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Abstract

Thermal analysis methods are widely used to study crystallization kinetics in amorphous solids. The experimental data is

frequently interpreted in terms of the Johnson±Mehl±Avrami (JMA) nucleation-growth model. This paper discusses the limits

of such an approach. A simple and convenient method is proposed to verify the applicability of the JMA model as well as the

basic assumptions of kinetic analysis. It is shown that the two parameter autocatalytic model includes the JMA model and that

is a plausible description of the crystallization kinetics. The main advantage of this model is its ¯exibility in describing

quantitatively the kinetics of complex crystallization processes. The experimental data for crystallization of a chalcogenide

glass and zirconia gel analyzed in this paper clearly demonstrate the rather complex nature of these processes. As a

consequence, it is very dif®cult to explore the real mechanism of the crystallization unless some complementary studies are

made. # 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Thermal analysis (TA) methods such as DTA or

DSC are quite popular for kinetic analysis of crystal-

lization processes in amorphous solids. The crystal-

lization kinetics based on these data is usually

interpreted in terms of the standard nucleation-growth

model formulated by Avrami [1±3]. This model

describes the time dependence of the fractional crys-

tallization a, usually written in the following form:

a � 1ÿ exp �ÿ�Kt�m� (1)

where K and m are constants with respect to time, t.

The kinetic exponent m depends on the crystal growth

morphology [4]. The rate equation can be obtained

from Eq. (1) by differentiation with respect to time:

da
dt

� �
� Km�1ÿ a��ÿln�1ÿ a��1ÿ1=m

(2)

Eq. (2) is usually referred to as the JMA equation, and

it is frequently used for the formal description of TA

crystallization data. It should be emphasized, how-

ever, that validity of the JMA equation is based on the

following assumptions [5±7]:

� Isothermal crystallization conditions,

� Homogeneous nucleation or heterogeneous

nucleation at randomly dispersed second-phase

particles,

� Growth rate of new phase is controlled by tem-

perature and is independent of time and

� Low anisotropy of growing crystals.
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Henderson [5,6] has shown that the validity of the

JMA equation can be extended in non-isothermal

conditions if the entire nucleation process takes place

during the early stages of the transformation, and it

becomes negligible afterward. The crystallization rate

is de®ned only by temperature and does not depend on

the previous thermal history. Fundamental kinetic

equations for non-isothermal crystal growth from

preexisting nuclei have been developed by Ozawa

[8] and a simple method of kinetic analysis of TA

data for these processes has been proposed.

It is clear that all the above mentioned assumptions

should be carefully considered before the JMA equa-

tion is used for the description of isothermal or non-

isothermal TA data and any conclusions concerning

the growth morphology are made. Although the limits

of applicability of the JMA equation are well known,

in practice it is not so easy to verify whether they are

ful®lled or not. Thus, in view of the key role of the

JMA model in crystallization research, it is important

to address this problem. The structure of the paper is as

follows. First, we summarize several additional

assumptions inherently included in the kinetic analy-

sis of TA data. Second, we propose a consistent

method to test all these assumptions as well as the

applicability conditions of the JMA model for both

isothermal and non-isothermal TA data. Finally, this

method is demonstrated using experimental data for

crystallization of a chalcogenide glass and zirconia gel.

2. Theory

2.1. Basic assumptions in kinetic analysis

In spite of the importance of the applicability test of

the JMA model mentioned above, it is also essential to

verify three basic assumptions inherent in any kinetic

treatment of isothermal and non-isothermal TA data

[9]. These assumptions are formulated below:

1. The rate of the kinetic process da/dt is propor-

tional to the measured speci®c heat ¯ow f,

normalized per sample mass (W/g):

da
dt
� f

DHc

(3)

where DHc corresponds to the total enthalpy

change associated with the crystallization process.

The fractional conversion a can be easily obtained

by partial integration of isothermal or non-

isothermal TA curve.

2. The rate of the kinetic process can be expressed

as a product of temperature dependent rate

constant K(T) and a dependent kinetic model

function f(a):

da
dt

� �
� K�T�f �a� (4)

3. The rate constant in Eq. (4) follows Arrhenius

form:

K�T� � A exp
ÿEa

RT

� �
(5)

where the pre-exponential factor A and activation

energy Ea are kinetic parameters that should not

depend on the temperature T and the fractional

conversion a. This assumption is not necessary,

e.g. in the case of non-parametric kinetic method

described by Serra et al. [10,11].

Taking into account these assumptions, the kinetic

equation for the JMA model can be written as

f � DHcA exp
ÿEa

RT

� �
f �a� (6)

where the function f(a) is an algebraic expression of

the JMA model

f �a� � m�1ÿ a��ÿln�1ÿ a��1ÿ1=m
(7)

The f(a) function should be invariable with respect to

procedural parameters such as sample mass and heat-

ing rate (non-isothermal conditions) or temperature

(isothermal conditions).

