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Abstract

Further to Part I of this study (Vol. 325, pp. 101±109), this article describes the mathematical expression of MDSC by taking

melting, crystallization as well as the temperature dependence of the heat capacity of a sample into consideration. A numerical

method has been established and found to be suitable for the simulation of MDSC thermograms. It is found that a non-kinetic

thermal event results in changes in the amplitude of heat ¯ow of the thermogram of MDSC, but a kinetic thermal event causes

no change in the amplitude of heat ¯ow. A quantitative separation of the kinetic and non-kinetic components is, however,

problematic since there is no linear relationship between the amplitude and the thermal parameters of a sample. # 1999

Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

It has been claimed that the ability to disentangle

reversing and non-reversing components of a thermal

event is the most important advantage of MDSC over

the conventional DSC [1±7]. This has been achieved

by subtracting the heat capacity component, deter-

mined by the amplitude of heat ¯ow, from the total

averaged or underlying heat ¯ow, as proposed by

Reading et al. and Wunderlich et al. [1±7]. A quenched

polyethylene terephthalat (PET) has been used for

demonstration in most of the cases. According to

these results, the crystallization of a quenched PET

is a non-reversing thermal event, and the melting of

PET is found to be a reversing thermal event under the

experimental conditions adopted in those studies.

However, from those published MDSC data, it

appears that the separation of the reversing and

non-reversing components for the melting of PET is

dependent on the modulation conditions [1±7]. The

physical interpretation of the `̀ reversing'' and `̀ non-

reversing'' seems to be inconsistent from the formal

logic point of view. If why the melting is considered to

be `̀ reversing'' is because the PET sample is crystal-

lizing while its melting under the speci®c experimen-

tal conditions employed [1±7]; why is not the

crystallization thought to be `̀ reversing'' since the

sample is melting while its crystallization? Indeed

the meaning of `̀ reversing'' or `̀ non-reversing'' is

fairly ambiguous. In particular, as shown in Part I

of this study [8], the amplitude of heat ¯ow is a non-

linear function of a number of factors, its quantitative

Thermochimica Acta 329 (1999) 89±95

*Tel.: +61-3-5246-4000; fax: +61-3-5246-4057; e-mail:

jinan.cao@dwt.csiro.au

0040-6031/99/$ ± see front matter # 1999 Published by Elsevier Science B.V. All rights reserved.

PII: S 0 0 4 0 - 6 0 3 1 ( 9 8 ) 0 0 5 7 5 - 9



determination is not conveniently practicable. These

facts raise the question whether the extracted reversing

and non-reversing components do indeed re¯ect the

intrinsic nature of the sample tested.

The basis of MDSC can be understood through a

detailed mathematical analysis of the processes. It will

be shown below that kinetic and non-kinetic thermal

events in MDSC can be described using a differential

equation, and how the equation can be numerically

solved.

It is found that a non-kinetic thermal event results in

changes in the amplitude of heat ¯ow of the thermo-

gram of MDSC, but a kinetic thermal event causes no

change in the amplitude of heat ¯ow. A quantitative

separation of the kinetic and non-kinetic components

is, however, problematic since there is no linear

relationship between the amplitude and the thermal

properties of a sample.

2. Generalized differential equation of MDSC

Consider a sample experiencing heat generation (in

this article, heat adsorption is considered to be nega-

tive heat generation) due to physico-chemical transi-

tion or reaction. The equation of energy balance for

the sample may be written as

dTs�t�
dt
� 1

Cps�Ts�t��
dQ

dt
� dQ0

dt

� �
; (1)

where dQ and dQ0 are the heat adsorbed by the sample

from the heating block and the heat generated in the

sample due to a physico-chemical change involving

heat respectively. Note that the heat capacity of the

sample is no long a constant in this article.

The equations for the heating program and New-

ton's law of cooling are still the same as those shown

in Part I of this study (Eqs. (1) and (3)). A reference

shall experience no physico-chemical change during a

thermal analysis, so Eq. (7) in Part I is applicable for

the reference without any modi®cation.

Combining Eqs. (1), (3) of part I and (1) leads to

dTs�t�
dt
� �

Cps�Ts�t��
� Tb0 � qt � Absin!t ÿ Ts�t� � dQ0

dt

� �
:

(2)

Eq. (2) is the generalized form of the governing

equation of MDSC.

