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Abstract

Nineteen equations of state for hard-sphere ¯uids and six for Lennard-Jones ¯uids are reviewed from the literature, and used

to calculate the isothermal compressibility. We show that the choice of which equation of state to use to calculate the

isothermal compressibility of hard-spheres is most dif®cult for high densities. We also performed the hard-sphere calculation

by using available numerical values of the radial distribution function, ®nding adequate results only at low densities.

Moreover, two recently proposed analytical models that reproduce these radial distribution function values seem not to be

valid for the calculation of the isothermal compressibility.

For the Lennard-Jones system, we found ®rst that the in¯uence of attractive intermolecular forces is not negligible at any

density; second, that the equations of state lead to different results for states near the phase transitions; third, that none of the

equations of state considered here gave values for the isothermal compressibility in full agreement with the available computer

simulation results for states near the vapour±liquid coexistence curve; ®nally, that there was good agreement with available

experimental values for liquid argon. # 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

A great number of analytical expressions, i.e.

equations of state (EOSs), giving the compressibility

factor of simple ¯uids, such as the hard-sphere and

the Lennard-Jones ¯uids, can be found in the

literature, e.g. [1±8]. Generally, the parameters needed

in these EOSs are calculated from ®tting computer

simulation data for the pressure and/or potential

energy. Nevertheless, for analytical expressions to

be adequate they must also give good values for other

thermodynamic properties. Here we have chosen the

isothermal compressibility and try to analyse the

results obtained with different EOSs. Our choice is

based on the fact that this property is directly related to

the pressure and also to the molecular structure as

follows.

As is well known, the isothermal compressibility,

�T, is de®ned as

�T � 1

�

@�

@P

� �
T

; (1)

where �, P and T are density, pressure, and tem-

perature, respectively, and where all properties are

expressed in reduced Lennard-Jones (LJ) units.

Another way to calculate the isothermal compressi-
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bility is through the statistical mechanics equation [9]:

�T � 1

�T
1� 4��

Z 0!1

0

�g�r� ÿ 1�r2 dr

� �
;

(2)

where g(r) is the radial distribution function, RDF, of

the system, r being the intermolecular distance.

To obtain an analytical expression for �T from

Eq. (1), one requires the dependence of P on density,

i.e. an analytical expression for the equation of state.

Although a certain number of EOSs have been pro-

posed for the hard-sphere, HS, and Lennard-Jones, LJ,

systems, until now the isothermal compressibility has

been calculated only for HS systems and using the

simplest EOSs as an example in reviews [10] and

books [9].

More than 20 analytical expressions for the HS EOS

have been published and some reviews of the numer-

ous papers in the literature are available [4,11±14].

Generally, the accuracy of the different EOSs has

been studied by comparison with available computer

simulation results for the compressibility factor or

pressure. No comparison of results obtained for �T

with each of these analytical expressions has been

made, so that the choice of the most appropriate

expression may be a dif®cult task for researchers,

especially for calculations where a knowledge of this

property is needed [8].

Many of the above mentioned equations can be used

to accurately describe the Weeks±Chandler±Andersen

(WCA) [15] reference system (only Lennard-Jones

repulsive forces) through a scaling procedure [6,14].

In this case, comparison of different results is more

dif®cult, because now the pressure is both density and

temperature dependent.

In the case of a Lennard-Jones ¯uid, there are at

least four different accurate expressions for the cal-

culation of the compressibility factor [2,3,16,17], but

results for the isothermal compressibility obtained

from these expressions have not been published or

compared until now. Also we have proposed simpler

expressions for the EOS of LJ ¯uids [6±8] that repro-

duce with accuracy our computer simulation results

for the pressure and potential energy, yield adequate

values of the vapour pressure for methane, and give an

estimate of the behaviour of the heat capacity at

constant pressure of methane and argon.

To obtain numerical or analytical values of �T from

the RDF using Eq. (2), one needs computer simulation

results, solutions of integral equations, or analytical

models that ®t these results. The accuracy of the data

and models has a great in¯uence on the calculation of

the isothermal compressibility. Thus, a central statis-

tical mechanics problem is to develop RDF models

that yield the same equation of state as when the virial

or compressibility equations are used, arriving at a

thermodynamically consistent structure [18,19]. For

example, when Eq. (2) is used, an analytical expres-

sion for the HS �T can be obtained from the analytical

expression for the RDF obtained by using Percus-

Yevick, PY, theory [20]. However, this expression is

not thermodynamically consistent with that obtained

from the compressibility factor in the PY integral

equation [19]. Here we shall consider the numerical

results obtained from the self-consistent approxima-

tion [9], and also two recently proposed analytical

models that reproduce these numerical results [21].

Glandt and Fitts [22] have calculated the isothermal

compressibility for two-dimensional LJ ¯uids by

using the g(r) obtained from the solution of the PY

equation, and by using the EOS obtained from the

differentiation of the compressibility pressure equa-

tion. They found that the differences are small except

at low temperatures, where g(r) is long-ranged. In the

present work, the calculation of �T from the RDF of

three-dimensional LJ ¯uids is not considered, because

no adequate data for g(r) at great distances could be

found.

The paper is organised as follows. In Section 2 we

present the EOS and RDF models for HS systems and

give results for the isothermal compressibility

obtained with them. In Section 3 the LJ system is

considered: ®rst, the EOS of LJ ¯uids are presented,

and then the isothermal compressibility is calculated

for both the WCA reference system and the LJ system.

Comparison with experimental results is made in

Section 4. Conclusions are presented in Section 5.

2. The hard-sphere system

As is well known, the hard-sphere (HS) system is

de®ned by an interaction potential considering only

the repulsive forces between the molecules. The HS

system exhibits several simplifying features which
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make it a convenient starting point for the calculation

of properties of dense ¯uids, especially at high tem-

peratures where the HS EOS is a good approximation

to describe the properties of real ¯uids [9]. For this

system, only the knowledge of the value of the RDF at

the point of contact, gHS(r�1), is needed to calculate

the thermodynamical properties. The value of

gHS(r�1) can be expressed analytically, giving an

equation of state such as the well-known Carnahan±

Starling EOS [1]. This and other EOSs proposed in the

literature are presented in Section 2.1.

When the statistical mechanics Eq. (2) is used to

calculate �T, the value of gHS(r) is needed for all

values of r. These values are available from approx-

imate theories, such as the Percus-Yevick or self-

consistent approximation theories [23], from compu-

ter simulation results [24,25] and from analytical

models [19,21,26,27].

