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Abstract

The mathematical bases for modulated differential scanning calorimetry (MDSC) have been discussed. It is found that the

amplitude of heat ¯ow is a non-linear function of the thermal transfer coef®cient, �, the modulation period, p, the heat

capacity of reference, Cpr, and the heat capacity of a sample, Cps. Therefore, the quantitative determination of the heat capacity

of a sample is rather dif®cult if not impossible. From this point of view, MDSC does not offer any advantage over a

conventional DSC. # 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Differential scanning calorimetry (DSC) is the most

useful and popular technique for thermal analysis of

materials. Recently, Reading et al. [5], in conjunction

with TA Instruments, have extended the conventional

DSC technique to permit a small sinusoidal modula-

tion of temperature superimposed on the linearly

programmed temperature changes that are used

in the conventional DSC. This new extension is

termed modulated differential scanning calorimetry

(MDSC) [1±3]. TA Instruments has subsequently

developed a commercial instrument. The MDSC tech-

nique is drawing increasing attention from researchers

in the ®elds of thermal analysis and materials

science [1±3].

MDSC is claimed to have two crucial advantages over

conventional DSC. One is that MDSC determines heat

capacity of a sample in a single run with higher

accuracy than a conventional DSC. The other is its

ability to separate reversing and non-reversing com-

ponents of an endotherm or exotherm, which would

have signi®cant impact for thermal analysis of mate-

rials. It has been claimed that MDSC has added a new

dimension to the conventional approach, and that it

may be the greatest advance in DSC since its inception

nearly three decades ago [1±6].

To fully understand the capacities of MDSC,

its theoretical basis should be examined. This is

because of the ability of a mathematical model to

disentangle the theoretical principle of an instrument

from any possible experimental limitations and from

the uncertainties of a test material. Wunderlich

et al. [4] have carried out a mathematical study on

MDSC. They concluded that the heat capacity can
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be obtained by dividing the amplitude of heat ¯ow

by the product of the amplitude of modulation

temperature and modulation frequency. The work

reported in this, the present, and the accompanying

papers will show that the above-mentioned conclu-

sions cannot be justi®ed. This paper dealing with

the heat capacity measurements and Part II will

discuss the separation of reversing and non-reversing

components.

2. Basic equations of MDSC

In principle, both the heat ¯ux and the power

compensation types DSC can be modulated to become

an MDSC. However, since the MDSC instrument

developed by TA Instruments is of the heat-¯ux type,

hereinafter, the mathematical model for the heat-¯ux

type only is addressed. The basic equations for MDSC

(conventional DSC can be treated as a special case of

MDSC, where the amplitude of modulation is set to

zero) consist of the heating program of the MDSC

block, the enthalpy equation and the equation expres-

sing the thermal transfer from the MDSC block to the

sample or reference;

Tb�t� � Tb0 � qt � Ab sin!t (1)

dQ�t� � CpdT�t� (2)

dQ�t�
dt
� ��Tb�t� ÿ T�t�� (3)

where Tb(t) and Tb0 are, respectively, the temperature

at time t, and the initial temperature of the block; q, Ab

and ! represent the underlying heating rate, the

amplitude and the angular frequency of modulation,

respectively (!�2�/p, where p is the modulation

period). The symbol Q(t) denotes the total enthalpy

taken by a sample or reference up to time, t. Cp is the

heat capacity. T0 and T(t) are the initial temperature

and the temperature at time, t. dQ(t), Cp, T(t) and T0

can have subscripts `s' or `r' to represent a sample or

reference. The symbol � denotes the thermal transfer

coef®cient, which is determined by the design and

construction of a particular instrument, and is also

affected by other factors such as the type of sample

holder. Here, � is considered to be identical for sample

and reference and to be a constant during a run.

Combining Eqs. (1)±(3), one obtains:

dT�t�
dt
� �

Cp

T�t� � �

Cp

�Tb0 � qt � Absin!t� (4)

The differential equation for the reference has

the same form as that for the sample. Therefore,

when a subscript `s' or `r' is attached to T(t) and

Cp, Eq. (4) refers to either the sample or reference,

accordingly.

Eq. (4) is a ®rst-order linear differential equation

and is the basic equation of MDSC. Its solutions for

the sample and reference can be written as [7];

Ts�t� � Csexp ÿ �

Cps

t

� �
� Tb0 � q t ÿ Cps

�

� �

� Ab
�

Cps

��=Cps�sin!t ÿ !cos!t

!2 � ��=Cps�2
(5)

Tr�t� � Crexp ÿ �

Cpr

t

� �
� Tb0 � q t ÿ Cpr

�

� �

� Ab
�

Cpr

��=Cpr�sin!t ÿ !cos!t

!2 � ��=Cpr�2
(6)

where Cr and Cs are integration constants and can be

determined by the initial conditions, Ts(0)�Ts0 and

Tr(0)�Tr0 (usually Ts0�Tr0�Tb0).

