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Abstract

A repeated temperature scanning thermal analysis, such as temperature-modulated thermogravimetry, is a useful technique

for the kinetic analysis of thermal decomposition in a de®ned temperature range. In this technique, repeated temperature

scanning, i.e., cyclic heating and cooling in a de®ned temperature range, is introduced into thermal analysis. First, the kinetics

for this new mode of temperature change are considered theoretically, and some useful relations for kinetic analysis are

revealed. From these relations, methods for estimating kinetic parameters, such as the activation energy, the pre-exponential

factor and the conversion functions, are derived. The errors in these parameters are also examined. # 2000 Elsevier Science

B.V. All rights reserved.
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1. Introduction

Kinetic analysis using conventional thermogravi-

metry (TG) and other thermal analysis techniques with

a constant rate of heating has a few drawbacks,

because the temperature is raised at a constant rate

irrespective of the process proceeding in the sample.

In some cases, especially for polymers, the reaction

mechanism changes with an increase in the tempera-

ture, so that the reaction mechanism changes during

the run. Controlled rate TG (CRTG, or sample con-

trolled TG, SCTG) and isothermal TG are useful for

these cases, as reported in a previous paper [1].

However, to observe the reaction in a de®ned tem-

perature range, where the mechanism does not change,

CRTG is not so suitable, because the temperature

tends to increase beyond the temperature limit, espe-

cially at the ®nal stage of the run. The range of

controllable mass-loss rates in CRTG is also limited,

and the minimum rate is not low enough to apply

CRTG to studying the low-temperature stability of

materials. Isothermal TG does not have such draw-

back, but it takes a relatively long time, especially in a

low-temperature range. For the kinetic analysis of

non-isothermal data, iso-conversional methods are

the only methods which can give highly reliable

kinetic parameters [2], and the Friedman±Ozawa

method is the most reliable and has the widest applic-

ability among them [1,2]. However, multiple runs are

needed for the iso-conversional methods, so that it

takes a long time to perform the experiments.

The temperature-jump [3] and the rate-jump [4]

methods were proposed for estimating the activation

energy from a single run. In these techniques, the
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activation energy is estimated from the rate change or

the temperature change resulting from these respective

jumps. The temperature range, however, cannot be

de®ned in the rate-jump method.

Recently, temperature modulation, i.e. one of

repeated temperature scanning, was introduced into

TG (temperature modulated TG; tm-TG) [5±10], and

sinusoidal temperature modulation has been applied.

By comparing the rates of mass loss at a peak and an

adjacent bottom of the temperature±time curve or by

applying Fourier analysis, the activation energy is

estimated during the run with good precision. This

method is highly ef®cient, because the activation

energy is continuously estimated from a single run.

However, further kinetic analysis has not yet been

done, and it seems dif®cult because of the sinusoidal

temperature modulation, which does not make the

calculation simple.

A method for estimation of the activation energy

and further kinetic analysis by repeated temperature

scanning technique is proposed in this paper. It is

different from temperature modulation, though tem-

perature modulation is an example of repeated tem-

perature scanning. The mode of temperature change in

cycles is not necessarily uniform and not necessarily

controlled precisely, but can be changed during the

experiment. It should be noted, in relation to this point,

that the temperature control is sometimes disturbed by

a large reaction heat.

In this paper, kinetic equations for repeated tem-

perature scanning thermal analysis (rts-TA) have been

derived on the base of the concepts of reduced time

and reduced rate [2,11,12]. Furthermore, a method for

kinetic analysis is proposed for obtaining simulta-

neously the activation energy, the pre-exponential

factor and the conversion functions and to predict

the process under different temperature changes.

The new and useful point of this technique is that

kinetic analysis can be done from a single run, while

the method is applicable to various modes of tem-

perature scanning. Errors in estimating the activation

energy are also discussed.

Constant-rate heating TG has been used for the

short-time thermal life evaluation of polymeric mate-

rials [13±15]. It is not, however, used extensively for

electrical insulating materials, because the tempera-

ture range for the usual constant-rate heating TG

experiment is much higher than the operating tem-

perature of electrical cables and machines in which the

materials are used [16]. The reaction observed by the

usual constant-rate heating TG might be different

from the real reaction in this use, as seen for polyimide

[1]. Thus, constant-rate heating TG is thought to be

inappropriate for long-term thermal endurance eva-

luation [16,17]. Because rts-TG observes the reaction

in a de®ned temperature range, it is better for evaluat-

ing real thermal endurance of the materials.