As is well known, the PY theory works well at low

and moderate densities but fails at high densities,

particularly in the liquid state. On the other hand,

the expression given by Verlet and Weis [26] is not

completely analytical because it includes the RDF

obtained from the PY equation, and that RDF does

not have a parametric expression. Finally, the model

given by Bravo-Yuste et al. [18,19], which provides a

RDF that is thermodynamically consistent with a

given EOS, is not simple in form, and includes only

the range 1.0173�r�2.2727, and the integral of

Eq. (2) can be calculated only over a small range.

Here we shall consider 19 analytical expressions for

the EOS, and also the gHS(r) obtained from numerical

results of the self-consistent approximation for r�5

[23], and from the analytical expressions proposed by

Valderrama and FauÂndez [21]. We investigate the

discrepancy between the results obtained with each

EOS and with numerical data and the Valderrama±

FauÂndez models, as well as the thermodynamic con-

sistency in the calculation of �T.

2.1. Equations of state for hard-spheres

Many of the existing analytical expressions for the

EOS of HS systems have been proposed on the basis of

theoretical considerations or by directly ®tting com-

puter simulation data and/or a number of virial coef®-

cients. The use of different computer simulation

results and the consideration of several analytical

forms for the equations have led to a wide range of

proposals. In this work we consider the 19 analytical

expressions for the compressibility factor, Z�P/(�T),

shown in Table 1 in chronological order, Eqs. (3)±

(21), and as a function of the packing fraction:

� � ��d3=6; (22)

d being the molecular diameter, e.g. d�1 in the case of

the HS system, or as a function of the density ratio

between the volume occupied by the spheres and the

total volume:

� � ����
2
p : (23)

As an attempt to classify the EOSs in terms of

complexity we shall consider as `̀ simple'' expressions

those in which the denominator has the form (1ÿ�)n.

The simplest expression is that derived from the scaled

particle theory (SPT) [28], Eq. (3), which is the same

as the one derived from the Percus-Yevick compres-

sibility equation. Another very simple expression is

that derived by Thiele [20] from the Percus-Yevick

virial equation (PYT), Eq. (4). The expression given

by Carnahan and Starling (CS) [1], Eq. (6), has been

widely used in empirical and theoretical equations to

describe the repulsive contributions to Z in real or

model systems [5±8,29,30]. Expressions proposed by

Kolafa (quoted by Boublik [11]), Eq. (11), and by

Baus and Colot [12], Eqs. (12) and (13) which we

denote as BC4 and BC6 in Table 1, are similar to CS,

although they have a better accuracy in reproducing

the virial coef®cients. Maeso et al. [13] and Solana

[31] improved and generalised the Carnahan±Starling

method [1] to obtain EOSs for HS ¯uids in d-dimen-

sions, their proposal being shown in Eqs. (14), (16)

and (17), respectively. These equations are aimed at

reproducing computer simulation results at low and at

metastable densities.

We also consider `̀ complex'' expressions, in which

the denominator includes a more complicated poly-

nomial. We include here the proposals of Ree and

Hoover [32], Eq. (5), which reproduce the theoretical

values of the virial coef®cients up to the ®fth, and of

Hall [33], Eq. (7), which is an empirical modi®cation

of CS. A third proposal is that of Erpenbeck and Wood

[34], Eq. (10), which ®ts their own computer simula-

tion data. Finally, we include the PadeÂ approximant

proposed by SaÂnchez [35], Eq. (18).
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Table 1

Analytical expressions for the compressibility factor, Z�P/(�T), or equation of state (EOS) for hard-spheres

Reiss et al. [28] ZSPT � �1� � � �2�=�1ÿ ��3(Scaled Particle Theory) (3)

Thiele [20] ZPYT � �1� 2� � 3�2�=�1ÿ ��2(Percus-Yevick Theory) (4)

Ree±Hoover [32] ZRH � �1� 1:75399� � 2:31704�2 � 1:108928�3�=�1ÿ 2:246004� � 1:301056�2� (5)

Carnahan±Starling [1] ZCS � �1� � � �2 ÿ �3�=�1ÿ ��3 (6)

Hall [33] ZH � �1� � � �2 ÿ 0:67825�3 ÿ �4 ÿ 0:5�5 ÿ 1:7�6�=�1ÿ 3� � 3�2 ÿ 1:04305�3� (7)

Le Fevre [36] ZLF � �1ÿ 0:8824��=��1ÿ 1:5708���1� 1:0232���1ÿ 2:9552� � 2:5521�2��1ÿ 1:3795� � 2:1339�2�� (8)

Andrews [37] ZA � �5:1834�=�1ÿ 1:5340� � 0:5340�2�� ÿ �1:3504=��ln�1ÿ 0:7405�� ÿ �4:8534=��ln�1ÿ 1:5340� � 0:5340�2� ÿ �15:977=��ln �1ÿ 0:5340��=�1ÿ ��� � (9)

Erpenbeck±Wood [34] ZEW � �1� 1:7227128� � 2:2532688�2 � 0:89244864�3 ÿ 0:3430292�4�=�1ÿ 2:2772872� � 1:32624176�2� (10)

Boublik [11] ZK � �1� � � �2 ÿ �2=3���3 � �4��=�1ÿ ��3 (11)

Baus±Colot [12] ZBC4 � �1� � � �2 ÿ 0:6352�3 ÿ 0:8697�4�=�1ÿ ��3 (12)

Baus±Colot [12] ZBC6 � �1� � � �2 ÿ 0:6352�3 ÿ 0:8697�4 � 0:2543�5 � 2:9231�6�=�1ÿ ��3 (13)

Maeso et al. [13] ZMSAV1 � �1� 2� � 3�2 � 2:364799�3 � 1:494402�4 � 1:750397�5 � 4:672003�6�=�1ÿ ��2 (14)

Maeso et al. [13] ZMSAV2 � �1� 20:15439� � 18:09291�2 � 31:55595�3�=��1� 19:15439� ÿ 2:061472�2 � 15:09823�3��1ÿ ��3� (15)

Solana [31] ZSOL1 � �1� � � �2 ÿ 0:6352�3�=�1ÿ ��3 (16)

Solana [31] ZSOL2 � �1ÿ � ÿ 1:6352�3 � 1:4005�4 � 1:1764�5�=�1ÿ ��5 (17)

SaÂnchez [35] ZS � �1� 1:024385� � 1:104537�2 ÿ 0:4611472�3 ÿ 0:7430382�4�=�1ÿ 2:975615� � 3:007000�2 ÿ 1:097758�3� (18)

Wang et al. [4] ZW1 �
P

i�1 Ai�
iÿ1=�1ÿ ��2(see Table 2) (19)

Wang et al. [4] ZW2 �
P

i�1 Bi�
iÿ1=�1ÿ ��3(see Table 2) (20)

Wang et al. [4] ZW3 � �1=��
P

i�1 Ci �=�1ÿ ��� �i(see Table 2) (21)

The packing fraction, �, and the density ratio, �, are defined in Eqs. (22) and (23), respectively. Coefficients for Eqs. (19)±(21) are given in Table 2.
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We shall also consider some more complex expres-

sions: ®rst, that proposed by Le Fevre [36], Eq. (8);

second, Andrews' expression [37], Eq. (9), which

would perhaps be considered the most complex

because it contains logarithmic terms; third, a second

proposal of Maeso et al. [13], Eq. (15).