Cs � Ts0 ÿ Tb0 � q
Cps

�
� Ab

�

Cps

!

!2 � ��=Cps�2
(7)

Cr � Tr0 ÿ Tb0 � q
Cpr

�
� Ab

�

Cpr

!

!2 � ��=Cpr�2
(8)

A heat ¯ux type DSC measures the temperature

difference between the sample and reference as a

function of the sample temperature. Therefore, by

subtracting Eq. (5) from Eq. (6), one obtains the

temperature difference, �T(t), and hence the heat

¯ow, Hf(t), which is proportional to the temperature

difference:

Hf�t� � ��Crexp �ÿ�t=Cpr� ÿ Csexp �ÿ�t=Cps��
� q�Cps ÿ Cpr� � Hm

f �t� (9)
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where Hm
f �t� denotes the modulation component,

which is written as:

Hm
f �t� � Ab�

2 ��=Cpr�sin!t ÿ !cos!t

Cpr�!2 � ��=Cpr�2�

"

ÿ��=Cps�sin!t ÿ !cos!t

Cps�!2 � ��=Cps�2�

#
(10a)

Hm
f �t� � Ab�Cps ÿ Cpr��2!

ÿ
�

��������������������������������������������������������������������������
�2!2�Cps � Cpr�2 � �CpsCpr!2 ÿ �2�2

q
�C2

ps!
2 � �2��C2

pr!
2 � �2�

1A
� sin �!t ÿ �� (10b)

where � is the phase lag, de®ned by

� � tanÿ1 CpsCpr!
2 ÿ �2

�w�Cps � Cpr�
� �

(11)

The ®rst term in the right-hand side of Eq. (9) repre-

sents the transient effect of an MDSC or DSC, which

decays exponentially with time, t. The term included

in the bracket of Eq. (10b) represents the amplitude of

the modulation component in heat ¯ow.

Eqs. (9), (10a), (10b) and (11) are the complete

description for the heat-¯ow output of an MDSC

experiment for a sample with a constant heat capacity.

It should be noted that the modulation component in

heat ¯ow is the same over the whole period of an

experiment, and has a de®nite form of a sinusoidal

wave, independent of the underlying heating rate.

This mathematical treatment can be further

extended to include the cases where the heat capacity

of the sample has step changes caused, for example, by

an ideal glass transition [8], over the interested tem-

perature range, as shown in Fig. 1. Eqs. (9), (10a),

(10b) and (11) are no longer applicable to the tem-

perature ranges I and II, since there are discontinuous

points for the heat capacity of the sample. However,

Eq. (4) remains the same in the temperature ranges I

and II. The initial conditions for the sample, over the

temperature ranges I and II are written as:

Ts�t1� � T1; Ts�t2� � T2 (12)

Applying these initial conditions to Eq. (5) leads to:

Ti
s�t� � Ci

sexp ÿ �

Ci
ps

�t ÿ ti�
 !

� Tb0

� q t ÿ Ci
ps

�

 !
� Ab

�

Ci
ps

� ��=Ci
ps�sin!t ÿ !cos!t

!2 � ��=Ci
ps�2

(13)

and

Ci
s � Ti ÿ Tb0 ÿ q ti ÿ

Ci
ps

�

" #

ÿ Ab
�

Ci
ps

��=Ci
ps�sin!ti ÿ !cos!ti

!2 � ��=Ci
ps�2

(14)

where the superscript or subscript i takes values of 1 or

2, denoting the temperature ranges I and II, respec-

tively.

The heat ¯ow is, therefore, written as:

Hi
f�t� � ��Crexp �ÿ�t=Cpr�

ÿ Ci
sexp �ÿ��t ÿ ti�=Ci

ps��
� q�Ci

ps ÿ Cpr� � Hmi
f �t� (15)

and

Hmi
f �t��

 
Ab�Ci

ps ÿ Cpr��2!

�
�����������������������������������������������������������������������
�2!2�Ci

ps � Cpr�2��Ci
psCpr!2ÿ�2�2

q
�Ci2

ps!
2��2��C2

pr!
2��2�

!
� sin �!t ÿ �� (16)

Fig. 1. An assumed relationship of the specific heat capacity of a

sample and temperature.
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Eqs. (15) and (16) show that the heat ¯ow for tem-

perature ranges I and II has the same form as Eqs. (9),

(10a) and (10b) apart from a different transient effect

shown in the ®rst term in the right-hand side of

Eq. (15). Thus, the interpretation of MDSC can be

concluded by discussing Eqs. (9), (10a) and (10b)

only without losing generality.

