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Abstract

To treat data from temperature modulated differential scanning calorimetry (TMDSC) in terms of complex heat capacity,

one should know heat transfer and apparatus in¯uences on experimental results. Concise theoretical model for power

compensated DSC is given, which includes description of most important heat transfer paths and apparatus effects.

Estimations for real experimental conditions are made. An algorithm to determine parameters for calibration to exclude heat

transfer and apparatus effects is proposed. This allows to increase upper frequency limit and accuracy of TMDSC

measurements. Based on theoretical results the key points of the correction and some experimental evidence are discussed.

# 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Besides other dynamic calorimetric methods like

AC [1±3] and 3! [4,5], temperature modulated differ-

ential scanning calorimetry (TMDSC), introduced by

Reading [6], gives a possibility to measure complex

heat capacity [7,8]. Basic prerequisite for complex

heat capacity determination is the linear response,

which was discussed in detail in part 1 of this paper

[9]. It is well understood however that the value for

complex heat capacity being given by the ratio

between measured heat ¯ow rate and heating rate

should be corrected for heat transfer effects. Such

phase and amplitude calibration was discussed by

different authors, e.g. [10±12], with the assumption

of negligible temperature gradient inside the sample.

But this temperature gradient can be signi®cant espe-

cially in case of low thermal conducting materials, e.g.

polymers. In¯uence of the sample thermal conductiv-

ity on heat capacity determination in TMDSC was

studied by Schenker et al. [13]. Sophisticated math-

ematical model including in¯uence of temperature

gradient inside the sample has been proposed by

Lacey et al. [14] for the heat ¯ux DSC. However,

there are some general dif®culties to apply theoretical

models: parameters for calibration are unknown or

change in unknown way during the measurement.

Although in some particular cases such as in glass

transition, it is possible to apply empirical algorithm

for the correction when heat capacity is complex and

changes during transition [15], the question how to

correct measured data for heat transfer effect in gen-

eral case is still open.
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In the following paper, ®rst we try to take into

consideration all important contributions to heat trans-

fer in¯uences on measured signal in case of power

compensated DSC. Parallel to theoretical model some

estimations for real experimental conditions are given.

After that apparatus effects are discussed and a

method to eliminate them is proposed (by apparatus

effects we imply in¯uences on measurements from

measuring unit and electronics itself such as their

asymmetry, time constants and so on). Finally, an

algorithm to determine calibration parameters and

calibration itself is proposed.

2. TMDSC data treatment

Detailed description of the data treatment for

TMDSC measurements is given in [6,16]. If some

heat ¯ow rate �(t) is measured under given heating

rate q(t), then after Fourier transform

F[f](!)�(f(t),ei(!,t)) [17], one can write (see also [9]):

F�C��!� � F����!�
F�q��!� � m � ceff�!�: (1)

One can treat this ratio as an effective or apparent

frequency dependent heat capacity ceff(!), where m is

the sample mass. But, complex speci®c heat capacity

of the sample cp(!) differs from this ratio, because in

reality measured heat ¯ow rate �(t) is not the heat ¯ow

rate into the sample �s(t) and measured temperature,

as well as measured heating rate q(t) is not the sample

temperature and sample heating rate qs(t). Since the

behaviour of DSC is linear [18], one can connect true

and measured values by convolution product with

Green's functions [11], so that �s(t)�GÃ 1(t)��(t)

and qs(t)�GÃ 2(t)�q(t). After Fourier transform these

relations become

F��s��!� � F�G1��!� � F����!�; (2)

F�qs��!� � F�G2��!� � F�q��!�; (3)

where now F[G1](!) and F[G2](!) are some frequency

dependent complex factors. Then, complex speci®c

heat capacity of the sample cp(!) can be written as

m � cp�!� � F��s��!�
F�qs��!� �

F�G1��!�
F�G2��!�

F����!�
F�q��!� ;

(4)

where m is the sample mass. When some heating rate

with periodic part q(t)�Re(Aq�eÿi!t) of amplitude Aq

and angular frequency ! is applied to the sample,

periodic part of heat ¯ow rate �(t)�Re(A��eÿi(!tÿ�))
of amplitude A� and phase lag � is induced and Eq. (4)

becomes

m � cp�!� � F�G1��!�
F�G2��!�

A�

Aq

ei� � B�!�A�
Aq

ei�;

(5)

where B(!)�|B(!)|�eÿ�(!) is some calibration factor

which contains heat transfer and apparatus in¯uences

on sample heat capacity measurement. Note that not

only modulus but also argument �(!) of this calibra-

tion factor depends on frequency.