Fig. 1 shows isothermal and non-isothermal DSC

curves calculated by using Eqs. (6) and (7) for the

kinetic exponent m�2. The fractional conversion is

obtained by integrating Eq. (3) in isothermal condi-

tions:

a � 1

DHc

Z t

0

f dt (8)

and in non-isothermal conditions

a � 1

DHcb

Z T

T0

f dT (9)
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where b is the heating rate and T0 corresponds to the

beginning of the baseline approximation (i.e.

f(T0)�0). The crystallization enthalpy DHc corre-

sponds to the total peak area.

The validity of the assumptions (1)±(3) is not given

a priori, and it should be thoroughly veri®ed before

any attempt at kinetic analysis of the isothermal or

non-isothermal data is made. Thus, it seems to be

necessary to develop a simple and reliable testing

method. This task will be carried out in the following

section.

2.2. Tests of the basic assumptions

The shape and symmetry of the DSC curve that

corresponds to the same kinetic model may be quite

different in isothermal and non-isothermal conditions

(see Fig. 1). Moreover, any direct comparison of the

DSC crystallization curves f(T) and f(t) is compli-

cated by the fact that they strongly depend on the

heating rate and temperature, respectively. Neverthe-

less, the kinetic model f(a) should be invariant with

respect to these procedural variables. Similar behavior

is expected also for the function de®ned as

f �a�R a0 da=f �a� (see Appendix A). It can be shown

[12,13] that these two functions are proportional to the

y(a) and z(a) functions that can easily be obtained by a

simple transformation of DSC data (see Appendix A).

In isothermal conditions these functions are de®ned as

y�a� � f (10a)

z�a� � ft (10b)

In non-isothermal conditions these functions are

de®ned as follows [12,14]:

y�a� � f exp
ÿEa

RT

� �
(11a)

z�a� � fT2 (11b)

For practical reasons the y(a) and z(a) functions are

normalized within the (0 1) range. These functions can

be written in a more general form using the general-

ized time concept introduced by Ozawa [8,15] (see

Appendix A).

It is evident that the assumption (3) is not necessary

for analysis of isothermal experiments, and both the

y(a) and z(a) functions directly follow from the experi-

mental data. However, this assumption is vital for

analysis of non-isothermal data and the value of

apparent activation energy Ea is needed to calculate

the y(a) function. The value of Ea can be determined

by an isoconversional method without assuming the

kinetic model function [16,17]. From the logarithmic

form of Eq. (6) it follows that Ea is obtained from the

slope of the ln f vs.1/T plot for a constant a:

d lnf
d�1=T�
� �

a
� ÿEa

R
(12)

This method can be applied to both isothermal and

non-isothermal DSC data. The Ea should be practi-

cally independent of the fractional conversion in the

0.3�a�0.7 range (i.e. within ca. 10%). Some changes

may be expected for lower and higher values of a Ð

particularly for fast processes Ð because of higher

errors in the baseline interpolation for peak tails.

Fig. 1. (a) Isothermal DSC curve calculated for the JMA model

(m�2, Ea�100 kJ/mol, ln(A/s)�50); (b) Non-isothermal DSC

curve calculated for the same set of kinetic parameters.
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The validity of the assumptions (1) and (2) can

easily be veri®ed by checking the invariance of the

y(a) and z(a) plots with respect to procedural variables

such as heating rate (non-isothermal conditions) and

temperature (isothermal conditions). These functions

should also be identical for both isothermal and non-

isothermal DSC data provided that the kinetic model

f(a) does not change. In case that there are consider-

able differences or pronounced in¯uence of the pro-

cedural parameters affecting the shape of the y(a) and

z(a) functions then, some of these assumptions are

probably not ful®lled. Such behavior can be caused by

many factors. One possibility is that the baseline has

not been drawn correctly due to substantial change of

sample heat capacity during the measurement.

Another possible explanation is that the measured

data corresponds to a complicated process (parallel

or consecutive processes, branching, etc.) due to a

more complex reaction scheme than expressed by Eq.

(6). Thermal inertia effects caused by lower thermal

contact between the sample and temperature sensor or

low thermal conductivity of amorphous material can

also play an important role.

2.3. Tests of the applicability of the JMA model

Probably the most popular testing method for iso-

thermal data is an inspection of the linearity of the

Avrami plot; i.e. the dependence of ln [ÿln (1ÿa)] as a

function of logarithm of time. From logarithmic form

of Eqs. (A.5) and (A.10), it follows that the kinetic

exponent m is obtained from the slope of this plot:

d ln �ÿln�1ÿ a��
d ln t

� m (13)

A similar testing method has also been developed for

non-isothermal TA data [9]. From logarithmic form of

Eqs. (A.10) and (A.11), it follows that a plot of

ln [ÿln (1ÿa)] as a function of reciprocal temperature

1/Tshouldbelinear,providedthat thetermln [ATp(x)/b]

is a constant (see Appendix A). The slope of this plot is

expressed as

dln �ÿln�1ÿ a��
d�1=T� � ÿmEa

R
(14)

The value of the kinetic exponent can then be calcu-

lated if the Ea is known. Nevertheless, it is well known

that a double logarithmic function, in general, is not

very sensitive to subtle changes to its argument.