3. Heat capacity measurements

Eq. (9) consists of three terms, i.e. the transient

term associating with the exponential decay function,

the underlying heating term associating with the heat-

ing rate, q, and the modulation term (Eqs. (10a) and

(10b)). The transient term approaches zero as an

experiment has been in progress suf®ciently long.

When the modulation term is absent, Eq. (9) repre-

sents the relationship for a conventional DSC. It is

clear from Eq. (9) that the heat ¯ow is directly pro-

portional to the product of the heating rate and the heat

capacity difference between the sample and reference

for a conventional DSC. However, because the abso-

lute baseline of a DSC thermogram is usually

unknown, it is a common practice to carry out two

experiments at different heating rates for the same

sample. The speci®c heat capacity of the sample, cps,

can thus be obtained according to Eq. (17), which can

be derived from Eq. (9):

cps � Cps ÿ Cpr

m
� Hf 1 ÿ Hf 2

m�q1 ÿ q2� (17)

where the symbol m denotes the mass of the sample.

This equation shows that the heat capacity measure-

ments are theoretically perfect using a normal DSC.

Similar methods based on two runs are also applicable

to obtain the speci®c heat capacity of a sample using

the conventional DSC technique [9]. The determina-

tion of the speci®c heat capacity of a sample is

independent of the instrumental factor, �, and the

sample holder used for the experiments, Cpr. This is

the signi®cance of differential calorimetry.

The major source of error of the conventional DSC

technique is, perhaps, the long-term stability of an

instrument and the slow physico-chemical changes of

the sample during two runs. The baseline could have

slightly shifted during two runs due to low-frequency

drifting of the electronics of the instrument. However,

most commercial DSC instruments have solved this

problem satisfactorily. On the other hand, whether there

are slow changes of a sample during two DSC runs is

another matter, which must be addressed case-by-case

according to the physico-chemical nature of a sample.

In MDSC, the amplitude of the heat ¯ow of a single

run is employed to determine the heat capacity of a

sample to minimise the experimental errors resulting

from the low frequency drifting of baseline and slow

changes of a sample during two runs. This has been

considered to be one of the major advantages of

MDSC over a conventional DSC.

It is, however, clear from Eqs. (10a) and (10b) that

the amplitude of heat ¯ow is a complicated non-linear

function of !, Cps and Cpr and �, although the relation-

ship between the amplitude of heat ¯ow and the

amplitude of modulation is linear, and the amplitude

is independent of the underlying heating rate, q.

To illustrate the complexity arising from the non-

linear effects, one can calculate the amplitude of heat

¯ow according to Eqs. (10a) and (10b). Fig. 2 shows

the relationship between the amplitude of heat ¯ow

and the period of modulation, p, for various � at a

given Cpr and Cps. The amplitude of heat ¯ow

increases non-linearly with increasing heat transfer

coef®cient, �. The amplitude of heat ¯ow increases

with increasing modulation period, p, at low modula-

tion period, reaches a maximum then decreases with

further increase in p. According to Eqs. (10a) and

(10b), the amplitude reaches zero as the modulation

period approaches in®nity (not shown in Fig. 2). The

linearity is seen as changing with different �.

Fig. 3 shows the relationship between the amplitude

of heat ¯ow and the heat capacity of the reference

under the condition of a constant difference in the heat

capacities between the sample and the reference. The

physical meaning of this is to demonstrate how the

amplitude depends on the DSC cells used for the

reference and sample in an experiment. It is seen that,

for a given amount of the sample, the higher the heat

capacity of reference, the lower is the amplitude. The

non-linearity is obvious. This fact indicates that it

would be extremely dif®cult to use the amplitude to

determine the heat capacity of a sample since the

amplitude is also dependent on the heat capacity of the

reference.

Fig. 4 shows the relationship between the heat

capacity of a sample and the amplitude of heat ¯ow.
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This ®gure illustrates how the amplitude of heat ¯ow

depends on the quantity of the sample packed. Non-

linear plots are observed. This is to say that for a set of

experiments with identical conditions, except different

sample weights, different calibrations are needed to

determine the speci®c heat capacity of the sample.

From Figs. 2, 3 and 4, it is clear that a quantitative

determination of the heat capacity of a sample is

extremely dif®cult, if not impossible. Thus, it can

be concluded that MDSC does not offer any advan-

tages over a conventional DSC in heat capacity mea-

surements.