It is the purpose of this series of papers to propose a

new kinetic method for rts-TA and to evaluate this

applicability. It should be noted that the theory and the

method described in this paper can also be applied to

other physical processes, such as thermal shrinkage of

polymer ®lm and crystalline growth from pre-existing

nuclei, though the Arrhenius law does not always hold

in these cases.

2. Theoretical consideration

In this paper, we deal with only a single elementary

process, and the physical property observed in the

thermal analysis is a single-value function of the

changing species or the formed structure. It is also

assumed that the Arrhenius law holds for the process,

namely,

C � f �a� (1)

and

da
dt
� A exp ÿ E

RT

� �
g�a� (2)

where a, C, t, A, E, R and T are, respectively, the extent

of the process, the conversion of the physical property,

the time, the pre-exponential factor, the activation

energy, the Universal Gas Constant and the absolute

temperature, and f(a) and g(a) the conversion func-

tions of a expressing the dependence of the physical

property on the extent of process and the mechanism.

(The forms of these functions for some cases are listed

in Ref. [12].) The conversion and the extent of the

process are, in most cases, equal to each other but, for

instance, the sample mass, m, in random scission in the

main chain of polymer is a function of the fractional

bonds broken, a, so that Eq. (1) is necessary. Provided

that the process we deal with follows these equations,

the following relation holds for a certain conversion
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function [1,12]:

dC

dAy
� g0�C� (3)

or

dC

dy
� dC

da

� �
da
dy

� �
� Ag0�C� (4)

where y is the reduced time which equalsR
exp �ÿE=RT� dt [1,9,10] and dC/dy is the reduced

rate, while (dC/dAy) is a generalized, dimensionless

rate. The function, g0(C) is a function of C and the

product of df(a)/da and g(a), and is characteristic of

g(a) and f(a). On the other hand, the real rate is related

to the reduced rate as in the following equation:

dC

dy
� dC

dt

� �
dt

dy

� �
� exp

E

RT

� �
dC

dt
(5)

These relations (namely, Eqs. (3)±(5)) hold at any

point (any time, any conversion, any rate, etc.) during

any temperature change. Therefore, when we plot the

experimental data in the form of dC/dy vs. C (Eqs. (4)

and (5)), it is the experimental master curve. On the

other hand, the relation between the generalized,

dimensionless rate, (dC/dAy), and the conversion,

C, is a theoretical curve characteristic of g(a) and

f(a) (Eq. (3)). These two curves correspond to each

other, provided that the model (Eqs. (1) and (2)) holds

in the process under observation. Thus, we can deter-

mine g(a) and f(a) from the form of the curve [12].

Conversely, the above consideration can be applied

to rts-TA data by changing the temperature between

de®nite peak and bottom temperatures. When we plot

the experimentally observed rate (dC/dt) against the

conversion (C), the envelope connecting the rate at the

constant peak temperature is equivalent to the curve of

the isothermally observed rate vs. the conversion at

this temperature (Eqs. (4) and (5)). The envelope

connecting the rate at the bottom temperature is also

equivalent to the curve of the isothermally observed

rate vs. the conversion at the bottom temperature. It is

the same for a given intermediate temperature

between the peak and the bottom temperatures.

In other words, the rate in rts-TA oscillates between

these envelopes, and this oscillatory trace is governed

by the essential relation among the generalized,

dimensionless rate, the conversion and the general-

ized, dimensionless time (Eq. (3)), and also deter-

mined by the experimental conditions. This essential

relation is characteristic of f(a) and g(a), and the

envelopes are equivalent isothermal curves. The rts-

TA results are illustrated in Fig. 1, where the mass-loss

rate in rts-TG for polyimide is shown against the time.

The mass-loss rates at the peak and bottom tempera-

tures are plotted against the mass loss in Fig. 2

together with the master curve for this decomposition

reported in the previous paper [1]. The envelopes are

quite similar to the master curve. When the ordinate is

converted to the logarithm of the rate, the vertical

distance is dependent on the activation energy and the

temperature of the envelope, because the activation

energy does not changed along with the conversion

[1].