In the following speci®c complex heat capacity of

the sample cp(!) is denoted as cp only. Different

possible apparent or effective heat capacities of the

sample or other systems are denoted as Ci for total

values and ci�Ci /m for speci®c values, where i is the

corresponding sub-index and m is the sample mass.

We also assume that the conditions of linearity and

stationarity are ful®lled, see [9]. Under linear condi-

tions one can separate underlying and periodic parts of

signal. Temperature oscillations can be represented as

T(t)�AT�eÿi!t and heating rate oscillations as q�t� �
_T�t� � ÿi! � T�t�. Any possible transition in the sam-

ple is allowed.

3. Influence of heat transfer

Consider a sample with an aluminium pan placed in

the oven, as shown in Fig. 1(a). Disc shaped sample is

5.8 mm in diameter and about 0.1±1 mm thickness

depending on the mass of polymer sample which is

commonly in range 2±25 mg. Thermal conductivity of

aluminium (�Al�210 W mÿ1 Kÿ1) is usually three

order of magnitude larger than that of the polymers

(e.g. thermal conductivity of poly(ether ether ketone)

�PEEK�0.26 W mÿ1 Kÿ1, of polystyrene �PS�
0.15 W mÿ1 Kÿ1) and the thickness of the pan walls

is 0.1 mm. Under such conditions one can neglect

temperature gradient in the aluminium pan and con-

sider that sample is heated from both surfaces so that

effective sample thickness d is in range 0.05±0.5 mm.

Comparing this with 5.8 mm diameter in good approx-

imation one can represent temperature oscillations in
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the sample as plane waves and discuss only one-

dimensional system. Sample being in semi-crystalline

state or in high viscosity melt has never ideal thermal

contact with pan ± only few points have direct contact

with pan, others have contact via air, as shown in

Fig. 1(a). Then one should introduce an effective

thermal contact Kps between sample surface and

pan. This thermal contact can change drastically dur-

ing the measurements, e.g. when a nice `̀ wet contact''

which was in the melt is destroyed by contraction

during crystallisation and large part of the sample

surface looses the direct contact with pan. Thermal

contact between the pan and the oven Kop is also

mainly via an air layer, because the pan and the oven

have direct contact, strictly speaking, only in three

points. But this Kop is independent on sample proper-

ties and mainly determined by temperature and type of

purge gas (usually nitrogen). This effective thermal

contact includes also heat ¯ow through ambient gas

around the upper side of the pan, which is, however,

much smaller than the heat coming through the bottom

of the pan. Schematically, representation of the sam-

ple±pan±oven system is shown in Fig. 1(b), where

Ts(x,t) is the sample temperature, Tp(t) the pan tem-

perature, To(t) the oven temperature, �s the thermal

conductivity of the sample, � the sample density, cp the

speci®c heat capacity of the sample, and S is the area

of the surface x�0. In case when �s, �, cp do not

depend on x, t, Ts heat transfer equation without heat

sources can be written as

@Ts

@t
� �@

2Ts

@x2
; (6)

where � � �s=�� � cp� is the thermal diffusivity. When

the temperature oscillation of the sample surface x�0

is given as Ts�0; t� � ATs
� eÿi!t one can look for the

solution of Eq. (6) in form Ts�x; t� � ATs
� eÿi�!t�kx�,

where k is the wave number. In this case @Ts=@t �
ÿi! � ATs

� eÿi�!t�kx� and @2Ts=@x2 � ÿk2 � ATs
�

eÿi�!t�kx�. Then according to Eq. (6) i!��k2,

k � � �����������
!=j�jp

expf�i=2�arg�i!=��g. Designate for

short � � �����������
!=j�jp

expf�i=2�arg�ÿi!=��g. Finally,

the temperature oscillation inside the sample can be

written as

Ts�x; t� � ATs
� eÿi!t�A � eÿ��x � B � e��x�; (7)

where factors A and B are determined by boundary

conditions. One of these conditions is that at x�0

temperature oscillation equals Ts�0; t� � ATs
� eÿi!t, so

that from Eq. (7):

A� B � 1: (8)

On the other hand there is no heat ¯ow through the

sample surface x�d (because this surface is actually in

the middle of the sample heated from both sides), i.e.