4. Numerical experiments

To make further comparison, thermograms of

MDSC as well as conventional DSC experiments

are computed according to Eqs. (9), (10a) and

(10b). The conditions employed for the numerical

Fig. 2. Amplitude of heat flow vs. modulation period at a given Cpr and Cps.

Fig. 3. Reference dependence of the amplitude of heat flow.
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experiments are displayed in Table 1. Figs. 5 and 6

show the results. An initial transient period can be

seen for all the thermograms. The heat capacity of the

sample can be de®nitely determined according

to Eq. (17), using the conventional DSC. For MDSC,

the amplitude of heat ¯ow is seen to increase

with increasing modulation period, p. However, it is

important to note that the amplitude represents neither

the heat ¯ow difference obtained using a standard

DSC at the heating rates q�Ab and qÿAb, nor

the difference further divided by modulation

frequency, ! [4,6].

The computed thermograms of MDSC and conven-

tional DSC for the sample having step changes in its

heat capacity over the temperature Range I, shown in

Fig. 1, are displayed in Fig. 7. To facilitate the com-

putation for this ®gure, one has to obtain time t1 and t2
corresponding to temperatures T1 and T2. This was

achieved by solving Eqs. (5) and (13) using the New-

tonian interpolation method. Two initial tentative

times, t
�0�
i and t

�1�
i , are assumed and the corresponding

sample temperatures, T
�0�
i and T

�1�
i can then be

obtained. Assuming that the errors of the calculated

temperatures are e(0) and e(1), one obtains new tenta-

tive t
�2�
i according to the following equation (where

k�0,1,2,3. . .).

t
�k�2�
i � e�k�1�t�k�i ÿ e�k�t�k�1�

i

e�k�1� ÿ e�k�
(18)

The Newtonian interpolation method can be iterated

until the error is <1/100 000 of the real temperature, Ti.

The subscript `i' equals 1 or 2, representing tempera-

ture ranges I and II, respectively.

It is clear from Fig. 7, that there are additional

transient periods at the discontinuous points of the

heat capacity of the sample. Unlike the initial transient

period which can be avoided by starting an experiment

at a lower temperature, these transient periods are

inevitable. Thus, the thermogram of a conventional

Fig. 4. Sample heat capacity dependence of the amplitude of heat flow.

Table 1

Numerical parameters employed for the computation of Figs. 5, 6 and 7

Figure �/(J/K s) p/(s), Ab/(8C),

q/(8C)

Cpr/(J/K) Cps/(J/K)

20±808C
Cps/(J/K), Range I,

80±1208C
Cps/(J/K), Range II,

120±1608C

5 0.002 30, 1, 5 0.040 0.055 0.055 0.055

6 0.002 90, 1, 5 0.040 0.055 0.055 0.055

7 0.002 60, 1, 5 0.040 0.055 0.058 0.055
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DSC does not re¯ect the true shape of the change of

the speci®c heat capacity of a sample over its idealised

glass transition.

This distortion, which is a result of the transient

effect, can be eliminated by subtracting the DSC

thermogram from the MDSC thermogram. This is

because the amplitude of heat ¯ow for MDSC does

not show any transient effect, as elucidated in Eqs. (9),

(10a), (10b), (15) and (16). The thermogram of the

normal DSC has then been subtracted from the ther-

mogram of MDSC, and the result is shown in Fig. 8. It

can be seen that the amplitude of heat ¯ow does show a

step-like increment and a step-like decrement over the

temperature ranges I and II, indicating that the com-

bination of MDSC and normal DSC probably can

capture more accurately the shape of a transition.

Fig. 5. Numerical results of MDSC and conventional DSC. See Table 1 for the parameters adopted in the computation, modulation

period�30 s.

Fig. 6. Numerical results of MDSC and conventional DSC. See Table 1 for the parameters adopted in the computation, modulation

period�90 s.
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5. Conclusions

The complete mathematical description for heat

capacity measurement using MDSC, including the

case where the heat capacity of a sample has step

changes, has been established. The expression for

heat ¯ow are shown in Eqs. (9), (10a), (10b), (15)

and (16). It is found that because the amplitude of

heat ¯ow in MDSC is a non-linear function of the

thermal transfer coef®cient, �, the modulation period,

p, the heat capacity of reference, Cpr, and the

heat capacity of a sample, Cps, the quantitative deter-

mination of the heat capacity of a sample is rather

dif®cult, if not impossible. From this point of view,

MDSC does not offer any advantage over a conven-

tional DSC.

Fig. 7. Numerical results of MDSC and conventional DSC. See Table 1 for the parameters adopted in the computation, modulation

period�60 s.

Fig. 8. The amplitudes of heat flow of MDSC for the sample experiencing step changes in its heat capacity.
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