Finally, we include the most recent proposals of

Wang et al. [4], which should be labelled as some-

where intermediate between `̀ simple'' and `̀ com-

plex'', since they use a different variable and a new

analytical form. The three analytical expressions pro-

posed by Wang et al. [4], Eqs. (19)±(21) with coef®-

cients Ai, Bi and Ci given in Table 2, are the only ones

that give the real behaviour of the HS system in the

close-packed limit (Z!1, for � � �c �
���
2
p

).

An important difference between these EOSs is the

location of poles (values of the density or � where Z

becomes in®nite and �T is zero). As was observed by

Thiele [20], `̀ simple'' equations must fail at densities

close to the closest packing (�c�0.7405), since their

singularity (��1) corresponds to the density ��1.91 at

which the whole space would be ®lled. The `̀ com-

plex'' equation has a pole at regular or random close-

packing [13], whereas Wang et al. have a singularity at

the correct close-packing limit (��1).

2.2. RDF data and models

As was mentioned above, we use here numerical

values of the RDF for the HS systems obtained from

the self-consistent approximation [23]. Results are

available in the range 0.1���0.8 and for r�5, includ-

ing the contact value gHS(r�1).

Recently Valderrama and FauÂndez [21] have stu-

died the validity of a model for the gHS(r) proposed by

Matteoli and Mansoori [38], which is a combination of

rational, exponential and trigonometrical functions

and has only four parameters:

gMM�r� � 1� �aÿ c�
rb

� �r ÿ 1� c�
r

exp�ÿd�r ÿ 1��cos��e�r ÿ 1��; (24)

where the parameter a�(g(r�1)ÿ1) is ®xed to give the

exact location and value of the ®rst maximum of the

RDF, and b, c, d, e, are adjustable parameters for each

density. Valderrama and FauÂndez [21] proposed a

modi®cation of the Matteoli±Mansoori model to

improve its accuracy, as follows:

gVF�r� � 1� a

r2:4a�4:425
� r ÿ 1

r

� �b

exp�ÿc�r ÿ 1��cos�d�r ÿ 1��; (25)

where only three coef®cients are calculated (b, c, d).

Valderrama and FauÂndez [21] have obtained these

parameters by ®tting the numerical values obtained

in the self-consistent approximation [23] for each

density. These authors conclude that their model is

signi®cantly better for ��0.1 and of similar accuracy

for other densities.

Models given by Eqs. (24) and (25) have not been

used until now in the calculation of thermodynamical

properties. Obviously, in the case of the compressi-

bility factor, the models give the same result as the

self-consistent approximation, which reproduces the

Carnahan and Starling [1] values with mean deviation

of 1.3% for the range 0.1���0.8, the maximum

deviation being 2% for ��0.4.

Table 2

Coefficients for the EOSs for hard-spheres proposed by Wang et al.

[4], Eqs. (19)±(21)

A1 1.00000

A2 0.96192

A3 0.55927

A4 ÿ0.54794

A5 ÿ0.94405

A6 ÿ0.64773

A7 ÿ0.00006

A8 ÿ5.13137

A9 0.30736

A10 7.45126

B1 1.00000

B2 ÿ0.03808

B3 ÿ0.40265

B4 ÿ1.10721

B5 ÿ0.39611

B6 0.29632

B7 0.64715

B8 ÿ2.37792

B9 0.75175

B10 2.83837

C1 1.00000

C2 1.96192

C3 0.55927

C4 ÿ1.10721

C5 0.55626

C6 ÿ0.11923

C7 0.00954
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2.3. Results

2.3.1. Isothermal compressibility from the EOS

The isothermal compressibility for the HS system

was calculated by using Eq. (1) and the 19 EOSs

presented in Table 1[39]. Table 3 lists the values of

(�T T) obtained by using the CS equation, Eq. (6),

which is the most used and best known expression, for

densities in the stable region 0.1���0.943 [40], and

in the metastable region 0.95���1.07 [41]. For the

close-packed density (�c�1.4142) �T must be equal to

zero, because P goes to in®nity, so that this value is

also included in Tables 3 and 4 for the CS and the

other EOSs, respectively, as a test of their accuracy in

this density limit. Table 4 also gives the mean devia-

tion between the isothermal compressibility calcu-

lated by using the other 18 EOSs with respect to

that obtained from the CS, for different ranges of

densities. As was shown by us [14,39], the CS equa-

tion gives adequate values of the pressure for hard-

spheres except in the range 0.885<�<0.943, where W3

gives the best accuracy.

For low densities, �<0.6, only the SPT and PYT

expressions, Eqs. (3) and (4), lead to large deviation.

In this range the Kolafa EOS, Eq. (11), is the most

accurate in the case of the pressure [14], and, as can be

seen in Table 4, the mean deviation between the

Kolafa and the CS expressions for �T is very small

here (0.19%).

For 0.6���0.8 the SPT, PYT and W3 expressions,

Eqs. (3), (4) and (21) respectively, give the greatest

deviations from the CS results. These equations also

give large discrepancies in the calculation of the

pressure with respect to the computer simulation

values [14]. Seven EOSs give mean deviations

(MD) between 1% and 3%, whereas the remaining

eight give MD less than 1%, the smallest correspond-

ing to the Hall and BC4 expressions, Eqs. (7) and (12),

respectively.

For the highest stable densities, 0.8<��0.943, there

are greater differences between the results obtained

with the various EOSs, with only seven expressions

giving mean deviations less than 2% with respect to

the CS results. For this region, the accuracy of the CS

equation is questionable because of the poor results

found for the pressure [39]. Better results for the

pressure might be obtained using other expressions,

such as W3, Eq. (21).

For the metastable region, 0.943<��1.07, the

Erpenbeck±Wood, Kolafa and Maeso et al. expres-

sions, Eqs. (10), (11) and (15), lead to results which

are similar to the CS case, which is accurate for the

calculation of pressure in this range [39]. MDs greater

than 10% are found for ®ve EOSs, including W3. The

only conclusion that can be drawn for this region is

that there is a great variability in the results, so that the

choice of which expression is most appropriate is

dif®cult.