�s�d; t� � ÿ�s � S@Ts

@x

����
x�d

� 0; (9)

where �s(x,t) denotes the heat ¯ow inside the sample.

Further, one can write @Ts=@x � ATs
�

eÿi!t�ÿA � � � eÿ��x � B � � � e��x� and using Eq. (9)

one can obtain A�eÿ��d�B�e��d, or B�A�eÿ2��d. Then

substituting this in Eq. (8) one can get:

A(1�eÿ2��d)�1, or A � 1=�1� eÿ2��d�. Finally, heat

¯ow through the surface x�0 can be written as

�s�0; t� � ÿ�s � S@T

@x

����
x�0

� ÿ�s � S � ATs
eÿi!t�

ÿ1� eÿ2��d

1� eÿ2��d

� �s � S � ATs
eÿi!t� tanh �� � d�: (10)

This heat ¯ow equals to the heat ¯ow rate into the

sample, �p(t), Then one can formally rewrite Eq. (10)

as

�p�t� � ÿC� � i! � Ts�0; t�; (11)

where C� is the apparent heat capacity of the sample at

the surface x�0 and equals

C� � ÿ 1

i!
�s � S � � tanh�� � d�: (12)

Fig. 1. The schematic view of the oven (a) and its block diagram

(b). (1) sample, (2) pan, (3) oven.
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Fig. 2(a) shows C� dependence on parameter��������������!=��p
d. When the sample is very thin or modula-

tion frequency is very low or sample thermal con-

ductivity is very high, all sample parts can follow

temperature modulation and apparent heat capacity

C� equals to sample heat capacity, in other words

C�!m�cp at
��������������!=��p

d ! 0. On the contrary, at��������������!=��p
d !1, temperature waves can propagate

only through the thin surface layer of the sample so

that C�!0 and arg�C�� ! �=4� �1=2�arg�cp� (note

that in general case arg(cp)6�0). Estimation of tem-

perature gradient in¯uence on measured values is

given in Table 1 for two sample masses m�2.5 mg

and m�25 mg. The parameters for the calculations by

Eq. (12) are the following: tp�1 min, S�53 mm2,

�s�0.26 W mÿ1 Kÿ1, ��1.03 g cmÿ3, d�0.05 mm

for the small sample (m�2.5 mg) and d�0.5 mm

for the large sample (m�25 mg); speci®c heat capa-

city of the sample supposed to be real valued. One can

see that for the small sample there is negligible

difference between speci®c heat capacity of the sam-

ple cp and apparent speci®c heat capacity c��C�/m at

any reasonable values of cp. (Note that cp which is

usually in order of 1±2 J gÿ1 Kÿ1 can increase in

several times in the melting region due to latent heat.)

Out of melting region for the large sample, apparent

heat capacity has approximately the same absolute

value as sample heat capacity, |c�|�cp, and there is

only small contribution on phase, arg(c�)�0.06 rad.

But situation can appreciably change in the melting

region. If cp increases up to 40 J gÿ1 Kÿ1 (that is

possible, e.g. for poly(ethylene caprolactone)), then

|c�|�0.57cp and phase angle reaches the value

0.74 rad. And this is only at tp�1 min ± the period

normally used for TMDSC measurements.

Now include the in¯uence from thermal contact

between the sample and the pan, Kps. Heat ¯ow rate

from the pan to the sample (which equals to the heat

¯ow rate into the sample) is �p�t� � Kps�Tp�t�ÿ
Ts�0; t��. From that one can write: Tp�t� � Ts�0; t��
�1=Kps��p�t�, Tp�t� � Ts�0; t��1ÿ �i!=Kps�C��, or

Ts�0; t� � Tp�t�=�1ÿ �i!=Kps�C��. Then Eq. (11)

for heat ¯ow rate �p(t) can be rewritten as

�p�t� � ÿC� � i! � Tp�t�; (13)

where C� is the apparent heat capacity of the sample at

aluminium pan surface, which can be calculated as

C� � C�

1ÿ �i!=Kps�C�
: (14)

Fig. 2. (a) Polar plot showing the dependence of apparent heat

capacity C� on parameter
����������������!=j�j�p

d. On diagram specific heat

capacity is set to real value and equals to 2 J gÿ1 Kÿ1 (cp(!) can be

complex in general case). During the change of parameter����������������!=j�j�p
d, the end of the vector C� follows the curve determining

phase angle and modulus of C�. Analogous happens with vector C�
during changes of !=Kps and on diagram (b) with vector C� during

changes of parameter !=Kop.

