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Abstract

The basic feature of liquid molecules is non-random migration. The cells made up of the molecules are not the prison cages

restraining themselves but are the carriers on which they are migrating. Based on this idea, new expressions for con®gurational

partition function as well as the excess Gibbs energy of liquids and their mixtures have been derived from statistical

thermodynamics. This has resulted in the establishment of a new thermodynamic model of liquid mixtures. The model has

been veri®ed to be quite convenient and reliable in predicting the thermodynamic properties of liquid alloys. # 2000 Elsevier

Science B.V. All rights reserved.
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1. Introduction

A great deal of binary data have been compiled in

monographs such as Ref. [1], but multicomponent data

is scattered over some journals and quite scarce

because the determination of thermodynamic data

of a multicomponent system needs not only the con-

summate skill of a researcher and excellent instru-

ments but also the continuous ®nancial support.

Furthermore, there have just been numerous multi-

component systems in industrial processes. It was

obviously unrealistic to measure all the data experi-

mentally. Therefore, a unique economic and effective

method to predict multicomponent systems from the-

ories or from thermodynamic models which depend

on less experimental data is required.

The thermodynamic models suggested so far cannot

make accurate prediction for multicomponent liquid

alloys over a wide range of concentration [2], e.g. the

Pelton±Flengas's or P±F model [3] requires ®tting many

model parameters which have unclearphysical meaning

and thus its predicting ability is very limited; a linear

chemical±physical theory model [4] gives a good ®t

to binary liquid alloys, but it is dif®cult to extend it to

ternary systems; Fan±Zhou's model [5] is only suitable

for a dilute metals solution; Wilson's model [6] cannot

be used for liquid±liquid partial miscible systems and

their model parameters lack physical understanding.

The purpose of this work, therefore, is to derive new

expressions of con®gurational partition function of

liquids and their mixtures based on the basic feature

of liquid molecular movements and to establish a

new thermodynamic model of liquid mixtures.

2. The new expressions of con®gurational
partition function of liquids and their mixtures

The new expression of con®gurational partition

function was obtained from the physical sense
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of liquid molecular movements in that liquid

molecules are not like gas molecules which are in

continuous irregular motion and not like solid

ones which are vibrating continuously at one site

but are migrating non-randomly from one cell to

another. In fact, the magnitude of the self-diffusion

coef®cient D of liquid molecules is usually

10ÿ5 cm2 sÿ1, and the distance the molecules move

per second is about 10ÿ3 cm which is an estimate

of
�����
Dt
p

. This distance is about 105 times the size of

a molecular cell 10ÿ8 cm. It can be seen that the

hypothesis that liquid molecules are almost in cells

all the time contradicts the basic feature of them

moving at least in a time interval of seconds. This

shows that the molecular cells are not the prison

cages which restrain them but are the carriers in

which they are migrating. According to statistical

thermodynamics, therefore, the partition function of

the pure matter i is

Qi � Qpi

Ni!L
3Ni

i

(1)

where L3Ni

i , Ni and Qpi are the partition function of

molecular kinetic energy, the molecular number and

the con®gurational partition function of the pure

matter i, respectively. The last term can usually be

expressed as

Qpi �
Z

Vi

. . .

Z
exp ÿEpi

kT

� �
dx1 dy1 dz1� � � dxNi

dyNi
dzNi

(2)

where Vi is the volume, and Epi the potential energy.

This may be chosen as

Epi � 1
2

ZiNieii (3)

where Zi is the nearest molecule or ®rst coordination

number and eii is the i±i pair-potential energy. Sub-

stituting Eq. (3) into Eq. (2) and considering the basic

feature of the liquid molecular motion as mentioned

above, Eq. (2) can be simpli®ed to

Qpi �
Z Z Z
�1

exp ÿ Zieii

2kT

� �
dx dy dz

24 35Ni

� Vi

Ni

� �Ni

exp ÿ ZiNieii

2kT

� �
(4)

Similarly, the partition function and the con®gura-

tional partition function of the pure matter j are,

respectively,

Qj � Qpj

Nj!L
3Nj

j

(5)

Qpj � Vj

Nj

� �Nj

exp ÿ ZjNjejj

2kT

� �
(6)

where the symbols have the same meaning as those of

the pure matter i. The partition function and the

con®gurational partition function of a binary liquid

mixture i±j are, respectively,

Q � Qp

Ni!L
3Ni

i Nj!L
3Nj

j

(7)

Qp �
Z

V

. . .