Therefore, one can expect that the plots of

ln [ÿln (1ÿa)] versus ln t or 1/T may be linear even

in the case that the JMA model is not ful®lled [14].

A more reliable test is based on the properties of the

y(a) and z(a) functions. These functions exhibit max-

ima at aM and a1P , respectively. These maxima are

de®ned by Eqs. (A.3) and (A.9). The maximum of the

y(a) function for the JMA model depends on the value

of the kinetic exponent:

aM � 0 for m � 1

aM � 1ÿ exp �mÿ1 ÿ 1� for m > 1 (15)

The value of aM is always lower than the maximum of

the z(a) function a1P (see Appendix A). The latter is a

constant for the JMA model

a1P � 0:632 (16)

This value is a characteristic `®ngerprint' of the JMA

model; and, according to our experience, it can be used

as a simple test of the applicability of this model [14].

The value of the kinetic exponent can then be esti-

mated from the position of the maximum of the y(a)

function. This is illustrated in Fig. 2 where the DSC

data from Fig. 1 transformed by using Eqs. (10) and

(11) are shown. The maximum of the z(a) function is

located at a1P �0.632 and, therefore, the curves in

Fig. 1 evidently correspond to the JMA model. This

is con®rmed also by the shape of the y(a) function

[12,13] which exhibits a maximum at aM�0.393. This

value corresponds to the kinetic exponent m�2, as

follows from Eq. (15). It should be pointed out,

however, that the typical error limit of aM and a1P ,

determined from typical TA data, is ca. �0.02. There-

fore, the validity of the kinetic model should always be

considered within these limits of experimental uncer-

tainty.

An interesting testing method has been proposed by

Ozawa [18]. It is based on the plot of log [ÿln (1ÿa)]

as a function of log b at a given temperature. The slope

of such plot should be equal to the kinetic exponent. If

the secondary crystallization is negligible then these

plots can be superimposed by longitudinal shifts and

the master curve is obtained. In contrast, if there is

appreciable secondary nucleation, the superposition

cannot be made and thus such process can easily be

detected [18].
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3. Experimental

DSC experiments presented in this paper were

performed by using a Perkin±Elmer DSC-7 instrument

on samples of ca. 10 mg encapsulated in standard

aluminum sample pans in an atmosphere of dry nitro-

gen. The instrument was calibrated with In, Pb and Zn

standards. Non-isothermal DSC curves were obtained

with selected heating rates 2±20 K/min in the range

30±6008C. Isothermal DSC experiments were

initiated by raising the temperature of the DSC cell

from room temperature to the selected temperature, Ti,

at 200 K/min. The temperature of the cell was then

maintained constant at Ti, and the exothermic heat

¯ow f out of the sample was measured as a function of

time.

The (GeS2)0.3(Sb2S3)0.7 glass was prepared by

synthesis from pure elements (5 N purity) in an evac-

uated silica ampoule by melting and homogenization

at 9508C for a period of 12 h. Amorphous zirconia gel

(hydrous ZrO2) was prepared by precipitation from

ZrOCl28�H2O (analytically pure reagent, Kanto,

Japan) 0.1 M solution using an excess amount of

1 M NH4OH added slowly to a stirred aqueous solu-

tion. The precipitated gel was washed ®ve times in

distilled water for removal of chloride ions, ®ltered

and dried in a vacuum at room temperature for 3 days.

The amorphous nature and purity of prepared materi-

als were checked by X-ray diffraction and energy

dispersive microanalysis.

4. Results and discussion

4.1. Crystallization kinetics of (GeS2)0.3 (Sb2S3)0.7

glass

The crystallization kinetics of chalcogenide glass of

(GeS2)0.3(Sb2S3)0.7 composition has been described

previously [19±23]. RysÏavaÂ et al. [20,21] have found

that the crystallization of a bulk sample can be inter-

preted within the JMA model and reported the kinetic

exponent m�2. On the other hand, MaÂlek et al. [22,23]

have shown that the crystallization of a powder sample

cannot be described by this model. These conclusions

seem to be con®rmed in the present study. Fig. 3 shows

isothermal crystallization data for a powder sample

and non-isothermal crystallization data for a bulk

sample of (GeS2)0.3 (Sb2S3)0.7 glass. The enthalpy

change associated with the crystallization process is

ÿDHbulk
c �56�1 J/g for the bulk sample, and

ÿDHpowder
c �50�2 J/g for the powder sample. The

difference of 6 J/g corresponds approximately to the

temperature difference of ca. 25 K between isothermal

Fig. 2. Normalized y(a) and z(a) function obtained by transformation of DSC data from Fig. 1 by using Eq. (10) for isothermal data (&) and

Eq. (11) for non-isothermal data (&). The broken lines show the theoretical aM value for m�2 and the typical a1P value for the JMA model.
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and non-isothermal experiments taking into account

the heat capacity change between glass and under-

cooled liquid in the glass transition range

(DCp�0.24 J/gK).