Table 1

cp (J gÿ1 Kÿ1) m�2.5 mg m�25 mg

|c�| (J gÿ1 Kÿ1) Arg(c�) (rad) |c�| (J gÿ1 Kÿ1) Arg(c�) (rad)

2 1.9999994 7�10ÿ4 1.995 0.06

10 9.99993 0.003 9.38 0.3

40 39.995 0.001 23 0.74
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Fig. 2(a) shows C� dependence on parameter

!=Kps. Again at low frequency ! or at good thermal

contact Kps, i.e. at !=Kps ! 0, C�!C�; at !=Kps !
1 C�!0 and arg�C�� ! �=2.

Using analogous algorithm one can calculate the

heat ¯ow rate into the pan, �o(t):

�o�t� � ÿi! � To�t� Cpan � C�

1ÿ �i!=Kop��Cpan � C��
� ÿC � i! � To�t�; (15)

where Cpan is the heat capacity of aluminium pan (real

valued) and C is the apparent heat capacity of the

sample±pan system, which can be calculated as

C � Cpan � C�

1ÿ �i!=Kop��Cpan � C�� : (16)

C dependence on parameter !=Kop is analogous to

that shown in Fig. 2(a) for C�. At !=Kop ! 0, C!
Cpan�C�; at !=Kop !1, C ! 0 and arg�C�� !
�=2.

In TMDSC, as well as in DSC, measured heat ¯ow

rate is the difference between total heat ¯ow rates to

the sample oven and to the reference oven. For sim-

plicity, suppose that the reference oven is empty, then

in ideal symmetrical case differential heat ¯ow rate

equals to the heat ¯ow rate from the sample oven to the

sample±pan system, �o(t). In fact some asymmetry

between these two ovens is inevitable, therefore mea-

sured heat ¯ow rate, �p�s
o �t�, contains additional part,

so that

�p�s
o �t� � ÿi! � To�t�

� Cpan � C�

1ÿ �i!=Kop��Cpan � C�� � f �t�;

(17)

where f(t) is some additional function, describing

asymmetry in heat leakage and in heat capacity of

the ovens. This function, f(t), is mainly determined by

temperature oscillations of the ovens. Due to the

power compensation and due to the fact that ovens

heat capacities are roughly two orders of magnitude

larger than sample plus pan heat capacity the tem-

perature oscillations of the ovens are independent on

measurements with or without sample. Therefore,

under given temperature oscillations f(t) is highly

reproducible. Commonly for DSC and TMDSC heat

¯ow rate of empty pan (C��0), �p
o�t�, is measured to

determine the asymmetry function f(t):

�p
o�t� � ÿi! � To�t� Cpan

1ÿ �i!=Kop�Cpan
� f �t�:

(18)

Then empty pan corrected heat ¯ow rate, �s
o�t�, is

calculated as difference between Eqs. (17) and (18):

�s
o�t� � �p�s

o �t� ÿ �p
o�t� � ÿC� � i! � To�t�;

(19)

where C� is the apparent heat capacity after empty pan

correction, which equals

C� � C�

�1ÿ �i!=Kop��Cpan � C����1ÿ �i!=Kop�Cpan� :
(20)

Fig. 2(b) shows C� dependence on parameter

!=Kop. For given C� the value of C� is also dependent

on pan heat capacity Cpan. At Cpan!0 the shape of the

curve tends to semi-circle as in Fig. 2(a) for vector C�.

Again at good conditions, i.e. at !=Kop ! 0, C�!C�;

at !=Kop !1 C�!0 and arg(C�)ÿarg(C�)!�.

