

Thermochimica Acta 329 (1999) 1-6

The heat capacity of NdAlO₃ from 0 to 900 K

R.R. van der Laan^{a,*}, R.J.M. Konings^a, A.C.G. van Genderen^b, J.C. van Miltenburg^b

^aNRG, PO Box 25, 1755, ZG Petten, Netherlands ^bChemical Thermodynamics Group, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands

Received 4 September 1998; received in revised form 17 September 1998; accepted 14 January 1999

Abstract

The heat capacity of neodymium aluminate NdAlO₃ has been measured by low-temperature adiabatic calorimetry from 4 to 420 K, yielding S^0 (298.15 K)=(99.3±0.3) J K⁻¹ mol⁻¹. For temperatures up to 900 K the heat capacity has been derived from enthalpy-increment measurements (520–880 K) using high-temperature drop calorimetry. The two sets of calorimetric data are in excellent agreement and show no transition in the measured temperature range. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Neodymium aluminate; Heat capacity; Entropy; Calorimetry; Thermodynamic properties

1. Introduction

Spinel (MgAl₂O₄) and YAG ($Y_3Al_5O_{12}$) have been suggested as support material for uranium-free nuclear fuels for the transmutation of actinides (e.g. plutonium or americium) [1]. This support material is often called the inert matrix because it should be relatively inert with respect to neutron capture. In addition, it should also exhibit a chemically inert behaviour because the formation of new phases during irradiation may change the properties of the fuel matrix. In this respect, the possible interaction between the spinel- or YAG-matrix and the lanthanide oxides is of great relevance because the lanthanides form an important group of fission products, abundantly present in high-burnup fuels. Interaction experiments of spinel and YAG with neodymium sesquioxide (Nd_2O_3) at 1473 K, have however, shown that the neodymium aluminate $(NdAlO_3)$ will be formed [2]. Knowlegde of the thermal properties of this compound is therefore important to evaluate whether this compound will be formed in an uranium-free fuel.

In a literature survey we found no experimental data for the thermal properties of NdAlO₃. Therefore we have measured the heat capacity of NdAlO₃ in the low-temperature as well as the high-temperature range, the results of which are reported in the present paper.

2. Experimental

The NdAlO₃ sample was prepared from Nd₂O₃ (Cerac, specified to be 99.9% pure, -325 mesh, preheated at 1073 K in pure oxygen) and Al₂O₃ (Gimex). Stoichiometric amounts of Nd₂O₃ and Al₂O₃ were mixed, pressed into pellets and heated at 1723 K in air for 50 h. After heating and grinding

^{*}Corresponding author. Fax: +31-224-563-608; e-mail: r.vanderlaan@nrg-nl.com

^{0040-6031/99/\$ –} see front matter 0 1999 Elsevier Science B.V. All rights reserved. PII: S0040-6031(99)00006-4