The above results show therefore, that for both the

stable and metastable ranges of hard-sphere ¯uids, the

use of Eqs. (10), (11) and (15) give practically the

same results (mean deviations less than 1% for all

densities ranges) for the isothermal compressibility as

when the simpler CS expression is considered. The use

of more complex expressions is thus only justi®ed in

the case of the higher densities.

Bravo-Yuste et al. [19] have pointed out that the �T

calculated from Sanchez's equation, (�T)S, is greater

than (�T)SPT in the stable and metastable regions.

Moreover, they indicate that the two values are prac-

Table 3

Values for (�T T) of hard-spheres obtained from the Carnahan and

Starling [1] equation (Eq. (6) in Table 1)

� �T T

0.1 6.6110

0.2 2.2027

0.3 0.9828

0.4 0.4935

0.5 0.2634

0.6 0.1453

0.7 0.0814

0.8 0.0457

0.82 0.0407

0.84 0.0362

0.844 0.0354

0.86 0.0323

0.88 0.0287

0.90 0.0255

0.92 0.0226

0.94 0.0201

0.943 0.0197

0.95 0.0189

0.97 0.0167

1.0 0.0139

1.07 0.0089

1.4142 6.6�10ÿ3
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tically equal for ��1.07, i.e. at the density associated

with the glass transition [41]. Also (�T)S is less than

(�T)SPT for higher densities. Following these authors,

this means that the appearance of a different structure

in the system can be predicted theoretically and that

the method proposed by them will not be applicable to

Sanchez's equation beyond the stable or metastable

¯uid regions. None of the other expressions consid-

ered here gives the same value as (�T)SPT for ��1.07.

For example, (�T)W3 is some 18% less than (�T)SPT at

that density.

Finally, as can be seen in Tables 3 and 4, most of the

EOSs give small but ®nite values of �T at the close-

packed density, the W3 value being the nearest to zero.

2.3.2. Isothermal compressibility from the RDF

We consider now the calculation of the isothermal

compressibility from RDF data and models. Table 5

shows values of (�T T) obtained from Eq. (2) by using

numerical values for the RDF of the self-consistent

approximation [23], by using the Matteoli±Mansoori

model [38], Eq. (24), and by using the Valderrama±

FauÂndez model, Eq. (25), with the parameters giving

in [21]. In all the cases the integral of Eq. (2) was

calculated only from r�1 to r�5, because in the range

from r�0 to r�1 the RDF is exactly zero with a

contribution to (�T T) of [1ÿ4�/3]/�, and for r>5

the approximation g(r)�1 can be made so that there

is no contribution to the isothermal compressibility.

The discrepancy between the three sets of results

indicates the sensitivity of the compressibility equa-

tion to the use of numerical or analytical approxima-

tions, especially for high densities where the RDF is

long-ranged and the assumption that g(r)�1 for r>5

seems not to be valid [22].

Table 4

Mean deviations between the isothermal compressibility for hard-spheres calculated by using the EOSs shown in Table 1 and that obtained

with the CS equation

EOSs MD (%) �T T

0.1��<0.6 0.6���0.8 0.8<��0.943 0.943<��1.07 �c �
���
2
p

SPT 1.17 6.02 9.45 11.86 5.21�10ÿ4

PYT ÿ2.49 ÿ14.91 ÿ15.39 ÿ37.06 1.46�10ÿ3

RH 0.15 ÿ0.49 ÿ2.39 ÿ5.20 1.26�10ÿ3

H 0.16 0.11 0.54 3.17 4.51�10ÿ12

LF 0.20 ÿ0.94 ÿ3.89 5.36 1.13�10ÿ2

A ÿ0.17 1.44 6.31 13.87 ÿ6.67�10ÿ13

EW 0.32 0.56 0.04 ÿ0.94 9.78�10ÿ4

K 0.19 0.25 ÿ0.24 ÿ0.87 7.00�10ÿ4

BC4 0.16 ÿ0.12 ÿ1.06 ÿ2.12 7.29�10ÿ4

BC6 0.25 1.73 4.00 6.69 4.89�10ÿ4

M1 0.22 0.68 0.49 ÿ0.26 7.81�10ÿ4

M2 0.20 0.62 0.79 0.95 6.48�10ÿ4

Sol1 0.43 2.29 3.67 4.68 6.03�10ÿ4

Sol2 0.21 1.58 5.13 11.37 1.84�10ÿ4

S 0.20 1.10 3.42 8.27 1.50�10ÿ7

W1 0.06 ÿ2.08 ÿ1.82 9.88 9.39�10ÿ17

W2 0.13 ÿ2.86 ÿ4.05 7.48 1.44�10ÿ21

W3 ÿ0.26 ÿ4.76 ÿ4.13 12.03 5.83�10ÿ40

The value of (�T T) at the close-packed density is also shown.

Table 5

Values of (�T T) for hard-spheres obtained by using numerical data

of the radial distribution function given by the self-consistent (SC)

approximation [23], and by using the Matteoli±Mansoori and the

Valderrama±FauÂndez models, Eqs. (24) and (25)

� SC MM VF

0.1 6.611 7.113 6.725

0.2 2.204 2.384 2.398

0.3 0.985 1.433 1.201

0.4 0.441 1.134 0.809

0.5 0.271 0.926 0.663

0.6 0.125 0.798 0.675

0.7 0.081 0.756 0.783

0.8 0.140 0.543 0.712
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The values of Table 5 can be compared with those

obtained from the CS equation, given in Table 3. As

one can see, the two models, although valid for the

calculation of g(r), seem not to be valid for the

calculation of the isothermal compressibility (except

perhaps if Eq. (25) is used for ��0.1). In fact, a

deviation of 0.9% for the Valderrama±FauÂndez model

with respect to the g(r) values of the self-consistent

approximation leads to a deviation of nearly 22% in

the calculation of the isothermal compressibility. On

the other hand, the agreement between the numerical

self-consistent approximation and the Carnahan±Star-

ling expression is excellent for low densities (�<0.4),

and good (deviations near 10%) for intermediate

densities (0.4���0.6). For high densities the self-

consistent approximation and the analytical models

considered here seem to be `̀ inconsistent'' due to the

truncation of the RDF data.

These results indicate that it is very dif®cult to

obtain a self-consistent and simple analytical or

numerical model for the RDF, with only other more

complex models, such as that proposed by Bravo-

Yuste et al. [19] for HS ¯uids, being available until

now.

3. The Lennard-Jones system

The Lennard-Jones system is de®ned by the so-

called LJ 12-6 potential, which is strongly repulsive

for short distances (r�21/6) and weakly attractive for

larger distances, and which has been widely used as a

model of real ¯uids [2,3,5±9,16,17,42]. Here we shall

consider the calculation of the isothermal compressi-

bility for the LJ liquid from different expressions for

its equation of state.