Now estimate the in¯uence of thermal contact Kop

on measured heat capacity value. For calculations by

Eq. (20) assume that C��m�cp that means there are

negligible temperature gradient inside the sample and

ideal thermal contact between sample and pan. Other

parameters are the following: tp�1 min,

Cpan�29 mJ Kÿ1, Kop�30 mW Kÿ1. The value for

Kop was taken from preliminary calibration with alu-

minium samples (see Section 5). The results for two

different sample masses are shown in Table 2. One can

see that even for small sample, m�2.5 mg, there is

relatively large contribution in phase angle,

arg(c�)�0.22 rad. It re¯ects the fact that by decreasing

the sample mass one can decrease this thermal lag

(difference between C� and C�) only to a given limit

determined by relatively large heat capacity of the

sample pan. Moreover, for large sample in the melting

region, contribution in phase angle from thermal

contact between pan and oven can reach even

1.41 rad and modulus of apparent heat capacity can

be four times smaller, |c�|�0.25cp. Note again, that this

result is obtained for tp�1 min ± period that is sup-

posed to be not short for 25 mg samples and is

commonly used in TMDSC measurements.
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4. Calibration algorithm of heat transfer

Now summarise the results from the previous sec-

tion. First, sample heat capacity m�cp, being measured

on the sample surface, appears as C�. Next, C�, being

measured on the pan surface, appears as C�. After

empty pan correction C�, being measured on the

surface of the oven, appears as C�. Table 3 shows

how much the values c�, c�, c� can change for real

measurements. The values for the parameters are the

same as in Tables 1 and 2, Kps�22 mW Kÿ1,

m�25 mg.

C�, according to Eq. (19), can be calculated as

C� �
A�s

o

Aqo

ei�; (21)

where A�s
o

is the amplitude of empty pan corrected

heat ¯ow �s
o�t� and Aqo

is the amplitude of heating rate

at oven surface qo(t)�ÿi!�To(t). Then the sample heat

capacity m�cp can be determined as

m � cp � m � cp

C�

A�s
o

Aqo

ei� � B1

A�s
o

Aqo

ei�; (22)

where complex factor B1 � �m � cp�=C� depends not

only on frequency, but on all parameters which are in

Eqs. (12), (14) and (20). The most crucial one is cp for

it just has to be measured. Therefore, it is impossible

by any calibration procedure to determine the calibra-

tion factor B1 in advance and then apply it to the

sample measurements. But it is possible by calibration

(see Section 5) to determine the thermal contact

between oven and pan Kop. Then, knowing this ther-

mal contact and pan heat capacity Cpan (which can be

calculated or measured independently) one can get the

value of C� from C�, see Eq. (20). Further one can use,

when it is possible, thin layer of a grease or an oil

between pan and sample to improve thermal contact

Kps and keep it constant and independent on sample

state. In this case, using the same thin layer of a grease

or an oil in calibration, e.g. with aluminium disc inside

the pan one can calculate the value of Kps, see

Eq. (14), where C� is the measured value and C� is

the heat capacity of the aluminium disc, which can be

measured or calculated independently. Further, know-

ing the value of Kps, one can determine by Eq. (14) the

value of C� from C� for sample measurement. Then

the last step is to get by Eq. (12) the value of cp from

C�. Here one can face the problem that speci®c heat

capacity cp is coupled with thermal conductivity �s

and it can be dif®cult to separate these two unknown

values from one calculated value of C�. But one can

calculate two values of C� from two different mea-

surements of the same compound, e.g. for the ®rst

measurement use a sample with effective thickness d

and for the second measurement use two times thicker

sample. As long as all other parameters are the same,

from Eq. (12) one can write

C��2d�
C��d� �

tanh�2� � d�
tanh�� � d� ; (23)

where C�(2d) and C�(d) denote apparent heat capacity

C� for the sample with effective thickness 2d and d,

respectively. Then knowing the complex value of ��d
from Eq. (23) one can determine by Eq. (12) sample

Table 2

cp (J gÿ1 Kÿ1) m�2.5 mg m�25 mg

|c�| (J gÿ1 Kÿ1) Arg(c�) (rad) |c�| (J gÿ1 Kÿ1) Arg(c�) (rad)

2 1.976 0.22 1.915 0.37

10 9.77 0.29 7.02 0.89

40 36 0.53 10.3 1.41

Table 3

cp (J gÿ1 Kÿ1) |c�| (J gÿ1 Kÿ1) Arg(c�) (rad) |c�| (J gÿ1 Kÿ1) Arg(c�) (rad) |c�| (J gÿ1 Kÿ1) Arg(c�) (rad)