Z
exp ÿ ep

kT

� �
� �dx1 dy1 dz1 � � � dxNi

dyNi
dzN

i
�

� �dx1 dy1 dz1 � � � dxNj
dyNj

dzNj
�

�
Z Z Z
�1

exp ÿ ep

kT

� �
dxi dyi dzi

24 35Ni

�
Z Z Z
�1

exp ÿ ep

kT

� �
dxj dyj dzj

24 35Nj

�
Z Z Z
�1

exp ÿ ep

kT

� �
dx dy dz

24 35N

� V

N

� �N

exp ÿNep

kT

� �
(8)

where V and N are the volume and molecular

number of the mixture, respectively, and ep is the

mixing potential energy function of the molecules i

and j.

3. A new expression of excess Gibbs energy of
liquid mixtures

According to the relation between Gibbs energy and

partition function

G � kT V
@ ln Q

@V

� �
T

ÿln Q

� �
(9)
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one can get the Gibbs energy of a binary mixture i±j:

G � kT N ÿ N ln
V

N

� �
� Nep

kT
� ln�Ni!L

3Ni

i Nj!L
3Nj

j �
� �

(10)

as well as the Gibbs energies of the pure matters i and

j, respectively:

Gi � kT Ni ÿ Ni ln
Vi

Ni

� �
� ZiNieii

2kT
� ln�Ni!L

3Ni

i �
� �

(11)

Gj � kT Nj ÿ Nj ln
Vj

Nj

� �
� ZjNjejj

2kT
� ln�Nj!L

3Nj

j �
� �

(12)

Thus the new expression of the excess Gibbs energy of

mixture i±j is

GE � DGM ÿ DGidM � �Gÿ G�� ÿ �Gi � Gj ÿ G��

� Gÿ Gi ÿ Gj � kT Ni ln
Vi

Ni

� �
� Nj ln

Vj

Nj

� ��
ÿN ln

V

N

� �
� 2Nep ÿ ZiNieii ÿ ZjNjejj

2kT

�
� RT ni ln

Vi

xiV

� �
� nj ln

Vj

xjV

� ��
� 2nep ÿ Zinieii ÿ Zjnjejj

2kT

�
� nRT xi ln

Vmi

Vm

� �
� xj ln

Vmj

Vm

� ��
� 2ep ÿ Zixieii ÿ Zjxjejj

2kT

�
� nRT xi ln

Fi

xi

� �
� xj ln

Fj

xj

� �
� Dep

2kT

� �
(13)

where DGM, DGidM and G� are the real Gibbs energy

of mixing, the ideal Gibbs energy of mixing and the

standard Gibbs energy of mixing i±j, ni, nj and n are

the number of moles of i and j and the mixture i±j, xi

and xj the molar fractions of i and j, and Vmi, Vmj and

Vm the molar volumes of i and j and the mixture i±j,

respectively; Fi � xiVmi=Vm and Fj � xjVmj=Vm are

the molar volume fractions of components i and j in

the mixture i±j, respectively; and the excess potential

energy function of the mixture i±j is

Dep � 2ep ÿ Zixieii ÿ Zjxjejj (14)

If Dep � 0, then Eq. (13) may be reduced to

GE � nRT xi ln
Fi

xi

� �
� xj ln

Fj

xj

� �� �
(15)

which is the well-known Flory±Huggins equation [2].

Suppose that in the liquid mixture i±j, there are two

types of molecular cells in which the central molecules

i and j reside, respectively. Then the local coordination

numbers of the cell i are Zii and Zji that are de®ned as

the numbers of molecules i and j surrounding the

central molecule i. The local coordination numbers

of the cell j are Zjj and Zij that are de®ned as the

numbers of molecules j and i surrounding the central

molecule j. They are also proportional to their corre-

sponding Boltzmann's factors, i.e.

Zii � xi exp ÿ eii

kT

� �
; Zji � xj exp ÿ eji

kT

� �
(16)

Zjj � xj exp ÿ ejj

kT

� �
; Zij � xi exp ÿ eij

kT

� �
(17)

Based on the above considerations, the local mole-

cular fractions of the molecules i and j surrounding a

central molecule i can be de®ned, respectively, as

xii � Zii

Zii � Zji

� xi

xi � xjBji

;

xji � Zji

Zii � Zji

� xjBji

xi � xjBji

(18)

and the local molecular fractions of the molecules j

and i surrounding a central molecule j can be, respec-

tively, de®ned as

xjj � Zjj

Zjj � Zij

� xj

xj � xiBij

;

xij � Zij

Zjj � Zij

� xiBij

xj � xiBij

(19)

where the pair-potential energy interaction parameters

Bji and Bij are de®ned, respectively, as

Bji � exp ÿ eji ÿ eii

kT

� �
; Bij � exp ÿ eij ÿ ejj

kT

� �
(20)

Obviously, Eqs. (18) and (19) satisfy the normaliza-

tion conditions

xii � xji � 1; xjj � xij � 1 (21)