The form of dQ0 resulting from a physico-chemical

is important as it determines the structure of the

solution of the differential equation. For a non-kinetic

thermal event, de®ned as a thermal event that occurs as

soon as the sample reaches a certain temperature

without time delay, compared with the time scale of

an MDSC experiment in this article. dQ0 can be

written in the form:

dQ0 � f �Ts�t�� dTs (3)

where, f represents an arbitrary function of the tem-

perature of the sample, which in turn is a function of

time, t.

Eqs. (2) and (3) can be combined and rearranged

dTs�t�
dt
� �

Cps ÿ �f
�Tb0 � qt � Ab sin!t ÿ Ts�t��:

(4)

Eq. (4) shows that a non-kinetic physico-chemical

change should have the equivalent effect as the tem-

perature dependence of the heat capacity of a sample.

Thus an identical MDSC thermogram is expected.

On the other hand, for a kinetic thermal event, dQ0

would have the form

dQ0 � g�Ts�t�; t� dT : (5)

Eq. (2) becomes

dTs�t�
dt
� �

Cps

�Tb0 � qt � Ab sin!t ÿ Ts�t�

� g�t; Ts��: (6)

Eqs. (4) and (6) are the general forms of the differ-

ential equations of MDSC for non-kinetic and kinetic

thermal events. In the following, detailed mathema-

tical expressions for the non-kinetic and kinitic pro-

cesses using crystallization and melting of a polymer

as examples will be presented.

2.1. Mathematical expression of a non-kinetic

example

Crystal melting is a typical example of non-kinetic

physical transition. Whereas crystallization of poly-

mers is a kinetic process, melting is usually under-

stood to be temperature only determined. This is to say
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that a melting process completes as soon as the

temperature of a crystal reaches its melting point. A

broad melting peak is usually observed for a polymer.

This is caused by the factors such as a broad crystallite

size distribution. Assuming a sample with melting

peak distribution as a Gaussian function shown in

Fig. 1, one obtains the expression for the melting heat

dQ0 � �H0
m mG�Ts�t�� dTs; (7)

where �H0
m, m represent the melting enthalpy and the

mass of the sample; G is the Gaussian function, which

is written as

G�Ts�t�� � G0 exp ÿ 4 ln 2�Ts�t� ÿ Tmax�
�2

m

� �
(8)

where, G0, Tmax and �m denote the pre-exponential

factor, the peak temperature and the width at half-

height of the Gaussian curve [9±11].

Now consider the speci®c heat capacity of a sample

showing temperature dependence in such a manner as

illustrated in Fig. 1. This assumption may not re¯ect

physical reality. It is an imaginary sample for the

mathematical convenience. The mathematical

description using the Gaussian function is

Cps�C0
ps 1�Acp exp ÿ 4 ln 2�Ts�t� ÿ Tmax�

�2
cp

 !" #
(9)

where, Acp, Tmax and �cp denote the pre-exponential

factor, the temperature at which the speci®c heat

capacity of the sample reaches its maximum and

the width at half-height of the Gaussian curve. C0
ps

is a constant equal to the heat capacity of the sample

over the temperature Range 0 and Range II.

Comparing Eqs. (4), (7), (8) and (9), one can easily

understand that a non-kinetic thermal event is math-

ematically equivalent with the temperature depen-

dence of the heat capacity of a sample despite they

have different physical meanings. Thus identical ther-

mograms of MDSC are expected. In Section 3, only

will the temperature dependence be addressed.

2.2. Mathematical expression of a kinetic example

Crystallization of a polymer is a typical example of

kinetic process. Considering the latent heat of crystal-

lization, one obtains

dQ0 � �H0
m m dxc�t�; (10)

where xc represents the crystallinity of the sample.

Under the isokinetic assumption, the crystallinity can

be expressed in the following generalized equation for

a non-isothermal crystallization [9±11]

xc�t� � 1ÿ exp ÿ
Zt
0

K�Ts���� d�
0@ 1An24 35; (11)

where, n is the Avrami crystallization index. The

symbol � denotes the time variable of the integrand.

K is a crystallization rate function, which can be

written by using the Gaussian function

K�Ts�t�� � AK exp ÿ 4 ln 2 �Ts�t� ÿ Tmax�2
�2

K

 !
;

(12)

where, AK, Tmax and �K denote the pre-exponential

factor, the temperature at which the crystallization rate

function of the sample reaches maximum and the

width at half-height of the Gaussian curve.