Table 1 Experimental low-temperature heat capacity data for $NdAlO_3$

T (K)	$C_p^0 (\text{J K}^{-1} \text{ mol}^{-1})$	<i>T</i> (K)	$C_p^0 \; (\mathrm{J} \; \mathrm{K}^{-1} \; \mathrm{mol}^{-1})$	T (K)	$C_p^0 (\text{J K}^{-1} \text{ mol}^{-1})$	<i>T</i> (K)	$C_p^0 (\text{J K}^{-1} \text{ mol}^{-1})$
Run 1							
303.71	96.13	329.70	101.5	355.66	104.9	381.70	107.7
305.72	96.91	331.70	101.8	357.66	105.1	383.71	107.9
307.72	97.51	333.70	102.1	359.66	105.3	385.72	108.2
309.71	98.06	335.69	102.3	361.66	105.6	387.73	108.3
311.71	98.49	337.69	102.6	363.67	105.8	389.74	108.5
313.71	98.95	339.69	102.9	365.67	106.0	391.76	108.6
315.71	99.33	341.68	103.2	367.67	106.3	393.78	108.8
317.71	99.62	343.68	103.4	369.67	106.5	395.78	108.9
319.71	99.92	345.68	103.7	371.68	106.7	397.79	109.1
321 71	100.2	347 67	103.9	373.68	106.9	399.81	109.3
323.70	100.6	349.67	104.2	375.69	107.1	077101	10010
325.70	100.9	351.67	104.4	377.69	107.1		
327.70	101.2	353.66	104.7	379.70	107.5		
Run 2							
283.57	94.32	317.49	99.94	352.36	104.6	387.32	108.3
285.45	94.67	319.98	100.3	354.86	104.9	389.82	108.5
287.64	95.08	322.47	100.7	357.35	105.2	392.33	108.7
290.13	95.57	324.96	101.0	359.85	105.5	394.83	108.9
292.62	96.05	327.45	101.4	362.35	105.7	397.34	109.2
295.10	96.51	329.94	101.8	364.84	106.0	399.84	109.4
297.59	96.90	332.43	102.1	367.34	106.3	402.35	109.6
300.08	97.28	334.92	102.4	369.83	106.5	404.86	109.8
302 56	97.65	337.41	102.7	372 33	106.8	407.36	110.0
305.05	97.99	339.90	103.1	374.82	107.1	409.86	110.0
307.54	08 30	342.30	103.1	377 32	107.1	412.36	110.2
310.03	98.79	344.80	103.4	370.82	107.5	414.86	110.4
312.52	00.21	347.38	103.7	382.32	107.5	417.37	110.5
215.01	99.21	347.38	104.0	284.82	107.8	417.37	110.7
515.01	<i>99.33</i>	549.07	104.5	564.62	108.1	419.07	110.9
Run 3	0.07459	12.26	0.2760	17.01	07674	22.74	2 2 2 2
7.14	0.07458	12.30	0.2769	17.81	0.7674	25.74	2.323
8.80	0.09636	13.69	0.3425	19.23	1.023	25.29	2.998
10.03	0.1201	15.04	0.4559	20.70	1.346	26.89	3.541
11.07	0.2213	16.41	0.5923	22.20	1.732	28.56	4.256
Run 4	0 1266	14.80	0.4620	10.21	0.0040	22.76	2 202
9.11	0.1500	14.89	0.4629	19.21	0.9940	25.76	2.302
11.48	0.2555	10.27	0.0031	20.72	1.347	25.54	3.026
13.38	0.3341	17.74	0.7330	22.22	1./55		
Run 5							
27.75	3.781	45.64	14.42	65.50	25.23	86.40	33.97
29.08	4.784	47.38	15.37	67.37	26.09	88.32	34.71
30.77	5.509	49.13	16.45	69.25	26.91	90.26	35.49
32.35	6.381	50.90	17.57	71.13	27.80	92.19	36.26
33.93	7.452	52.69	18.67	73.02	28.63	94.12	36.98
35.53	8.495	54.48	19.64	74.92	29.40	96.06	37.74
37.17	9.337	56.29	20.59	76.82	30.16	98.01	38.43
38.84	10.17	58.11	21.55	78.73	30.88	99.95	39.20
40.53	11.19	59.94	22.53	80.64	31.73		
42.22	12.26	61.79	23.53	82.55	32.51		
43.92	13.37	63.64	24.41	84.47	33.25		

Table 1 (Continued)