Fig. 4 shows the activation energy Ea as a function

of fractional conversion calculated by isoconversional

method from the slope of the ln f vs. 1/T plots for

DSC data shown in Fig. 3. The activation energy for

the bulk sample is practically constant in the 0.3<a<0.7

range, and its value was found to be Ea�163�11 kJ/

mol. Within the limits of experimental errors, this

value is close to 159 kJ/mol, reported by RysÏavaÂ et al.

[21]. In contrast, the activation energy for a powder

sample is ca. 70% higher, being Ea�276�7 kJ/mol.

Observed differences can be explained by the fact that

the crystallization of a powder sample takes place at

lower temperatures due to non-negligible concentra-

tion of surface nuclei and the crystals grow at a higher

viscosity of supercooled melt. Consequently, the appar-

ent activation energy increases. A more pronounced

variation of Ea versus a probably indicates a more

complex mechanism of the crystallization process.

As discussed in Section 2.3, one of the most popular

tests of the applicability of the JMA equation is the

linearity of the double logarithmic plots vs. ln t or 1/T.

Such plots obtained from isothermal and non-isother-

mal DSC data for crystallization of (GeS2)0.3

(Sb2S3)0.7 glass (see Fig. 3) are shown in Fig. 5. It

seems that these plots are linear. The kinetic exponent

obtained from isothermal data by using Eq. (13) was

found to be m�3.0�0.2. The same value has been

obtained for non-isothermal data by using Eq. (14) and

Ea�163 kJ/mol. This result would imply that the JMA

model is valid for crystallization kinetics of the bulk

and powder sample. Nevertheless, the y(a) and z(a)

functions shown in Figs. 6 and 7 clearly reveal that the

JMA model is valid only for the non-isothermal

crystallization of the bulk sample, and it is not ful®lled

for isothermal crystallization of a powder sample.

There are small but noticeable differences among

the curves for different heating rates as well as for

isothermal temperatures. These differences can prob-

ably be attributed to lower thermal contact between

the bulk sample and the temperature sensor (non-

isothermal data) or to errors in baseline approximation

(isothermal data). Such problems are expected for this

Fig. 3. DSC data for the crystallization of the (GeS2)0.3 (Sb2S3)0.7

glass: (a) isothermal data for ®ne powder sample; (b) non-

isothermal data for the bulk sample.

Fig. 4. The apparent activation energy as a function of fractional

conversion calculated from DSC data for the crystallization of bulk

(&) and ®ne powder sample (~) of (GeS2)0.3 (Sb2S3)0.7 glass (see

Fig. 3). Broken lines correspond to an average value of Ea

calculated in the 0.3�a�0.7 range.
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material as the crystallization enthalpy DHc is rela-

tively low. Nevertheless, the basic assumptions for-

mulated in Section 2.1 seem to be ful®lled. The

maximum of the z(a) function falls in the range

predicted for the JMA model. The value of the kinetic

exponent m�3 can be obtained from the maximum of

the y(a) function. Somewhat lower value m�2.8 has

been calculated using the method proposed by Ozawa

[18] (see Section 2.3). Any tendency for secondary

crystallization has not been observed in this case. This

value of the kinetic exponent corresponds to three-

dimensional crystal growth of an orthorhombic Sb2S3

formed during the crystallization process. Such crys-

talline phase exhibits relatively high entropy of fusion;

and, therefore, one can expect three-dimensional crys-

tal growth [24]. These conclusions were con®rmed by

microscopy and X-ray diffraction analysis. Fig. 8

shows scanning electron microscope photographs of

crystallized powder and bulk sample of (GeS2)0.3

(Sb2S3)0.7 glass. The crystallites in powder sample

exhibit a rod-like morphology with relatively low

compactness which reveals low dimensionality of

crystal growth from numerous nucleation sites. In

contrast, there are relatively big three-dimensional

crystals grown in the bulk sample suggesting the value

of the kinetic exponent should be close to 3.

The crystallization behavior of different samples

can easily be compared in the aM±a1P plot as shown in

Fig. 9. The present results are combined with some

previously published data [22,23]. The value of a1P for

a ®ne powder sample (<1 mm) is considerably lower

than corresponds to the JMA model. There are notable

differences between isothermal and non-isothermal

experiments. Such behavior clearly indicates a more

Fig. 5. The double logarithmic plots obtained from DSC data

shown in Fig. 3.

Fig. 6. Normalized y(a) and z(a) function obtained by transforma-

tion of isothermal DSC data for the crystallization of ®ne powder

(GeS2)0.3 (Sb2S3)0.7 glass (Fig. 3a). The temperature is shown by

points: 3408C (&); 3308C (*); 3208C (~). Solid lines show the

typical interval of a1P values for the JMA model.
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complex crystallization mechanism. The coarse pow-

der sample (<100 mm) exhibit a slightly higher value

of a1P , but it is still below the value typical for the JMA

model. However, the values of aM and a1P for the bulk

sample correspond well to the crystallization of three-

dimensional crystals, and the kinetic exponent m is

close to 3, which is consistent with the value obtained

from double logarithmic plot and the maximum of the

y(a) plot.