3.1. Equations of state

Three of the most successful EOSs are that of

Nicolas et al. [16], that of Adachi et al. [17] and that

of Johnson et al. [2], which have the same analytical

expression:

P � �T � C1�
2 � C2�

3 � C3�
4 � C4�

5 � C5�
6

� C6�
7 � C7�

8 � C8�
9 � �D1�

3 � D2�
5

� D3�
7� D4�

9 � D5�
11 � D6�

13� exp�ÿ3�2�;
(26)

where

C1 � x1T � x2T1=2 � x3 � x4Tÿ1 � x5Tÿ2

C2 � x6T � x7 � x8Tÿ1 � x9Tÿ2

C3 � x10T � x11 � x12Tÿ1

C4 � x13

C5 � x14Tÿ1 � x15Tÿ2

C6 � x16Tÿ1

C7 � x17Tÿ1 � x18Tÿ2

C8 � x19Tÿ2

D1 � x20Tÿ2 � x21Tÿ3

D2 � x22Tÿ2 � x23Tÿ4

D3 � x24Tÿ2 � x25Tÿ3

D4 � x26Tÿ2 � x27Tÿ4

D5 � x28Tÿ2 � x29Tÿ3

D6 � x30Tÿ2 � x31Tÿ3 � x32Tÿ4

(27)

the xi being constant coef®cients calculated by ®tting

computer simulation results. Nicolas et al. [16] cal-

culated these coef®cients by ®tting results for the

pressure and potential energy in the density range

0���1.2 and for temperatures from 0.5 to 6.0 (the

exact temperature range may be different for each

density), and by requiring the critical point to be

TC�1.35 and �C�0.35. Adachi et al. [17] obtained

the coef®cients x1 to x5 from theoretical LJ ¯uid

second virial coef®cients, and the other 27 coef®cients

by ®tting pressure results for 800 data points in the

range 0<�<1.0 and 0.7<T<3.0. However, Johnson et

al. [2] note that in these early works there were few

vapour±liquid equilibrium data, and that the critical

point of the LJ ¯uid is not known accurately. In

particular they show that the Nicolas et al. [16]

equation does not accurately predict the saturation

properties obtained by computer simulations. Thus,

Johnson et al. [2] use new computer simulation results

for the pressure and potential energy, including some

points in the metastable regions for both the vapour±

liquid and liquid±solid phase transitions, together with

a more accurate estimate of the critical point:

TC�1.313 and �C�0.310 [42]. As in the Adachi et

al. [17] case, the ®rst ®ve coef®cients were obtained

from the second virial coef®cient, and the others from

®tting computer simulation results in the range

0<��1.25 and 0.7�T<6.0 (175 different state points).

Despite their accuracy, the above EOSs present two

main problems: a lack of theoretical basis, which does
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not allow one to give a physical meaning to each term

and makes it dif®cult to apply them over different

ranges or for different systems, and their complicated

analytical form, which makes them very dif®cult to

handle mathematically in order to obtain other ther-

modynamic properties.

Another class of EOS consists of semi-theoretical

expressions, which have a theoretical basis but still

contain some adjustable parameters [3,5,7,8]. In these

EOSs, the traditional idea of van der Waals or of the

more recent Weeks et al. (WCA) [15] theory, i.e. the

separation of the repulsive and attractive contributions

to the thermodynamical properties, forms the theore-

tical basics. The repulsive contribution of LJ potential

is modelled thorough the EOS of a HS system, which

is modi®ed by using a temperature-dependent mole-

cular diameter in the calculation of the packing frac-

tion, Eq. (22).

The EOS of Kolafa and Nezbeda (KN) [3] is based

on a perturbed virial expansion, where the reference is

the K expression, Eq. (11) in Table 1, modi®ed by

using the molecular diameter:

dKN�T� �0:011117524=T ÿ 0:076383859=T1=2

� 1:080142248� 0:000693129T1=2

ÿ 0:063920968 log T : (28)

The proposed analytical equation is then:

PKN=��T� � ZK�dKN� � ��1ÿ 2�2�
exp�ÿ�2���T��

X
jKi;jT

i=2ÿ1� j;

(29)

where Ki,j are 19 constant coef®cients, taking i values

from 0 to ÿ4 and j from 2 to 6,  is another adjustable

parameter and �(T) is the residual (with respect to the

hard-spheres) second virial coef®cient, for which KN

propose an analytical expression similar to that of the

diameter, Eq. (28), i.e.

��T� �
X

CiT
i=2 � Cln log T (30)

with Ci being seven constant coef®cients (for i�0,ÿ2,

ÿ3,ÿ4,ÿ5,ÿ6,ÿ7) and Cln an additional coef®cient.

The coef®cients (27 in all) are calculated by ®tting

computer simulation results for pressure, potential

energy and chemical potential (when available) over

the same range as in the Johnson et al. [2] case but

adding some new results and data for T�10. Kolafa

and Nezbeda [3] pointed out that their EOS is sig-

ni®cantly more accurate and has fewer parameters that

previous proposals.

The EOS proposed by us in previous works [5,7,8],

which we called the `̀ CM'' equation, is based on the

separation of the LJ potential proposed in the Weeks et

al. [15] Theory. Thus, the pressure of the LJ system

can be expressed as

PCM � PR ÿ PAt; (31)

where PR is the pressure of the WCA reference system

(only repulsive forces), and PAt is the pressure

obtained when only the attractive forces are consid-

ered.

In previous works [6,14,39] we have shown that the

WCA reference system can be described by using an

HS EOS where the packing fraction, �, is calculated by

using a temperature-dependent expression for the

molecular diameter in Eq. (22). In particular, we have

considered recently [14] two different analytical

expressions for this diameter: that given by Kolafa

and Nezbeda [3], Eq. (28), and the simpler form given

by Verlet and Weis [26]:

dVW�T� � �0:3837T � 1:068�=�0:4293T � 1�:
(32)

We note that expressions for dVW and dKN give

practically the same results, with there being only a

small deviation at high temperatures. However, their

derivatives with respect to the temperature, which

must be used in the calculation of the potential energy

for example, are different, especially for low tempera-

tures.