T (K)	$C_p^0 (\text{J K}^{-1} \text{ mol}^{-1})$	<i>T</i> (K)	$C_p^0 (\text{J K}^{-1} \text{ mol}^{-1})$	<i>T</i> (K)	$C_p^0 (\text{J K}^{-1} \text{ mol}^{-1})$	<i>T</i> (K)	$C_p^0 (\text{J K}^{-1} \text{ mol}^{-1})$
Run 6							
25.79	3.320	39.40	10.54	54.58	19.68	70.75	27.64
27.28	3.715	41.24	11.62	56.56	20.75	72.81	28.55
28.87	4.480	43.09	12.85	58.55	21.78	74.89	29.40
30.63	5.452	44.96	13.97	60.55	22.89	76.97	30.26
32.34	6.366	46.85	15.10	62.57	23.91	79.06	30.95
34.05	7.459	48.75	16.21	64.60	24.85		
35.80	8.626	50.68	17.46	66.64	25.77		
37.58	9.525	52.62	18.61	68.69	26.65		
Run 7							
80.73	31.96	135.59	52.87	194.62	73.27	254.10	88.35
81.09	31.93	138.04	53.76	197.09	74.02	256.59	88.80
82.49	32.50	140.48	54.67	199.56	74.74	259.08	89.32
84.91	33.42	142.93	55.59	202.03	75.49	261.57	89.85
87.29	34.33	145.37	56.53	204.50	76.21	264.06	90.39
89.66	35.23	147.82	57.39	206.98	76.94	266.55	90.89
92.04	36.19	150.27	58.33	209.45	77.58	269.04	91.47
94.43	37.10	152.73	59.27	211.93	78.33	271.53	91.98
96.82	38.03	155.18	60.12	214.41	78.94	274.02	92.54
99.22	38.91	157.64	61.02	216.88	79.62	276.51	92.98
101.62	40.14	160.10	61.89	219.36	80.29	279.00	93.49
104.03	40.90	162.56	62.77	221.84	80.96	281.50	93.97
106.43	41.85	165.02	63.62	224.32	81.56	283.99	94.45
108.84	42.74	167.48	64.45	226.80	82.23	286.48	94.91
111.26	43.66	169.94	65.29	229.28	82.89	288.98	95.44
113.68	44.55	172.41	66.10	231.76	83.54	291.47	95.89
116.10	45.46	174.87	66.97	234.25	84.13	293.96	96.31
118.53	46.38	177.34	67.85	236.73	84.73	296.46	96.79
120.96	47.30	179.81	68.64	239.21	85.31	298.96	97.21
123.39	48 19	182.27	69.42	241.69	85.94	301.46	97.54
125.83	49.17	184.74	70.21	244.17	86.48	303.96	97.94
128.26	50.15	187.21	71.00	246.65	87.08	306.46	98.29
130.70	51.07	189.68	71.74	249.14	87.64	308.97	98.68
133.15	51.97	192.15	72.54	251.62	88.18		
Dup 9							
242 47	96.22	201.11	05.99	226.24	102.6	280.12	107.6
243.47	86.00	291.11	95.00	228.05	102.0	282.67	107.0
240.30	80.33	295.82	90.29	241.56	103.0	382.07	107.9
249.24	88.20	290.33	90.78	341.50	103.3	385.20	108.2
254.05	00.29	299.23	97.21	244.10	103.7	200.27	108.4
257.80	80.43	301.92	97.39	240.25	104.0	390.27	108.0
257.60	89.01	207.20	97.99	251.04	104.5	205.22	100.0
200.05	89.00 00.27	307.29	98.40	254.52	104.0	393.32 207.95	109.1
205.45	90.27	309.90	98.80	257.10	104.9	397.83	109.5
200.27	90.88	312.02	99.22	357.10	105.2	400.57	109.5
209.07	91.43 02.06	313.20	99.00 100.0	362.07	105.5	402.89	109.8
271.00	92.00	220.59	100.0	264 01	105.0	403.40	109.9
2/4.04	92.30	320.38	100.4	267.27	100.1	407.92	110.1
2/1.41	93.11	323.22 225.85	100.8	30/.3/	106.5	410.45	110.5
200.17	95.00	323.83 228.49	101.2	272 40	100.0	412.94	110.5
282.92	94.21	328.48	101.0	312.49	100.8	413.43	110.7
283.00	94.75	331.10	102.0	373.04	107.1	417.95	110.8
208.39	93.29	333.12	102.5	377.38	107.4	420.40	111.0