Combining Eqs. (10)±(12) leads to

dQ0 � �H0
m m n K �Ts�t�� exp

ÿ
Zt
0

K �Ts���� d�
0@ 1An24 35 Zt

0

K �Ts��� d�
0@ 1Anÿ1

dt:

(13)

Fig. 1. A Gaussian function of temperature.
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Eq. (13) is the mathematical expression for the heat

generation of crystallization of a polymer.

3. Numerical method for the differential equation

Differential equation (2) is in general not analyti-

cally solvable as Cps is no long a constant and dQ0/dt

has a complicated form. However, it can always be

numerically solved with the aid of a computer by

replacing the differential equation using a difference

equation. A Runge±Kutta method with fourth order

accuracy [12] has been employed in this study.

To facilitate computation using the Runge±Kutta

method, Eq. (2) is rewritten in the form

dTs�t�
dt
� h�t; Ts�; (14)

where, h(t,TS) means a function of time, t, and tem-

perature, TS. The initial condition is given as:

when t � t1; T�t1� � T1: (15)

When the time increment, �t, is suf®ciently small,

one can obtain the temperature at time, (j�1) �t, from

the temperature at time, j �t (where j�0, 1, 2, 3, . . .),
according to the Runge±Kutta method.

T ��j� 1��t� � T�j �t� � k0 � 2k1 � 2k2 � k3

6
;

(16)

where

k0 � �t h �j �t; Ts�j �t��; (17)

k1 � �t h j �t ��t

2
; Ts�j �t� � k0=2

� �
;

(18)

k2 � �t h j �t ��t

2
; Ts�j �t� � k1=2

� �
;

(19)

k3 � �t h j �t ��t

2
; Ts�j �t� � k2=2

� �
:

(20)

To minimize the discretization error so that

the numerical solution has suf®cient accuracy and

precision, a very small time increment is necessary.

It is found that this can be achieved when �t

approaches 1/60 000 of the whole duration of an

MDSC experiment. On the other hand, the round-

off error can be minimized by adopting double pre-

cision computation. Fig. 2 shows the ¯ow chart of the

computer program.

4. Results and discussion

To demonstrate the accuracy and stability of the

numerical simulation, the Runge±Kutta method has

been used to solve the analytically solvable differen-

tial equation (6) of part I. Fig. 3 shows the results,

where all the conditions are the same as those used for

Fig. 7 of part I except a smaller heat capacity of the

reference, Cpr. Also displayed in Fig. 3 are three

normal DSC curves with heating rates of 48C/min,

58C/min and 68C/min, respectively. The thermograms

obtained using the numerical method and analytical

solution are essentially indistinguishable, indicating

the numerical method is highly accurate and stable.

Fig. 2. Flow chart of the simulation program using the Runge±

Kutta method for MDSC thermograms (Eq. (10): part I).
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It is also clear from Fig. 7 of part I and Fig. 3 that

the amplitude of the heat ¯ow varies as the heat

capacity of the reference changes, although the dif-

ference in heat capacities between the sample and

reference, and other conditions are kept constant,

suggesting that a quantitative determination of the

heat capacity of a sample using the amplitude of

the heat ¯ow will be dif®cult.

Figs. 4 and 5 show the simulated thermograms with

and without modulation for a sample whose heat

capacity is a Gaussian function of temperature over

Range I shown in Fig. 1. The simulation conditions

employed are listed in Table 1. The peak of endotherm

or exotherm of the thermograms has shifted to a higher

temperature by about 28C from the peak temperature

of the Gaussian function de®ned in Fig. 1 and Table 1.

This shift is a result of the transient effect of DSC or

MDSC since Cps varies continuously during the tem-

perature Range I. Qualitatively, the amplitude of heat

¯ow does increase with increasing the heat capacity of

the sample.

The amplitude of heat ¯ow over the temperature

Range I becomes rather dif®cult to determine as it is

superimposed on an steep endotherm or exotherm.

This dif®culty, however, can be overcome by subtract-

ing the thermogram of normal DSC from that of

MDSC, as illustrated in Fig. 8 of part I. Fig. 6 shows

the results. Although the amplitude of heat ¯ow does

Fig. 3. Comparison between the numerical solution using the

Runge±Kutta method and the analytical solution shown in Fig. 7 of

part I.