In that previous work, we recommended the use of

the W3 expression, Eq. (21), together with dVW,

Eq. (32), to calculate the compressibility factor of

the WCA reference system when wide ranges of

temperature and density are considered. None of the

other expressions for the HS system must be used at

low temperatures and high densities if accuracy is

required. When only low or intermediate densities

(��0.65) are considered, most simple equations such

as the well-known CS equation can be used with

success. For this reason, and because the difference

between (�T)CS and (�T)W3 is greater than between

other expressions (except for the SPT and PYT,

Eqs. (3) and (4)) for 0.6���0.8, Table 4, we shall
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consider here both the CS and W3 expressions, mod-

i®ed with the VW diameter, to calculate the contribu-

tion of the repulsive forces to the isothermal

compressibility of the LJ system. The use of the

KN diameter gives practically the same results.

In the CM expression, Eq. (31), the attractive con-

tribution to the pressure is introduced, for liquid states,

as follows [5,7]:

PAt ��2�8:774ÿ 4:675T � 2:388T2 ÿ 0:391T3�
� �3�ÿ1:725� 5:352T ÿ 2:795T2

� 0:458T3�: (33)

The analytical form of PAt is then very much simpler

than the earlier ones, being cubic in the density (as is

the van der Waals expressions) and in the temperature,

and containing only eight constant coef®cients.

3.2. Isothermal compressibility

Our aim in this work is to analyse the results for the

isothermal compressibility obtained from these dif-

ferent EOSs for LJ systems, and also to compare these

results with others obtained from computer simula-

tions or from experiments. In the case of the CM semi-

theoretical expression, based on the WCA theory, the

contribution of the repulsive and attractive forces to

the isothermal compressibility can be quanti®ed. All

calculations were made in the liquid range T�0.7±1.3

and 0.45���0.844 (see Table 6).

As starting point, it is interesting to analyse the

differences between using the CS and the W3 expres-

sions, Eqs. (6) and (21), respectively, to calculate the

isothermal compressibility of the WCA reference

system, because they have different accuracy over

each density range for the HS system. Note that

now the product (�T T) is temperature dependent,

i.e. for the WCA reference system the isothermal

compressibility is not linear with respect to the tem-

perature, as was the case for the HS system. In

particular, we found that while for the HS system,

the CS results for �T are greater than the W3 results

for all the stable densities, in the case of the WCA

reference system the W3 values are always greater

than the CS ones. As is shown in Table 6, for states

near the triple (T�0.7, ��0.844) or the critical

(T�1.313, ��0.31) points the difference is always

less than 5%, whereas for the other liquid states the

differences are from 5% to 7%. These results indicate

that the choice of either the W3 or the CS expressions

leads to different results for the total isothermal

compressibility over most of the liquid range.

In order to analyse the contribution of repulsive and

attractive forces, we note that the CM expression for

the isothermal compressibility can be expressed as

follows:

��T�CM �
1

�1=��T�R� � �1=��T�At�
; (34)

where (�T)R is calculated from PR, and (�T)At is

obtained from the PAt analytical expression given

by Eq. (33).

Table 6 shows how in the liquid range the contribu-

tion of the repulsive forces, (�T)R, is always positive

and decreases when the temperature or density

increases, taking reduced values of from 0.02 at the

triple point, to 0.27 near the critical point. The con-

tribution (�T)At is always negative and also decreases

in absolute value when the density increases, being

practically independent of temperature. It takes values

from ÿ0.06 to ÿ0.27. The complete isothermal com-

pressibility decreases when the temperature or the

density increases, taking values from 0.04 to 13.6.

Thus (�T)R, calculated with the CS or the W3 expres-

sions, always represents less than 61% of the value of

�T. Near the critical point this contribution is less than

10%. The contribution of the attractive forces must

therefore always be taken into account, especially near

the critical point. Here, we conclude that the WCA

reference system is not a suf®ciently good approxima-

tion to calculate the isothermal compressibility of LJ

liquids.

As a second step, we investigated whether the

different EOSs lead to very different or to equal values

of the isothermal compressibility for LJ liquids. For

that, we calculated the values of �T by using Nicolas et

al.'s [16], Adachi et al.'s [17], Johnson et al.'s (J) [2]

and Kolafa and Nezbeda's (KN) [3] EOSs, as well as

our CM [5,7] expressions. In particular, we considered

here two EOSs based on the CM expression,

Eqs. (31)±(33). In the ®rst we use the CS EOS,

Eq. (6), for the repulsive part, and in the second we

use the W3 EOS, Eq. (21). The two expressions are

then denoted by CSCM and W3CM, respectively

(Tables 6 and 8).
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By comparing results, we found that, as was

expected, the maximum deviations occurred for tem-

peratures and densities near the phase transitions. In

general, J and KN lead to very similar results over the

whole range, except near the critical point where the

difference is near 17%. The EOSs proposed by Nico-

las et al. [16] and by Adachi et al. [17] give results in

good agreement with the previous two only for

��0.75 or for the highest temperatures and densities,

i.e. far from phase transitions. Values obtained with

Nicolas et al.'s EOS are always nearer to the J and KN

results than those obtained with Adachi et al.'s EOS,

except for states very close to the critical point.

With respect to our CM expressions, we always

found differences greater than 5% between the values

obtained with the CSCM and with the W3CM equa-

tions (Table 6). The CSCM equation gives results in

good agreement (deviation less than 5%) with the J

and KN values only for states far from phase transi-

tions. On the contrary, only for states near the phase

transitions does the use of the W3 expressions instead

of the CS one lead to results in better agreement with

Table 6

Values of the isothermal compressibility for some liquid LJ states obtained by using EOSs proposed by the authors