Fig. 1. Experimental heat capacity curve of NdAlO₃.

the phase composition of the sample was checked by X-ray diffraction analysis. This procedure was repeated three times to obtain pure NdAlO₃. The final X-ray pattern showed the presence of rhombohedral NdAlO₃ (JCPDS 39-0487) and a small amount of an impurity, very likely Nd₂O₃. Semi quantitative X-ray analysis, using small but defined additions of Nd₂O₃ to NdAlO₃ indicated that the amount of Nd₂O₃ in the sample is less than 0.4 mass%.

The low-temperature calorimetric measurements were performed at the Utrecht University, using the adiabatic calorimeter CAL V. Details of the equipment and its calibration have been described elsewhere [3]. The performance of the calorimeter was tested with synthetic sapphire (NIST SRM-720). The deviations between 80 and 350 K from the NIST data were well within 0.15% [3]. The weight of the sample for the low-temperature measurements was 15.9736(2) g.

The enthalpy increments were measured in an isothermal diphenyl-ether drop calorimeter, which is described in detail before [4]. The calorimeter was calibrated with synthetic sapphire (NIST SRM-720). Periodically, the performance of the calorimeter is tested, also with sapphire. The results with sapphire agree within 0.3% with the data given by NIST. For the experiment 6.6190(2) g of NdAlO₃ was enclosed in a quartz capsule of 1.3793(2) g.

3. Results and discussion

The low-temperature heat capacity measurements were performed in 8 runs, which are in excellent agreement with the exception of run 1. The C_p^0 -values obtained in run 1 from 300 to 350 K are somewhat lower than those of run 2 and 8. As the data in run 1 from 350 to 420 K and run 2–8 are in excellent agreement, only the data for run 1 from 300 to 350 K are excluded. The data for run 1–8 are listed in Table 1 and shown in Fig. 1. The heat capacity increases smoothly from 0 to 420 K, showing no anomalies. The experimental data from 4 to 18 K have been fitted to the function $C_p^0 = \alpha T^3$, yielding

Table 2 Experimental enthalpy increments of NdAlO₃

T (K)	$\{H^0(T) - H^0(298)\}$	δ (%)	
	Experimental	Calculated	
524.8	24678	24645	0.13
575.8	30818	30660	0.51
626.9	36735	36805	-0.19
678.0	42869	43059	-0.44
728.8	49422	49374	0.10
779.9	55934	55821	0.20
831.2	62291	62383	-0.15
882.2	69027	68992	0.05

Fig. 2. Low-temperature heat capacity of NdAlO₃; (\Box) run 3; (\triangle) run 4.

Fig. 3. The reduced enthalpy increment of NdAlO₃.

 α =0.138×10⁻³ J K⁻⁴ mol⁻¹ (Fig. 2). At 10 K we then obtain $C_p^0 = 0.138 \text{ J K}^{-1} \text{ mol}^{-1}$, and, by integration from 0 K, S^0 (10 K)=0.046 J K⁻¹ mol⁻¹ and { H^0 (10 K)- H^0 (0 K)}=0.345 J mol⁻¹. These values have been used as starting values for the calculation of the thermal function from 10 to 420 K. For the values of C_p^0 and S^0 at the standard reference temperature

298.15 K, we thus obtain

$$\begin{split} S^0 & (298.15 \text{ K}) = (99.3 \pm 0.3) \text{ J } \text{K}^{-1} \text{ mol}^{-1}, \\ C^0_p & (298.15 \text{ K}) = (97.05 \pm 0.10) \text{ J } \text{K}^{-1} \text{ mol}^{-1}. \end{split}$$

The results of the drop-calorimetry measurements are listed in Table 2. The data have been fitted to the