In view of the reduced time being a fundamentally

important quantity for non-isothermal kinetics and

useful for predicting the reaction under isothermal

and/or non-isothermal conditions [1,11,12], the

reduced time in rts-TA of a constant temperature cycle

is considered below. It can be calculated easily for

sawtooth temperature modulation (triangular scan-

ning), because of additivity of the reduced time. For

instance, the reduced time yp,n, at the nth peak is

given below:

yp;n � Ep
E=RTh

bR

� �
� �nÿ 1�yc (6)

where b, p, Th and yc are, respectively, the initial

heating rate, the p-function proposed by Doyle [18],

the peak temperature and the reduced time for one

cycle. The reduced time for one cycle, yc is as follows:

yc � 2E
p�E=RTh� ÿ p�E=RTl�

b0R
(7)

or

yc � PE
p�E=RTh� ÿ p�E=RTl�

R�Th ÿ Tl� (8)

where b0, P and Tl are, respectively, the heating and

cooling rates in the cycle, the period for one cycle and

the bottom temperature. The cooling rate is not neces-

sarily equal to the heating rate, but it is better to use the

same rates for simplicity. Similarly, the reduced time

at the nth bottom, yb,n, is given below:

yb;n � DEp
DE=Rth

bR

� �
� �nÿ 0:5�yc (9)
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As seen above, the reduced time is approximately

proportional to the real time in the experiment. There-

fore, the envelopes of the measurements at the peak

and the bottom temperatures, i.e. the curves of rate vs.

real time are approximately equivalent to the isother-

mal curves of rate vs. time in their form.

When a constant temperature mode is combined

with the above cyclic temperature change, the reduced

time is the sum of these two temperature modes. The

reduced time yiso is given below:

yiso � d exp ÿ E

RT

� �
(10)

where d is the duration of the constant temperature

mode.

The reduced time for a sinusoidal temperature

modulation is dif®cult to calculate, but the reduced

time for one cycle is constant for any mode of mod-

ulation, so that the situation is similar for the sinu-

soidal temperature modulation and other modes of

temperature modulation.

3. Methods for kinetic analysis

As mentioned above, the envelopes are very useful

for kinetic analysis. First of all, we can determine the

conversion functions from the form of the envelopes

when we transform the results to the form of rate vs.

conversion. For instance, straight lines are obtained

for a ®rst-order reaction, because C�a and g(a)�
1ÿC. Secondly, when we plot the logarithm of the

rate from the envelopes against conversion, these

logarithmic envelopes can be superimposed on each

other by a vertical shift (see Eq. (5)). The shift distance

is in a linear relation with the reciprocal absolute

temperature, the slope beingÿE/R. These logarithmic

envelopes can also be superimposed on the theoretical

curve of the logarithm of (dC/dAy) vs. C, the vertical

shift distance giving A exp (ÿE/RT). Thus, we have all

the kinetic parameters necessary to predict the process

under study. The master curve, C vs. y, for prediction

can be derived by using the theoretical relation of C

with Ay for the conversion functions of g(a) and f(a).

Otherwise, the reduced time can also be calculated by

Fig. 1. Repeated temperature scanning TG curve of polyimide. The TG was done under a ¯ow of standard air at 200 ml/min, and the

temperature was repeatedly scanned between 480 and 5208C at a constant rate of 208C/min. The symbol m is the mass loss.
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using E and the real temperature change along with the

time (Eqs. (6) and (9)), if the temperature change is not

too complicated.

When we use temperature scanning in which multi-

ple peak and bottom temperatures occur in one cycle,

we can see the temperature dependence of the rate in

more detail. For instance, when the temperature scan-

ning cycle consists of heating from Ta up to Tb, then

cooling to Tc and heating to Td followed by cooling to

Ta, we have two peak temperatures, Tb and Td, and two

bottom temperatures, Taand Tc, so that we have the

equivalents of four isothermal curves at different

temperatures. When we measure the rate as a function

of the conversion at some selected intermediate tem-

peratures, we obtain similar results.

From the above vertical shift and the superimposi-

tion, we can con®rm the Arrhenius law from the

linearity between the vertical shift distances and the

reciprocal absolute temperatures. Because we have

more than two equivalent isothermal curves, we can

Fig. 2. The relation between mass-loss rate and mass loss at 5208C (*) and 4808C (*) by transformation of the data in Fig. 1, and the master

curve ( ) of reduced mass-loss rate vs. mass loss for polyimide [1].
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estimate the activation energy more accurately. The

principle of the above procedures is the same as the

Friedman±Ozawa plot [2], so that this method can be

applied to interpolated rates of conversion together

with experimentally measured rates of conversion at a

given conversion.