� T (�T)R (�T)At (�T)LJ

CS W3 CM CSCM W3CM

0.45 1.3 0.2675 0.2693 ÿ0.2747 10.2241 13.6185

0.50 1.3 0.1958 0.1981 ÿ0.2170 2.0020 2.2673

0.55 1.3 0.1444 0.1471 ÿ0.1750 0.8264 0.9226

0.60 1.2 0.1133 0.1166 ÿ0.1442 0.5289 0.6087

0.60 1.3 0.1072 0.1101 ÿ0.1436 0.4221 0.4722

0.65 1.2 0.0841 0.0876 ÿ0.1201 0.2810 0.3229

0.65 1.3 0.0798 0.0829 ÿ0.1196 0.2398 0.2702

0.70 1.1 0.0662 0.0698 ÿ0.1021 0.1880 0.2206

0.70 1.2 0.0626 0.0659 ÿ0.1013 0.1639 0.1888

0.70 1.3 0.0595 0.0626 ÿ0.1008 0.1454 0.1651

0.75 1.0 0.0520 0.0555 ÿ0.0883 0.1269 0.1498

0.75 1.1 0.0491 0.0523 ÿ0.0872 0.1125 0.1310

0.75 1.2 0.0466 0.0496 ÿ0.0864 0.1012 0.1165

0.75 1.3 0.0444 0.0472 ÿ0.0859 0.0920 0.1049

0.80 0.8 0.0439 0.0467 ÿ0.0794 0.0980 0.1132

0.80 0.9 0.0409 0.0436 ÿ0.0775 0.0864 0.0995

0.80 1.0 0.0384 0.0410 ÿ0.0761 0.0776 0.0890

0.80 1.1 0.0364 0.0389 ÿ0.0751 0.0705 0.0806

0.80 1.2 0.0346 0.0370 ÿ0.0743 0.0648 0.0738

0.80 1.3 0.0331 0.0354 ÿ0.0738 0.0600 0.0680

0.825 0.8 0.0375 0.0394 ÿ0.0741 0.0758 0.0842

0.825 0.9 0.0350 0.0370 ÿ0.0723 0.0678 0.0758

0.825 1.0 0.0330 0.0350 ÿ0.0709 0.0616 0.0691

0.825 1.1 0.0313 0.0333 ÿ0.0699 0.0566 0.0635

0.825 1.2 0.0298 0.0318 ÿ0.0692 0.0524 0.0589

0.825 1.3 0.0286 0.0305 ÿ0.0687 0.0489 0.0549

0.844 0.7 0.0359 0.0369 ÿ0.0727 0.0711 0.0748

0.844 0.8 0.0332 0.0344 ÿ0.0704 0.0629 0.0674

0.844 0.9 0.0311 0.0325 ÿ0.0686 0.0568 0.0617

0.844 1.0 0.0293 0.0308 ÿ0.0673 0.0520 0.0570

0.844 1.1 0.0279 0.0294 ÿ0.0663 0.0481 0.0530

0.844 1.2 0.0266 0.0282 ÿ0.0656 0.0448 0.0495

0.844 1.3 0.0255 0.0271 ÿ0.0651 0.0420 0.0465

Contribution of repulsive forces, (�T)R, is calculated by using both the CS and the W3 expressions, Eqs. (6) and (21), together with the Verlet±
Weis diameter, Eq. (32). The contribution of attractive forces, (�T)At, is calculated by using the CM expression, Eq. (33).
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these obtained with the J or KN equations. Thus for

example, for the triple point, T�0.7 and ��0.844, the

W3CM expression is the only one considered here

giving a value for the isothermal compressibility

similar to those of the J and KN equations.

In sum, which EOS is chosen to calculate the

isothermal compressibility for LJ liquids can lead to

very different results near the phase transitions, and

especially near the critical point.

Table 7 shows computer simulation results for (�T)

obtained by Lot® et al. [42] for a set of T and � very

near the vapour±liquid curve of the LJ ¯uid. The

uncertainties of the values given in the simulation

are also shown, the maximum being 21%. Here, we

tried to use the cited EOSs to reproduce these values

(within the simulation uncertainties), taking into

account that it is near the critical point where the

greatest differences between the different EOSs were

found.

Our results indicate that none of the EOSs for LJ

liquids is in a full agreement with the Lot® et al. values

[42]. In particular, for T�1 and especially for the

critical temperature T�1.3, no EOS gives results

within the uncertainties of the computer simulation.

For these two temperatures only the KN expression,

Eq. (29), gives values similar to those of Lot® et al.

The contrary is found for T�1.1, where all the EOSs

except KN give good agreement. With respect to the

CM equations, the use of the W3 expressions instead

of the CS leads to better agreement with Lot® et al.'s

data except for T�0.85±0.95 and T�1.1. In particular,

the W3CM expression is the only one that gives good

agreement (within the uncertainties of the computer

simulation results) for four thermodynamical states

(T�0.8, 1.0, 1.05 and 1.25).

In conclusion, each EOS gives values similar to

those of the computer simulation only for certain

particular temperatures and densities. Both the accu-

racy of the computer simulation results of Lot® et al.

[42] and the validity of the EOSs for thermodynamical

states very near the vapour±liquid transition could be

questioned.

4. Comparison with experimental results

As a ®nal test of the validity of the EOSs, we tried to

reproduce experimental values of the isothermal com-

pressibility. We considered the data given by Streett

and Staveley [43] for liquid argon in the range 100±

140 K and pressures from 50 to 600 atm. Although

values of �T for some substances near the triple point

are available [9,44], they were not considered here

because of the lack of accuracy in the determination of

the exact triple temperature and density for real sub-

stances. Reed and Gubbins [9] have tried to reproduce

these values for argon, nitrogen and oxygen by using

the scaled particle theory equation, Eq. (3), for HS.

However, as they indicate, this equation does not give

quantitatively correct values, although it does predict

qualitative trends. Here, we consider only the EOSs

for LJ ¯uids.

In order to compare the theoretical and experimen-

tal results, the relationship between the properties

expressed in reduced LJ units and in real units must

be speci®ed. These relationships are:

T�K� � "

k

� �
T ; (35)

� �mol cmÿ3� � �

Na�3
; (36)

�T �atmÿ1� � �T

�3Na

�"=k�R ; (37)

where � and " are the LJ parameters, k is Boltzmman's

constant, Na is Avogadro's number and R is the perfect

gas constant expressed in atm cm3 Kÿ1 molÿ1. For Ar

the LJ parameters commonly used are [45±47]:

Table 7

Values of the isothermal compressibility for states very near to the

vapour±liquid curve of LJ fluids, obtained by Lotfi et al. through

computer simulation [42]

T � �T ��T (%)

0.70 0.84257 0.0847 6.5

0.75 0.82138 0.0908 3.5

0.80 0.79887 0.1125 6.7

0.85 0.77553 0.117 9.4

0.90 0.75202 0.154 10.4

0.95 0.72833 0.186 11.3

1.00 0.70179 0.281 5.3

1.05 0.67197 0.369 10.6

1.10 0.6414 0.385 17.9

1.15 0.60557 0.613 16.2

1.20 0.5678 1.05 11.4

1.25 0.5157 2.32 20.7

1.30 0.4259 13.6 2.9

The uncertainties of these values, ��T, are also given.
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��3.405�10ÿ8 cm and ("/k)�119.8 K, so that the

experimental range, expressed in reduced LJ units,

is 0.835�T�1.17 and 0.634���0.873.

Table 8 shows the absolute mean deviation between

the isothermal compressibility calculated with each of

the EOSs for LJ ¯uids and the experimental result for

each temperature. When the whole range was con-

sidered, the last column in Table 8, all the EOSs

reproduce the experimental values with deviations

less than 10%, KN and our W3CM expressions being

the most accurate, and the Adachi et al. [17] and our

CSCM expression giving the largest deviations. The

Johnson et al. [2] EOS is the most accurate of those

expressed by Eq. (26). As expected in this liquid

range, the use of the W3 expression leads to better

results than the CS expression for all temperatures.