Table 3	
Thermodynamic functions	of NdAlO ₃ from 0 to 900 K

T (K)	$C_p^0 \; ({ m J}{ m K}^{-1}{ m mol}^{-1})$	S^0 (298.15 K) (J K ⁻¹ mol ⁻¹)	$-\{G^0(T)-H^0(0 \text{ K})\}/T (\text{J K}^{-1} \text{ mol}^{-1})$	{ $H^0(T) - H^0$ (0 K)} (J mol ⁻¹)
10	0.1380	0.0460	0.01150	0.3450
20	1.231	0.3712	0.09361	5.551
30	5.281	1.551	0.3506	36.02
40	10.93	3.823	0.9147	116.3
50	16.96	6.911	1.794	255.8
60	22.60	10.51	2.942	454.1
80	31.61	18.32	5.803	1001
100	39.35	26.19	9.094	1710
120	47.25	34.07	12.60	2577
140	54.77	41.93	16.23	3597
160	61.87	49.71	19.93	4765
180	68.50	57.38	23.67	6069
200	74.63	64.92	27.42	7501
220	80.23	72.30	31.16	9051
240	85.29	79.50	34.89	10 707
260	89.82	86.51	38.59	12 459
280	93.83	93.32	42.26	14 296
298.15	97.05	99.30	45.55	16 029
300	97.35	99.90	45.89	16 209
400	108.7	129.6	63.21	26 572
500	115.4	154.7	79.06	37 796
600	120.2	176.1	93.49	49 585
700	124.2	195.0	106.7	61 81 1
800	127.7	211.8	118.8	74 410
900	131.0	227.0	130.0	87 347

polynomial

{
$$H^0(T) - H^0(298.15 \text{ K})$$
} J mol⁻¹ = 109.1273
× (T K) + 13.3640 × 10⁻³ (T K)²
+ 1.78198 × 10⁶ (T K)⁻¹ - 39701.0,

applying C_p^0 (298.15 K) = 97.05 J K⁻¹ mol⁻¹ and { H^0 (*T*)-*H*(298.15 K)}=0 at 298.15 K as boundary conditions. The standard deviation of the fit is 123.6 J mol⁻¹. As shown in Fig. 3 in a plot of the reduced enthalpy increment, the high- and low-temperature ranges fit smoothly. As stated before, there are no experimental heat capacity data available to us to compare these results to. The results have not been corrected for the small amount of Nd₂O₃ in the sample, because this correction is well within the statistical error of the measurements. Only, below 25 K the correction might be somewhat larger than the statistical error, because the electronic heat capacity of Nd₂O₃ in that region is relatively high [5]. However, the effect of this on the entropy at 298.15 K is negligible.

The thermal functions of NdAlO₃ are listed in Table 3. For the temperature range 0-300 K these have been derived from the low-temperature measurements, for the range 300–900 K from the high-temperature measurements.

References

- N. Cocuaud, E. Picard, R.J.M. Konings, A. Conti, Hj. Matzke, in: Proceedings GLOBAL'97, International Conference on Future Nuclear Systems, vol. 2, Yokohama, Japan, 1997, p. 1044.
- [2] R.J.M. Konings, K. Bakker, J.G. Boshoven, H. Hein, M.E. Huntelaar, H.J.D. Meeldijk, C.F. Woensdregt, H. Zhang, in: Proceedings GLOBAL'97, International Conference on Future Nuclear Systems, vol. 2, Yokohama, Japan, 1997, p. 670.
- [3] J.C. van Miltenburg, G.J.K. van den Berg, M.J. van Bommel, J. Chem. Thermodyn. 19 (1987) 1129.
- [4] E.H.P. Cordfunke, R.P. Muis, G. Prins, J. Chem. Thermodyn. 11 (1979) 819.
- [5] B.H. Justice, E.F. Westrum Jr., J. Phys. Chem. 67 (1963) 339.