The above procedure for kinetic analysis can be

done by linear multiple regression analysis. Combin-

ing Eqs. (4) and (5) and taking the logarithms, we

have

ln
dC

dt
� ln Aÿ E

RT
� ln g0�C� (11)

Thus, ln dC/dt is expressed by a linear polynomial

equation of C, and linear multiple regression analysis

can be applied to sets of data (dC/dt, C and T). The

particular form of g0(C), for which the ratio of the

contribution is the largest amongst the tested conver-

sion functions, is the best ®tted one, and A and E are

the corresponding kinetic parameters.

The activation energy can also be estimated during

the run by a method, similar to the methods for the

temperature or rate jump techniques and tm-TG. By

comparing the maximum mass-loss rate at the peak

temperature and the minimum mass-loss rate at the

adjacent bottom temperature (or vice versa), the fol-

lowing equation is used to estimate the activation

energy [3,4,5]:

E � RthTl ln
rh=rl

Th ÿ Tl

� �
(12)

where rh and rl are the rates of conversion (dC/dt) at

the peak and at the bottom temperatures, respectively.

To estimate the activation energy more accurately, the

following rates averaged for the peaks or the bottoms

at the same temperature should be used in the actual

calculation. For the cycle from the ith peak to the

(i�1)th peak, the average rate used is as follows:

rh � rh;i � rh;i�1

2
(13)

This is compared with rl,i. Similarly, for the cycle from

the ith bottom to the (i�1)th bottom,

rl � rl;i � rl;i�1

2
(14)

These plots are also based on the same principle as the

Friedman±Ozawa plot.

4. Discussion

The most reliable methods for kinetic analysis of

thermoanalytical data are the iso-conversional meth-

ods [2]. Among the iso-conversional methods, the

Ozawa±Flynn±Wall plot and the Kissinger±Aka-

hira±Sunose plot are integral methods. In these plots,

the relation between the conversion and the reduced

time (integration of the temperature) forms the basis of

the methods; moreover, approximate integral equa-

tions for the constant rate heating are used. The

methods, therefore, only apply to constant heating

rate experiments.

On the other hand, the iso-conversional Friedman±

Ozawa plot [2] is a differential method, and the

previous thermal history of the sample does not in¯u-

ence the plot of the logarithmic rate vs. the reciprocal

absolute temperature at a given conversion. Therefore,

this plot can be applied to data obtained by any mode

of temperature change including CRTG and isother-

mal TG as demonstrated in a previous paper [1].

Moreover, no approximations are used in this plot.

The methods proposed in this paper are essentially the

same as the Friedman±Ozawa plot in combination

with the repeated temperature scanning. The methods

in this paper could thus be called quasi-iso-conver-

sional methods. Because equivalent isothermal curves

of rate vs. conversion are obtained by the transforma-

tion, the method is also equivalent to isothermal

methods.

The name, quasi-iso-conversional methods, comes

from the fact that quantities such as the rate and

conversion, are not only the experimentally measured

ones but also those estimated by interpolation. Errors

caused by this interpolation need to be considered. A

short temperature cycle is preferable in order to

decrease the error, but, as discussed elsewhere, for

temperature oscillation in differential scanning calori-

metry (tm-DSC) [19±21], when the temperature wave

propagates in the apparatus and the sample, a decrease

in the amplitude and a shift of the phase necessarily

occur. Thermal contact between the sample cell and

the apparatus has the same serious effect. A large

amount of the sample and poor thermal contact of the

sample with the cell cause a large decrease in the

amplitude and a large shift of the phase. Because the

controlled temperature in thermal analysis apparatus

is not the sample temperature, but that of the tem-
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perature sensor, the sample temperature does not

follow the temperature program exactly, especially

in a short-cycle program. The temperature distribution

necessarily occurs also in constant-rate heating and

cooling, as clearly elucidated before for differential

thermal analysis [22,23]. High rates of heating and

cooling cause large temperature lags. These effects are

not detected directly, but need to be taken into

account. Thus, there should be an optimum cycle,

and too sharp a temperature change is not desirable.

Furthermore, a small sample heat capacity and a large

heat-transfer coef®cient are preferable, because the

thermal response time is proportional to the sample

heat capacity and inversely proportional to the heat-

transfer coef®cient [19±23]. Thus, a short distance

from the sample to the temperature sensor is also

desirable for the control and measurement.

It should be noted that when Fourier analysis is

applied to tm-TG by sinusoidal modulation [5], errors

must be introduced because of the non-linear tem-

perature dependence of the rate constant. The accel-

eration effect above the average temperature of the

modulation is not the same as the deceleration effect

below the average temperature. Thus, the modulated

rate is a deformed sinusoidal oscillation containing

higher harmonics, even if the temperature modulation

is exactly sinusoidal. There is another cause for

deformation, i.e. a small change in the conversion.