As mentioned above, the JMA model is valid in

non-isothermal conditions provided that a new crystal-

line phase grows from a constant number of nuclei and

all nucleation is completed before the macroscopic

crystal growth started. This so-called site saturation is

an important condition for the isokinetic crystalliza-

tion process where the crystallization rate is de®ned

only by temperature and does not depend on the

previous thermal history [6]. In the light of these

facts, it seems that the nucleation and growth pro-

cesses are probably overlapped for a ®ne powder

sample. Therefore, the overall crystallization cannot

be described by the JMA model. Mutual overlapping

of the nucleation and growth phases is obviously lower

for a coarse powder sample but, still, the JMA model is

not valid in this case. It seems that in the bulk sample

the nucleation is completed before the growth phase is

Fig. 7. Normalized y(a) and z(a) function obtained by transforma-

tion of non-isothermal DSC data for the crystallization of bulk

(GeS2)0.3 (Sb2S3)0.7 glass (Fig. 3b). The heating rates are shown by

points: 2 K/min (&); 5 K/min (*); 10 K/min (~); 15 K/min (�);

20 K/min (&). The broken line corresponds to the theoretical aM

value for the JMA model (m�3). Solid lines show the typical

interval of a1P values for the JMA model.

Fig. 8. Scanning electron microscope photograph showing mor-

phology of Sb2S3 crystals grown in (GeS2)0.3 (Sb2S3)0.7 glass: (a)

powder sample; (b) bulk sample. A fresh fracture of crystallized

sample has been etched in an aqueous solution of NaOH.
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started and, therefore, the condition of the validity of

the JMA model in non-isothermal conditions is ful-

®lled. A ®ne powder sample exhibits a lower value of

aM than corresponds to the bulk sample, which reveals

a lower in¯uence of the crystallized phase due to

dominant surface nucleation. These conclusions were

con®rmed by direct microscopic observations.

4.2. Crystallization kinetics of zirconia gel

It is known that the metastable tetragonal poly-

morph crystallizes during the heating of hydrous

zirconia gel [25]. Although the crystallization of t-

ZrO2 phase have been studied by many authors [26±

32] the detailed mechanism of its formation is still not

clear. Aronne et al. [30] and Ramanathan et al. [31]

interpreted their experimental data within the JMA

model and the calculated kinetic exponent (m�2.7 and

m<1, respectively) has been attributed to the dimen-

sionality of crystal growth. However, the experimental

data have not been compared directly with the theo-

retical model or the z(a) function and, therefore, it is

dif®cult to verify whether such an interpretation is

consistent or not. Recently, it has been found that the

crystallization kinetics of t-ZrO2 nanocrystals in par-

tially dried zirconia gel is strongly affected by the

water content retained in dried gel [32]. The crystal-

lization process starts when practically all the water is

removed (at the onset of the DSC crystallization peak

the corresponding weight loss is ca. 13.4% and the

®nal weight loss is 13.7% of the initial sample weight).

Thus, in this case, the isothermal measurements can-

not be used because the exothermic crystallization is

partially overlapped by the endothermic effect of

water evaporation.

Fig. 10 shows non-isothermal crystallization data

for as prepared zirconia gel and a partially crystallized

sample obtained after heat treatment at 3708C for

60 min. The enthalpy change ÿDHc associated with

these crystallization processes was found to be

ÿ157�4 and ÿ91�4 J/g for as prepared and partially

crystallized sample, respectively. Therefore, the crys-

tallinity of the partially crystalline sample is ca. 42%.

The activation energy Ea calculated by isoconver-

Fig. 9. The a1P ±aM plot for the crystallization of (GeS2)0.3

(Sb2S3)0.7 glass. Full lines correspond to the limits of applicability

of the JMA model. Points correspond to non-isothermal data (&)

and isothermal data (&). Other data are taken from Ref. [22] (*),

and Ref. [23] (~). The dotted line is drawn as a guide to the eye.

The broken line shows the theoretical limit aM�a1P .

Fig. 10. Non-isothermal DSC data for the crystallization of ZrO2

gel: (a) as prepared sample; (b) partially crystallized sample after a

heat treatment at 3708C for 60 min (42% crystallinity).
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sional method using these DSC data is plotted as a

function of fractional conversion in Fig. 11. The

activation energy is practically constant in the

0.3<a<0.7 range, being Ea�264�11 kJ/mol for an

as prepared sample and Ea�234�4 kJ/mol for the

partially crystallized sample. The activation energy

slightly decreases with increasing crystallinity of

the zirconia gel [32]. The difference of 37 kJ/mol

is probably associated with the nucleation process

taking place in the as prepared sample which is no

longer operative in the case of the partially crystalline

sample.