2 1.995 0.06 1.91 0.30 1.75 0.65

40 23.25 0.74 6.43 1.36 4.04 1.60
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thermal conductivity, �s. Finally, from the values of �s

and of � � d � ����������������!=j�j�p
expf�i=2�arg�ÿi!=��gd,

where � � �s=�� � cp�, one can determine sample

speci®c heat capacity cp. Here, one can get the value

of sample density � from hand-book or measure

directly. However, some problems can appear when

the sample density appreciable changes with tempera-

ture or with time (e.g. during quasi-isothermal crystal-

lisation). Any expansion or contraction of the sample

can lead not only to the density change but obviously

to some changes in sample effective thickness d and

contact area S (and therefore to some changes in

thermal contact between pan and sample Kps as well).

Then, if necessary, the value of � or of expansion

coef®cient can be independently measured under the

same time±temperature conditions as in TMDSC

experiments. After that one can estimate by

Eqs. (12) and (14) the in¯uence of this expansion

or contraction on calculated value of sample heat

capacity cp.

5. Calibration of apparatus influence

One kind of apparatus in¯uence (inevitable asym-

metry of the ovens) has been already discussed in

Section 3. In the previous section we used the fact that

measured temperature is the temperature of the oven

surface. In reality temperature is measured inside the

oven. Another fact is that temperature signal is used in

a feed-back controller for power compensation and to

calculate the heat ¯ow rate signal, so that the measured

heat ¯ow rate after empty pan correction �s(t) also

differs from heat ¯ow rate �s
o�t�. As shown in [11]

connection between �s(t) and �s
o�t� and between

measured temperature and oven surface temperature

can be described by convolution product with Green's

functions. Similar way like in Eqs. (2)±(5) one can

show that Eq. (21) can be rewritten as

C� �
A�s

o

Aqo

ei� � B2�!�A�
s

Aq

ei�; (24)

where B2�!� � �A�s
o
=A�s��Aq=Aqo

�ei��ÿ�� is some

complex factor that describes apparatus in¯uence on

measured value of C�. In spite of the fact that this

factor has contribution also from heat transfer inside

the oven, it is assigned to the apparatus in¯uence

because the key difference of this factor from factor

B1 is independent on sample heat capacity. Then, it is

possible without going into details of measuring sys-

tem and electronics, to calibrate this apparatus in¯u-

ence. For example, at a given temperature and

frequency one can measure two aluminium discs with

the same diameter but different thickness. For simpli-

city one can use empty oven correction (not empty

pan), that means use empty oven measurement to

determine the asymmetry function f(t). After such

correction apparent heat capacity C is measured,

where now in Eq. (17) Cpan�C� equals heat capacity

of an aluminium disc CAl. One can write

C � CAl

1ÿ �i!=Kop�CAl

� B2�!�A�
o

Aq

ei�; (25)

where A�o is the amplitude of measured heat ¯ow rate

after empty oven correction, Aq the amplitude of

measured heating rate, and � is the phase angle

between these heating rate and heat ¯ow rate. For

two different aluminium discs with heat capacities

CAl1 and CAl2 one can write from Eq. (25):

C1

C2

� 1ÿ �i!=Kop�CAl2

1ÿ �i!=Kop�CAl1

CAl1

CAl2

� A�o
1

A�o
2

Aq2

Aq1

ei��1ÿ�2�:

(26)

From this ratio one can determine the thermal

contact between oven and aluminium discs Kop and

by Eq. (25) determine the value for B2(!). One can use

more than two discs to increase the accuracy in

determination of B2(!). Fig. 3 shows the result of

such correction. By Eq. (26) thermal contact Kop

has been determined (Kop�45 mW Kÿ1), and by

Eq. (25) the calibration factor B2(!) has been calcu-

lated. The application of the calibration c�ceff B2(!)