Finally, we note that the accuracy was not always the

same when different ranges of temperatures were

considered. Except with our W3CM equation, the

maximum deviations are found at the highest tem-

perature, 140 K. Moreover our W3CM equation gives

better accuracy than the KN equation for low and high

temperatures.

Finally, it should be noted that Ananth et al. [45]

have shown that the anisotropic contributions to the

isothermal compressibility are very small for liquids

and supercritical ¯uids, except in the density range

0.25<�<0.55. This means that the good results

obtained with liquid argon with the cited EOSs can

be extrapolated to other simple liquids such as oxygen,

nitrogen or methane.

5. Conclusions

The isothermal compressibility is an important

thermodynamic property, which is related to both

macroscopic and microscopic properties of ¯uids.

However, theoretical calculations of this property

have been restricted to examples in reviews or books.

The calculation was made here in order to study the

accuracy of different equations of state proposed in the

literature for both hard-sphere and Lennard-Jones

¯uids. In the case of hard-spheres, the calculation

was also made by using numerical values and analy-

tical models for the radial distribution function.

For hard-sphere ¯uids, 19 analytical expressions for

the equation of state were considered. Nine of them

were considered to be `̀ simple'' expressions, another

four `̀ complex'', another three `̀ more complex'', and

®nally, three had a new analytical form which was

proposed recently by Wang et al. [4]. We showed that

the simple expression proposed by Carnahan and

Starling [1] gave similar results to other simple or

complex expressions for both stable and metastable

densities. In particular, for the lowest densities all

equations gave practically the same results, whereas

for intermediate densities the simplest SPT and PYT

expressions (Eqs. (3) and (4) in Table 1), together

with the more recent W3 expression, Eq. (21), gave

the greatest deviations from the CS expression. For the

highest stable densities the use of the W3 expression

was able to give better results than those obtained with

CS. For the metastable region there were great differ-

Table 8

Absolute mean deviations (AMD) for each temperature between the isothermal compressibility calculated by using EOSs for LJ fluids and the

experimental results for liquid argon [43]

AMD (%)

T (K) � (kmol mÿ3) Nicolas et al. [16] Adachi et al. [17] J [2] KN [3] CSCM [5,7] W3CM (this work)

100 33.3±36.7 3.5 9.4 4.1 4.7 9.5 3.3

105 32.4±36.2 4.3 9.7 5.2 4.7 8.4 3.3

110 31.6±35.7 6.0 8.3 6.3 5.0 8.6 5.9

115 30.7±35.2 7.2 8.9 6.7 5.0 8.7 7.6

120 29.7±34.7 6.2 5.6 6.8 5.5 11.8 3.7

125 28.7±34.2 7.8 9.0 6.2 4.4 9.5 7.4

130 27.6±33.7 8.0 9.2 5.9 4.3 10.5 6.2

135 26.3±33.2 7.9 8.7 6.5 5.2 10.0 4.6

140 24.7±32.7 10.8 12.4 8.9 7.9 13.2 4.6

Total 6.8 9.0 6.2 5.2 10.0 5.2
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ences between the results, so that the choice of the

most appropriate expressions is very dif®cult. In the

close-packed limit, the W3 expression seems to be the

most adequate. Finally, we note that, as was pointed

out by Bravo-Yuste et al. [19], only the S and SPT

expressions gave similar values at the glass transition

density.

We also calculated the isothermal compressibility

by using numerical data obtained in the self-consistent

approximation, and by using recently proposed ana-

lytical models for the radial distribution function of

hard-spheres. The results varied greatly, especially at

high densities, which indicates the sensitivity of the

compressibility equation, Eq. (2), to the use of numer-

ical or analytical approximations. The self-consistent

approximation gave values that were very similar to

those of the CS equation for low densities, with only

fairly good agreement for intermediate densities. The

disagreement was great for high densities. Finally we

showed that the analytical models used here are not

valid for calculations of the isothermal compressibil-

ity.

Six analytical expressions were used to calculate

the isothermal compressibility of Lennard-Jones

¯uids. Three of them are well-known semi-empirical

equations and have the same complex analytical form

(Eq. (26)) but different coef®cients. The others are

semi-theoretical, i.e. they have a theoretical basis. One

of them (KN, Eq. (29)) has a complex analytical

form, whereas those proposed by the present authors

are very simple and are based on the Weeks±Chand-

ler±Andersen separation of the Lennard-Jones poten-

tial.

Comparison of the results obtained with each of

these EOSs showed that the greatest differences

occurred near the phase transitions, and especially

near the critical point.

The EOSs based on WCA theory [15], Eq. (31),

permit one to study the in¯uence of repulsive and

attractive contributions to the isothermal compressi-

bility. Here, we showed that the contribution of the

repulsive forces is always less than 61%, and there-

fore, that the contribution of the attractive forces is not

negligible at any density. The WCA reference system

does not give a suf®ciently good approximation to

calculate the isothermal compressibility of LJ liquids.

Moreover, whether the CS or the W3 expressions was

chosen to calculate the isothermal compressibility of

the WCA reference system (only repulsive contribu-

tions) led to different results (deviations greater than

5%), especially for densities far from the triple or the

critical point.

None of the EOSs used gave values for the iso-

thermal compressibility in full agreement with the

computer simulation results of Lot® et al. [42] for

states very near the vapour±liquid coexistence curve:

each EOS gave values similar to those of the computer

simulation only for certain particular temperatures and

densities. Both the accuracy of Lot® et al.'s computer

simulation results and the validity of the EOSs for

thermodynamical states very near the vapour±liquid

transition could be questioned.

The experimental isothermal compressibility data

of liquid argon in the range 100±140 K given by

Streett and Staveley [43] can be reproduced with good

agreement (absolute mean deviation near 5%) by

using the semi-theoretical KN or W3CM equations,

and even with the semi-empirical Johnson et al.'s

equation [2]. As was concluded by Ananth et al.

[45], good results could be obtained with more aniso-

tropic simple ¯uids. With respect to the equations

based on the Cuadros±Mulero expression [5,7], the

use of the W3 instead the CS EOS always yielded

better results.

Finally, as a general conclusion, we can state that in

any thermodynamic modelling process there is an

interrelation between the analytical form of the

EOS, the property (pressure, isothermal compressi-

bility, vapour pressure, etc.) used for the ®t, the region

of the phase plane where experimental or computer

simulation values of the property under study are

available, and the molecular interaction parameters

used. Each one in¯uences the other, and it is very

dif®cult to obtain the same coef®cients in the EOS

model if one uses different properties in the ®tting

procedure.
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