Fig. 12 shows the double logarithmic plots vs. 1/T

obtained from non-isothermal crystallization data of

the as prepared zirconia gel and the partially crystal-

lized sample (see Fig. 10). The plots are clearly non-

linear for the as prepared sample, indicating that the

JMA model cannot be applied. On the other hand, the

double logarithmic plots are linear for the partially

crystallized sample. The kinetic exponent obtained

from the slope of these plots by using Eq. (14) and

Ea�234�4 kJ/mol was found to be m�1.05�0.04. A

very similar value of m�1.07�0.04 has been obtained

by using the method proposed by Ozawa [18] (see

Section 2.3). Practically identical conclusions can also

be obtained from the y(a) and z(a) functions. Fig. 13

shows the y(a) and z(a) plots for the crystallization of

as prepared zirconia gel. It is evident that these

functions are nearly invariant with respect to heating

rate. The maximum of the z(a) function is consider-

ably lower than the value predicted for the JMA

model. However, there is a shoulder that appears close

to a�0.632. This rather complicated shape of the z(a)

function can be explained assuming that the nuclea-

tion and growth processes are partially overlapped at

the beginning of the DSC peak [32]. However, it seems

that the nucleation process is negligible for a>0.5 and

zirconia crystals are growing from a practically con-

stant number of nuclei. Fig. 14 shows the y(a) and z(a)

plots for the crystallization of partially crystalline

(42%) zirconia gel. The maximum of the z(a) function

is located close to the value a1P �0.63 predicted for the

JMA model. The y(a) function decreases almost lin-

early; i.e. y(a)/(1ÿa) corresponds to the kinetic

exponent m�1.

Fig. 11. The apparent activation energy as a function of fractional

conversion calculated from DSC data for the crystallization of

ZrO2 gel (see Fig. 10), for as prepared sample (~) and partially

crystallized sample (~). Broken lines correspond to an average

value of Ea calculated in the 0.3�a�0.7 range.

Fig. 12. The double logarithmic plots obtained from DSC data that

are shown in Fig. 10.
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The crystallization behavior of as prepared and

partially crystallized zirconia samples can be easily

visualized in the aM±a1P plot, shown in Fig. 15. The

samples containing lower content of crystalline phase

(<25%) do not correspond to a simple crystallization

kinetics as expressed by the JMA model and the value

of a1P is considerably lower than 0.6. Such behavior is

a consequence of the fast increase of the initial crystal-

lization rate. This acceleration can be due to a sec-

ondary nucleation induced by the crystal growth. An

alternative explanation is associated with the adiabatic

temperature drift in the amorphous gel as the crystal-

lization heat is released. In the latter case, however, the

shape of the z(a) function should be sensitive to

heating rate, which was not observed. The crystal-

lization rate is lower for partially crystallized samples

(crystallinity >40%) and the maximum of the z(a)

function is a1P �0.63 and the y(a) function linearly

decreases. Therefore, the JMA model can be used for

the description of the crystallization rate, and the value

of the kinetic exponent should be close to unity as has

been anticipated above. This value is also expected

[33] when crystallite dimensions are suf®ciently small

and the rate of crystallization is controlled by nuclea-

tion in assemblage of similar particles. Therefore, one

can expect that numerous and rather small crystals will

be formed in the zirconia gel during the crystallization

process. The experimental results support these expec-

tations. Electron microscopy observations revealed

Fig. 13. Normalized y(a) and z(a) function obtained by transfor-

mation of non-isothermal DSC data for the crystallization of as

prepared ZrO2 gel (Fig. 10a). The heating rates are shown by

points: 2 K/min (&); 5 K/min (*); 10 K/min (~); 15 K/min (�);

20 K/min (&). Solid lines show the typical interval of a1P values

for the JMA model.

Fig. 14. Normalized y(a) and z(a) function obtained by transfor-

mation of non-isothermal DSC data for the crystallization of

partially crystallized ZrO2 gel (Fig. 10b). The heating rates are

shown by points: 2 K/min (&); 5 K/min (*); 10 K/min (~); 15 K/

min (�); 20 K/min (&). The broken line corresponds to the ®rst-

order kinetic model for m�1. Solid lines show the typical interval

of a1P values for the JMA model.
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that t-ZrO2 nanocrystals (�13 nm in size) are formed

after heat treatment of as prepared zirconia gel [32].

Similar average crystallite size was also estimated

from corrected halfwidth of (0 1 1) X-ray diffraction

peak. The nanocrystallization of the zirconia gel is

consistent with the mechanism of hydrolytic polymer-

ization of zirconyl species suggested by Clear®eld

[34].

4.3. Autocatalytic behavior of the crystalization

kinetics

The crystallization kinetics of amorphous solids is

usually interpreted in terms of the JMA model. How-

ever, strictly speaking, this model is valid in isother-

mal conditions and it can be rigorously applied to

transformations involving nucleation and growth only

in a limited number of special cases in non-isothermal

conditions. Under the restrictions outlined by Hender-

son [5,6] an example of a system which allows the

non-isothermal application of the JMA model is one in

which entire nucleation process takes place during

early stages of the transformation and becomes neg-

ligible afterward. In this case, the crystallization rate is

de®ned only by temperature and does not depend on

the previous thermal history. Nevertheless, even in this

case the applicability of the JMA model under non-

isothermal conditions should be critically examined,

in particular, the meaning of the kinetic exponent m.