leads to changes in argument and modulus of apparent

heat capacity in such way that vectors c on polar plot

lie on semi-circle. This behaviour of c is fully

described by thermal contact between the disc and

the oven Kop (in our de®nition Kop is the thermal

contact between sample pan and oven, but aluminium

discs were measured directly in the oven without any

pan). Then after correction on Kop, see Eq. (25), all

vectors cp(!) will coincide with real valued cp(Al). (As

one can estimate by Eq. (12), for the thickest disc at

the highest frequency thermal conductivity of alumi-

nium contributes only 0.025 rad in argument of appar-

ent heat capacity c�, i.e. c��cp(Al)) Remarkable in
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Fig. 3 is the fact that after calibration on the same

factor B2(!) really all vectors c�C/m of all three

discs at all frequencies lie within experimental uncer-

tainties on semi-circle. This means that calibration

factor B2(!) really does not depend on sample heat

capacity. The values for modulus and argument of

B2(!) at different frequencies are shown in Fig. 4.

Knowing B2(!) one can further measure standard

aluminium pans to determine by Eq. (25) correspond-

ing value of Kop. As an example from preliminary

study Kop for standard aluminium pans equals

30 mW Kÿ1 at 1708C. The value for Kop is highly

reproducible and not sensitive to some non-coaxial

position of the pan in the oven.

6. Discussion

At any TMDSC measurements, even at large per-

iods there is a difference between sample heat capacity

m�cp and measured apparent heat capacity C� at least

in phase angle. Therefore correction of measured data

is necessary in any case. One cannot escape the need

of correction using very small thin samples because

large contribution from the sample pan cannot be

excluded this way.

Since calibration factor B1 depends on sample heat

capacity it is not correct to use the value of B1

determined, e.g. in the melted or in crystal state for

the correction in the melting region, where cp value

can be quite different. One should be cautious by

making different kinetic models of melting for experi-

mental data one cannot thoroughly correct.

One should also be careful by checking with dif-

ferent sample masses how good is some calibration

algorithm. If samples differ only by contact area S but

have the same thickness, the same result from different

sample masses can be obtained even in case when

correction includes only apparatus in¯uence and ther-

mal contact between oven and pan. In this case one

calculates after such correction something like appar-

ent speci®c heat capacity c��C�/m which can be still

far from sample speci®c heat capacity cp.

Sometimes one measures samples of the same mass

but with different thickness. Then the differences in

the results for apparent heat capacity one assigns to the

evidence of temperature gradient inside the sample.

Fig. 3. Effective specific heat capacity of aluminium ceff,

determined by Eq. (1), at different modulation periods (tp�4±

120 s) and for different sample masses. Aluminium discs with

diameter 6 mm and thickness 0.5 mm (m�38 mm), 1 mm

(m�76.6 mm) and 2 mm (m�156 mm), respectively, have been

measured by Perkin-Elmer DSC Pyris 1, T0�443 K, saw-tooth

temperature oscillations. Small arrow at real axis indicates the

value for specific heat capacity of aluminium, cp(Al)�0.944 J

gÿ1 Kÿ1, obtained by common DCS scan with q0�5 K minÿ1.

Fig. 4. Modulus and argument of calibration factor B2(!) at different frequencies of temperature modulation.
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But these samples have different contact area S and

therefore have different effective thermal contact

with pan Kps even when speci®c thermal contact

per unit area is the same. In this case the result will

be different for different samples with the same mass

even when there is no temperature gradient inside the

samples.

7. Conclusion

One can see that speci®c heat capacity determina-

tion by TMDSC measurements is in¯uenced by many

factors, among them the most important are the cali-

bration factor of the instrument itself, B2(!), thermal

contact between oven and pan, Kop, thermal contact

between pan and sample, Kps. Calibration factor of the

instrument can be determined in advance, because it is

independent on sample being measured. But one

cannot determine by any calibration procedure in

advance the in¯uence of thermal contacts Kop and

Kps in sample measurements. Only using well-de®ned

geometry of the sample and the pan and keeping these

thermal contacts reproducible from measurement to

measurement, one can determine speci®c heat capa-

city and thermal conductivity of the low heat con-

ducting materials at any sample state. The upper

frequency limit will be restricted by experimental

accuracy in determination of these thermal contacts

and apparatus factor B2(!). In case of high thermal

conducting materials it is already possible to enlarge

upper frequency limit of TMDSC measurements up to

0.25 Hz and suf®ciently improve the accuracy of the

measurements.

This theoretical part will be followed by experi-

mental results of low thermal conducting materials

based on presented correction algorithm.
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