Fig. 4. Numerically simulated thermograms of both MDSC and

normal DSC for a sample showing temperature dependence as a

Gaussian function (increasing) in its heat capacity over the

temperature Range I.

Fig. 5. Numerically simulated thermograms of both MDSC and

normal DSC for a sample showing temperature dependence as a

Gaussian function (decreasing) in its heat capacity over the

temperature Range I.

Fig. 6. Amplitude of heat flow changes for a non-kinetic thermal

event.
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increase or decrease with changing the heat capacity

of the sample, its increment or decrement is non-

linear. It is therefore possible that the reported

`̀ non-reversing'' component for PET [1±7] purely

results from this non-linear effect.

A kinetic thermal even e.g., crystallization on the

amplitude of heat ¯ow has also been simulated and the

results are displayed in Fig. 7. The peak of the crystal-

lization exotherm has shifted from the peak tempera-

ture where the crystallization rate constant, K, reaches

its maximum, by around 68C. This is caused by the

transient effect as well as the kinetic effect. Over the

peak area, the amplitude of heat ¯ow becomes dif®cult

to determine. Thus the thermogram of conventional

DSC has been subtracted from that of MDSC, Fig. 8

shows the result. Clearly the amplitude of heat ¯ow

remains unchanged during the crystallization process,

indicating that the amplitude of heat ¯ow of an MDSC

thermogram keeps constant during a kinetic process.

Fig. 9 shows the simulation results for the crystal-

linity development during the heating processes

shown in Fig. 7. The crystallinity of the sample

increases with temperature monotonically in both

cases although there are more waves resulting from

the modulation in the curve of MDSC. At the heating

rate of 38C/min the sample has fully crystallized

during the heating process.

A major reason for people to believe that MDSC

can disentangle reversing and non-reversing compo-

nents of a thermogram is the sinusoidal modulation

superimposed on the linear heating ramp. This sinu-

soidal modulation has appeared to invite people to

consider that this component can be related to rever-

sing component of a thermal event despite the overall

heating rate does not show alternative change of

heating and cooling.

However, according to the theory of Fourier series,

a linearly increased temperature can be written as the

superposition of a series of trigonometric functions as

well [12]

qt � 2 sin�qt� ÿ sin�2qt� � 2

3
sin�3qt�

ÿ 1

2
sin�4qt� � � � � (21)

Table 1

Numerical parameters employed for the simulations of Figs. 4, 5 and 7

Figure �(J/Ks) p (s), Ab

(8C), q (8C)

Cpr (J/K) Cps (J/K)

20±808C
Cps (J/K) Range I 80±1208C Cps (J/K) Range II

120±1608C

4 0.002 60, 1, 5 0.030 0.045 Acp�0.015 Tmax�1008C �2
cp � 250 0.045

5 0.002 60, 1, 5 0.030 0.045 As above except Acp�ÿ0.015 0.045

7 0.002 60, 1, 5 0.040 0.055 AK�0.005, Tmax�1008C, �K2�250,

n�4 �H0
m�30 (J/K), m�10 mg

0.055

Fig. 7. Numerically simulated thermograms of both MDSC and

normal DSC for a sample experiencing crystallization over the

temperature Range I.

Fig. 8. Amplitude of heat flow shows no change over a kinetic

thermal event.
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No reversing and non-reversing discussion has been

considered to be necessary for the above equation

since the overall heating rate is a linear ramp. This

important aspect has been obviously disregarded.

5. Conclusions

The complete mathematical description of MDSC,

incorporation melting, crystallization and the tem-

perature dependence of the heat capacity of a sample

into consideration, has been established. A Runge±

Kutta method with fourth accuracy has been found to

be suitable to solve the differential equation. It is

found that a non-kinetic thermal event results in

changes in the amplitude of heat ¯ow of the thermo-

gram of MDSC, but a kinetic thermal event has no

effect in changing the amplitude of heat ¯ow. How-

ever, a quantitative separation of the kinetic and non-

kinetic components from an MDSC thermogram is not

straightforward since there is no linear relationship

between the amplitude and the thermal parameters of

the sample.

Appendix

The numerical computations were performed using

an IBM personal computer of 33 MHz equipped with a

487 co-processor. The most complicated numerical

simulation required less than 25 min.
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