In Sections 4.1 and 4.2, we have shown that it is

convenient to discuss crystallization kinetics in terms

of aM±a1P plot based on the maxima of the y(a) and

z(a) function. The validity of the JMA can easily be

veri®ed checking the maximum a1P of the z(a) func-

tion. If the maximum falls into the 0.61�a1P �0.65

range then the experimental data probably correspond

to the JMA model. If the maximum is shifted to lower

values of fractional conversion (a1P <0.6) the condi-

tions of validity of the JMA model are not ful®lled.

Such a displacement indicates increasing complexity

of the process and can be caused, for example, by the

in¯uence of surface nucleation. Nevertheless, the

complex behavior can also be observed when the

temperature distribution within the sample is affected

considerably by liberation of the crystallization heat at

the growth interface [6]. If the dimensions of the

crystallized phase are small, the rate of the process

is controlled by nucleation in assemblage of similar

particles [33], and the kinetic exponent is m�1. The

maximum of the y(a) function is then close to zero, i.e.

aM�0. However, if the maximum of the y(a) function

is shifted to higher values, it clearly indicates an

increasing in¯uence of the product (i.e. crystallized

phase) to the overall crystallization kinetics. A typical

example is spherulite crystal growth morphology

where the spatial constrains in highly viscous media

play an important role and the crystallized phase

further increases the rate of the process in the direction

preferred.

Such autocatalytic behavior has been observed for

many crystallization processes [12,22,23,32] and can

be described by means of an empirical two parameter

model [9,35]:

f �a� � aM�1ÿ a�N (17)

where the parameters M and N de®ne relative con-

tributions of acceleratory and decay regions of the

kinetic process. It was shown [36] that this two para-

meter autocatalytic model is physically meaningful

only for M<1. The maxima of the y(a) and z(a) depend

on the value of the kinetic exponents M and N. The

maximum aM of the y(a) function can be expressed as

aM � M

M � N
(18)

Fig. 15. The a1P ±aM plot for the crystallization of the ZrO2 gel.

Full lines correspond to the limits of applicability of the JMA

model. Points (&) are taken from Ref. [32] and they correspond to

non-isothermal data for different crystallinity shown as a number

next to the points. The dotted line is drawn as a guide to the eye.

The broken line shows the theoretical limit aM�a1P .
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Nevertheless, the maximum a1P of the z(a) function

cannot be expressed in an analytical form and has to be

obtained by the numerical solution of Eq. (A.9).

Fig. 16 shows aMÿa1P diagram calculated using

Eqs. (A.3) and (A.9) for a constant value of the

parameters M and N of the autocatalytic model. It

is evident that the JMA model is a special case of the

two-parameter model as already pointed out by SÏestaÂk

[9]. Therefore, the model de®ned by Eq. (17) is a

plausible mathematical description for the nucleation

and growth processes in non-crystalline solids. The

data shown in Figs. 9 and 15 can be also described by

this model [23,32]. It was shown that TTT diagrams

predicted for this model correspond well to experi-

mental data [37]. The increasing value of the kinetic

exponent M indicates a more important role of the

crystallized phase on the overall kinetics. It seems that

a higher value of the kinetic exponent N>1 means

increasing complexity. However, the temptation to

equate parameters M and N with a de®nite crystal-

lization mechanism should be avoided, and too much

physical signi®cance should not be attached to the

numerical values of what is essentially a phenomen-

ological convenience. In particular, this warning

applies to processes exhibiting a complex behavior.

Therefore, it seems that meaningful conclusions con-

cerning the real mechanism of the process should

always be based on other types of complementary

evidence, including microscopic observations

together with all other relevant information.

5. Conclusions

The presented results clearly indicate that the John-

son±Mehl±Avrami (JMA) model has limited validity

both in isothermal and non-isothermal conditions, and

it is strongly recommended to always test its applic-

ability for a particular crystallization process. In addi-

tion to this validity test, there are several basic

assumptions implicitly involved in kinetic treatment

of isothermal and non-isothermal TA data which should

also be checked before any kinetic analysis is made.

A uni®ed approach based on two functions y(a) and

z(a) obtained by a simple transformation of experi-

mentaldata isproposed,allowinga testingof thevalidity

of the JMA model as well as the basic assumptions in

kinetic analysis. The y(a) and z(a) functions exhibit

maxima at aM and a1P , respectively (aM<a1P ). Their

position and shape should be invariant with respect

to procedural variables such as heating rate (non-

isothermal conditions) and temperature (isothermal

conditions). The shape of these plots should also be

identical for isothermal and non-isothermal data. The

validity of the JMA model can easily be veri®ed by

checking the maximum a1P of the z(a) function. If the

maximum falls into 0.61�a1P �0.65 range then experi-

mental data probably correspond to the JMA model.

It is convenient to describe crystallization kinetics

in terms of aM±a1P plot. This diagram helps to visua-

lize the complexity of the crystallization process as

well as to verify the applicability of the JMA model.