Considering these effects, a large amplitude of tem-

perature modulation causes a large error. A small

amplitude is preferable and the effect is much more

detectable in the low-temperature range because of the

nature of the Arrhenius equation. For example, for a

temperature modulation of 108C amplitude at an

average temperature of 5008C and an activation

energy of 350 kJ/mol, the decelerating effect is not

very different from the accelerating effect, and the

non-linearity is not detectable, but a large amplitude in

a relatively low-temperature range is not recom-

mended. Therefore, Fourier analysis of temperature

modulation is not suitable for wide temperature scan-

ning.

The imaginary part in the Fourier analysis should

also be discussed. It has been thought that the rate

changes instantaneously as the temperature changes.

Therefore, it seems likely that the observed imaginary

component of the Fourier analysis is not caused by the

kinetic effect, but by the temperature wave propaga-

tion, as mentioned in the foregoing. Consideration by

analogy with tm-DSC tends to lead to a misunder-

standing, and we should consider the phenomena

occurring in the experiment in more detail.

The acceleration and the deceleration effects men-

tioned above are made clear from Eq. (8) by compar-

ing yc with another reduced time, yiso, which is the

reduced time of the isothermal process for P at the

average temperature Tav [�(Th�Tl)/2], because the

reduced time is a measure of the extent of the process.

The comparison is.

yc

yiso

� E
p�E=RTh� ÿ p�E=RTl�

R�Th ÿ Tl� exp �ÿE=RTav� (15)

where yiso is given by

yiso � P exp
ÿE

RTav

� �
(16)

Examples are shown in Table 1 [24]. The larger the

activation energy and the temperature range are, the

larger the overall deceleration effect is. This is also

clear evidence of the non-linear temperature depen-

dence of the rate constant. This suggests that concur-

rently proceeding multiple processes of different

activation energy may be separated by repeated tem-

perature scanning, especially in a low-temperature

range.

For complex processes, the fundamental Eqs. (1)

and (2) do not hold in observed processes. In these

cases, the relation between dC/dt vs. C at the peak

temperature is different from that at the bottom tem-

perature, and the superimposition by the vertical shift

mentioned above cannot be achieved. When these

relations are observed at more than two temperatures,

the vertical shift distance is not in linear relation with

the reciprocal absolute temperature. The estimated

activation energy thus changes with the conversion

Table 1

Comparison in extent of process between isothermal run and

repeated scanning run

E(kJ molÿ1) Th (8C) Tl (8C) Tav (8C) yc (yiso)

62.7 200 160 180 0.93

83.6 200 160 180 0.87

104.5 200 160 180 0.80

125.4 200 160 180 0.73

146.3 200 160 180 0.66

167.2 200 160 180 0.59
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and is the apparent activation energy. These results

indicate the complexity of the process under study.

The essential point of this new technique is not the

temperature modulation, but the repeated temperature

scanning. By a simple repeated temperature scanning,

we can obtain by interpolation the isothermal relations

between the rate and the conversion at different tem-

peratures.

5. Conclusion

1. Rts-TA is useful for estimating the activation

energy, the pre-exponential factor and the conver-

sion functions, especially in a de®ned low

temperature range. It is also a time saving

technique, because the kinetic analysis can be

done using data from a single run. Rts-TA seems

especially useful for polymers and organic sub-

stances, because the mechanism might change

with the temperature for these substances.

2. The essential points of the method proposed in

this paper are: (1) to transform the rts-TA results

to the form of rate vs. conversion; (2) to get

equivalent isothermal curves by connecting the

points at a few temperatures; (3) to determine the

conversion functions; (4) to estimate the activation

energy and the pre-exponential factor by a quasi-

iso-conversional method; and (5), if needed, to

transform the data to a useful experimental master

curve of the conversion or the reduced rate vs. the

reduced time.

3. Rts-TA and the kinetic methods proposed in this

paper have advantages over tm-TG and its kinetic

method, because of their wider applicability and

yet all the necessary kinetic information can be

obtained. Transformation of the data to the form

of the rate vs. the conversion is the essential point,

and by this transformation the method becomes

precise and applicable to a wide temperature

range. The temperature mode is also not restricted.

The experimental veri®cation of this method is now

underway in our laboratory and the results will be

described in the next paper to be submitted to this

journal.
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