana-

lysis experiments and the heating rates (when the MW

approximation is used for the exponential integral). It

is however unclear if the Kissinger [2] or the modi®ed

Kissinger proposed by Henderson [5] is the correct

one to be used for the extraction of the kinetic para-

meters. Experiments have been undertaken in order to

elucidate this point [21].

4. Conclusions

There is a widespread use of thermoanalytical

methods for the study of nucleation and growth trans-
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formation kinetics. Several relationships between

peak temperatures in thermal analysis experiments

and heating rates have been described in the

text, all aimed to extract the values of the activation

energy and the order of the transformation. The

detailed physical and mathematical treatment

presented in both parts of this paper leads to the

conclusion that application of isothermal kinetics

models to non-isothermal transformations may lead

to errors and confusion, often involving incorrect

mathematical derivations and unproved numerical

approximations.

The straightforward treatment that starts with the

general non-isothermal integral equation for the frac-

tion transformed leads to either the Kissinger (when

the exponential integral is approximated by the Mur-

ray±White method) or the Ozawa relationships Kis-

singer (when the exponential integral is approximated

by the Doyle method), with no need to `modify' them,

as proposed by several authors. The general non-

isothermal integral equation is shown to ful®ll the

condition of additivity, it has the form of a true kinetic

equation. It is also shown that the temperature depen-

dence within the rate equation needs not to be exclu-

sively exponential.

In any case, the main conclusion for applying

non-isothermal kinetics models to nucleation and

growth transformations is that only transforma-

tions with zero nucleation rate, i.e. the `site saturated'

transformations, should be dealt with. The kinetic

parameters of such transformations can then be

extracted analytically from the general non-iso-

thermal integral equation. The application of iso-

thermal kinetic models (like the Avrami equation,

or the JMA rate equation) to non-isothermal

nucleation and growth transformations is valid if,

and only if attentive care is taken for the full

observance of the necessary physical and mathema-

tical restrictions and limitations involved with that

method.

Appendix A: Mathematical derivations

(A.a.2)

The MW approximation introduced directly in

Eq. (2)

��t� � 1ÿ exp ÿ gN0Gn
0

�n

� � ZT
T0

exp ÿ Eg

RT

� �
dT

8<:
9=;

n

� 1ÿ exp ÿ gN0Gn
0R3nT2n

�nE3n
g

exp ÿ nEg

RT

� �" #
(A.1)

Taking the ®rst time derivative:

d��T�
dt
� gN0Gn

0R3n

�nE3n
g

T2n 2n

T
exp ÿ nEg

RT

� ��
� nEg�

RT2
exp

nEg

RT

� ��
exp ÿ gN0Gn

0R3n

�nE3n
g

T2n

"

� exp ÿ nEg

RT

� ��
(A.2)

Taking the second time derivative and equating to zero

for T�Tm:

ngN0Gn
0R3n

�nE3n
g

T2nÿ2
m exp ÿ nEg

RT

� �
2ÿ Eg�

RTm

� �
� 2� Eg�

RTm

� �
� �

T2
m

2nEg

RTm

ÿ 2� Eg�

RTm

�
� nEg

Tm

ÿ 2

� ��
(A.3)

Making now the following approximations:

Eg�

RTm

� 2
nEg

Tm

� 2
2nEg

RTm

� 2
Eg�

Tm

� 2

leads to the ®nal Kissinger relationship:

ÿ Eg

RTm

� ln
�

T2
m

� ln C (A.5)

where C is:

ngN0Gn
0R3n

E3n
g

 !ÿ1

: (A.6)

(A.b.1)

The Doyle approximation is introduced into (the

erroneous) transformation rate Eq. (10)

d��T����
dt

� ÿexp ÿgN0

Zt
0

G�T����d�
8<:

9=;
n24

� ÿngN0

Zt
0

G�T����d�
8<:

9=;
nÿ10@ 1A35G�T�t��:
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The growth function is assumed to be of the Arrhenius

type, and then:Zt
0

G�T����d� � G0

ZT
T0

exp ÿ Eg

RT

� �
dT

�
(A7)

where T0 is the temperature at time t�0.

The ®rst time derivative then reads, after some

algebraic manipulations:

d��T�
dt
� C2

�nÿ1
exp ÿC1

�n
exp ÿ1:052

nEg

RT

� �� �
� exp

�ÿ1:052n� 0:052�Eg

RT

� �
(A8)

where C1 � gN0Gn
0En

g�102:315ln 10�n=Rn and C2 �
gN0Gn

0Enÿ1
g �102:315ln 10�nÿ1=Rnÿ1

Taking the second time derivative and equating to

zero for T�Tm:

ÿ C1exp ÿ1:052
nEg

RTm

� �
1:052

� C2��ÿ1:052n� 0:052� (A9)

which ®nally gives:

ÿ1:052
nEg

RTm
� ln

nR

Eg
�

0:052ÿ 1:052n

1:052�102:315ln 10�
� �� �

� ln n� � C (A10)

Eq. (A10) is only similar to the Ozawa relationship,

Eq. (6).

(A.b.2)

The MW approximation is introduced into (the

erroneous) transformation rate Eq. (10), the growth

function is again assumed to be of the Arrhenius type.

The ®rst time derivative reads:

d��T�
dt
� C2

�nÿ1
exp ÿC1

�n
exp ÿ nEg

RT

� �� �
exp ÿ nEg

RT

� �
(A11)

where C1 and C2 have the same meaning as in Section

A.b.1.

Taking the second time derivative and equating to

zero for T�Tm:

exp ÿ nEg

RTm

� �
� �n

T2n
m

E3n
g

gN0Gn
0R3n

 !
(A12)

which is exactly the Kissinger relationship (7):

ÿ Eg

RTm

� ln
�

T2
m

� C0

where C0 � E3n
g =gN0Gn

0R3n

Appendix B:

The heating rate versus peak temperature relation-

ships

B.1 Ozawa: (Eq. (6))

ln � � C0 � ÿ1:052
Eg

RTm

(A13)

limitations: 1.052 nEg/RTm�2

B.2 Kissinger (Eq. (7))

ÿ Eg

RTm

� ln
�

T2
m

� C (A14)

limitations: Eg�/Tm, Eg�/RTm, nEg/Tm and 2nEg/RTm

are all �2

B.3 Modified Ozawa (Eq. (11))

ln � � C0 � ÿ1:052
nEg

RTm

(A15)

B.3 Modified Kissinger: (Eq. (17))

ln
�

T2
m

� �
� ÿ Ea

nRTm

� C (A16)

B.5 Matusita (Eq. (20))

n
�n

T2
m

� �
� ÿ1:052m

Eg

RTm

� C0 (A17)

where n�m�1
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