The two parameter autocatalytic model includes the

JMA model as a special case and, therefore, is a

plausible mathematical description for the nucleation

and growth processes in amorphous solids. The main

advantage of the two parameter model is its potential

to describe quantitatively even complex crystalliza-

tion processes.
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Appendix A. Transformation of DSC data

A.1. The y(a) function

In isothermal conditions the y(a) function can be

expressed from Eq. (6) as

y�a� � f � Bi f �a� (A.1)

where Bi�DHcA exp (ÿEa/RT) is a constant. Thus, by

differentiation of Eq. (A.1) with respect to a, we obtain

y0�a� � Bi f 0�a� (A.2)

By setting Eq. (A.2) equal to zero, we obtain the

condition which must be ful®lled by aM at the max-

imum of the y(a) function

f 0�aM� � 0 (A.3)

Therefore, the shape of the y(a) function is formally

identical with the kinetic model function f(a), and the

value of aM can be obtained from Eq. (A.3).

In non-isothermal conditions, the exponential term

exp (ÿEa/RT) in Eq. (A.1) is not constant and, there-

fore, the y(a) function is de®ned as [12]:

y�a� � fexp
ÿEa

RT

� �
� Bn f �a� (A.4)

where Bn�DHcA is a constant. The y(a) is usually

normalized within the (0 1) range and, therefore, its

shape should be identical both in isothermal and non-

isothermal conditions.

A.2. The z(a) function

By integration of Eq. (4) in isothermal conditions,

the following equation is obtained

g�a� �
Z a

0

da
f �a� � A exp

ÿEa

RT

� �
t (A.5)

By inserting this equation into Eq. (2), one can obtain

the expression

da
dt

� �
� 1

t
�a�g�a� (A.6)

Combining Eqs. (A.6) and (3), we obtain the following

expression for the z(a) function in isothermal condi-

tions

z�a� � ft � Ci f �a�g�a� (A.7)

where Ci�DHc is a constant. Differentiating Eq. (A.7)

with respect to a, we obtain

z0�a� � Ci� f 0�a�g�a� � 1� (A.8)

By setting Eq. (A.8) equal to zero, we obtain the

condition that must be ful®lled by a1P at the maximum

of the z(a) function [13]:

ÿf 0�a1P �g�a1P � � 1 (A.9)

The g(a) function can be written for the JMA model as

g�a� � �ÿln �1ÿ a��1=m
(A.10)

Comparing Eqs. (A.9) and (A.3), it follows that

a1P �aM holds only for an in®nite g(a). This condition

can be considered as a theoretical limit of any kinetic

model; and, for the JMA model, it is ful®lled for an

in®nite value of the kinetic exponent m. Therefore, the

maximum of the z(a) function is always located at

higher values of a than the maximum of the y(a)

function.

If the temperature rises at a constant rate b�dT/dt,

then, after the integration of Eq. (4), one can obtain the

following equation

g�a� � AT

b
exp

ÿEa

RT

� �
p
ÿEa

RT

� �
(A.11)

where p(Ea/RT) is an approximation of the tempera-

ture integral which has to be introduced because the

K(T) term cannot be integrated analytically [9]. Com-

bining Eqs. (A.11) and (6), we can obtain the follow-

ing expression for the z(a) function in non-isothermal

conditions

z�a� � fTp
Ea

RT

� �
� DHc bf �a�g�a� (A.12)

It was shown [14] that in the case of the z(a) function

the approximation p�RT/Ea is suf®ciently accurate.

Then the z(a) function can be expressed as

z�a� � fT2 � Cn f �a�g�a� (A.13)

where Cn�DHc bEa/R is a constant and, therefore, the

value of the a1P characteristic for any kinetic model

can be obtained from Eq. (A.9).

The z(a) function is usually normalized within the

(0, 1) range and its shape, as well as the condition for

the maximum, should be identical both in isothermal

and non-isothermal conditions.
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A.3. The generalized y(a) and z(a) functions

A very useful concept of generalized time intro-

duced by Ozawa [8,15] can be used to obtain the

generalized y(a) and z(a) functions. For Arrhenius

type rate constant the generalized time, y, is de®ned as

y �
Z t

0

exp
ÿEa

RT

� �
dt (A.14)

Differentiating Eq. (A.14) with respect to time we

obtain

dy
dt

� �
� exp

ÿEa

Rt

� �
(A.15)

Combining Eqs. (4), (5) and (A.15) we obtain the

following general expression for the y(a) function:

y�a� � da
dy

� �
� Af �a� (A.16)

The function (da/dy) has already been used for the

description of thermal decomposition processes

[38,39].

By integrating of Eq. (4) the following equation is

obtained:

g�a� �
Z a

0

da
f �a� � Ay (A.17)

By combining Eqs. (A.17) and (A.16), we obtain the

following general expression for the z(a) function:

z�a� � da
dy

� �
y � f �a�g�a� (A.18)

Eqs. (A.16) and (A.18) are the generalized expression

for the y(a) and z(a) function. These functions depend

on two fundamental variables only; i.e. the fraction

crystallized and the generalized time, and they can

easily be applied for the analysis of both isothermal

and non-isothermal processes.
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