Therefore, the local volume fractions of the molecules
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i and j in the mixture i±j can be expressed as

zi �
xiiVmi

xiiVmi � xjiVmj

� xiVmi

xiVmi � xjVmjBji

(22)

zj �
xjjVmj

xjjVmj � xijVmi

� xjVmj

xjVmj � xiVmiBij

(23)

According to the two-liquid theory [2], the mixing

potential energy function ep of the molecules i and j

can be chosen as

ep � 1
2
�Zixi�xiieii � xjieji� � Zjxj�xjjejj � xijeij�� (24)

Substituting Eq. (24) into (13) in which Fi and Fj are

replaced by zi and zj, one can achieve a new model of

the molar excess Gibbs energy GE
m of the liquid

mixture i±j:

GE
m

RT
� xi ln

Vmi

xiVmi � xjVmjBji

� �
� xj ln

Vmj

xjVmj � xiVmiBij

� �
ÿ xixj

2

ZiBji ln Bji

xi � xjBji

� ZjBij ln Bij

xj � xiBij

� �
(25)

as well as new expressions of activity coef®cients of

the components i and j, respectively:

ln gi � ln
Vmi

xiVmi � xjVmjBji

� �
� xj

VmjBji

xiVmi � xjVmjBji

ÿ VmiBij

xjVmj � xiVmiBij

� �
ÿ x2

j

2

ZiB
2
ji ln Bji

�xi � xjBji�2
� ZjBij ln Bij

�xj � xiBij�2
" #

(26)

ln gj � ln
Vmj

xjVmj � xiVmiBij

� �
ÿ xi

VmjBji

xiVmi � xjVmjBji

ÿ VmiBij

xjVmj � xiVmiBij

� �
ÿ x2

i

2

ZjB
2
ij ln Bij

�xj � xiBij�2
� ZiBji ln Bji

�xi � xjBji�2
" #

(27)

Extending Eq. (25) to a multicomponent mixture, its

molar excess Gibbs energy can be generalized as

GE
m

RT
�
Xn

i�1

xi ln
VmiPn

j�1xjVmjBji

ÿ 1

2

Xn

i�1

Zixi

Pn
j�1xjBji ln BjiPn

k�1xkBki

� �
(28)

and the expression of activity coef®cient of any com-

ponent i is

ln gi � 1� ln
VmiPn

j�1xjVmjBji

ÿ
Xn

k�1

xkVmiBikPn
j�1xjVmjBjk

ÿ 1

2

Zi

Pn
j�1xjBji ln BjiPn

l�1xlBli

�
Xn

j�1

ZjxjBijPn
l�1xlBlj

"

� ln Bij ÿ
Pn

t�1xtBtj ln BtjPn
l�1xlBlj

� ��
(29)

4. Prediction on the thermodynamic properties of
liquid alloys with the new model

It is necessary to determine the coordination num-

bers of liquid metals before applying the new model to

liquid alloys. For the liquid metal i, the coordination

can be de®ned as [7]

Zi � 2

Z rmi

r0i

4pr2rigi�r; T� dr (30)

where ri � Ni=Vi and gi�r; T� are the molecular num-

ber density and the radial distribution function, r0i and

rmi the beginning and ®rst peak values of radial

distance near its melting point, respectively. Since

the coordination decreases exponentially with tem-

perature, gi(r, T) may be represented as

gi�r; T� � gi�r� exp
aDHmi

RT

� �
(31)

where a � 2=Zc is a constant and Zc � 12 is the close-

packed coordination, and DHmi the melting enthalpy.

Suppose that ®rst peak of the radial distribution func-

tion gi(r) at T K approaches a normal distribution, and

then when r � rmi, it should be

gi�rmi� � rmi

�rmi ÿ r0i�
������
2p
p (32)

Thus substituting Eqs. (31) and (32) into Eq. (30) and

integrating it, one can obtain the equation of coordi-

nation number of a liquid metal

Zi � 2
������
2p
p

3

r3
mi ÿ r3

0i

rmi ÿ r0i

� �
rirmi exp

2DHmi

ZRT

� �
(33)

The activities of the components of the ternary

liquid alloys Cd±Bi±Pb(773 K) [8] and Cd±Bi±
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Sn(773 K) [9] and the quaternary liquid alloys Cd±Bi±

Pb±Sn(773 K) [10] were chosen to check Eq. (29)

since the data are well known to be reliable. In order to

determine the required binary parameters Bji and Bij,

the thermodynamic properties of the Cd±Bi, Cd±Pb,

Cd±Sn, Bi±Pb, Bi±Sn [1] and Pb±Sn [11] liquid alloys

and the related parameters [7] of their components

must have been found out for the model as shown in

Table 1.

When xi or xj approaches zero, the in®nite dilution

activity coef®cients g1i and g1j are derived from

Eqs. (26) and (27), respectively:

ln g1i � 1ÿ ln
VmjBji

Vmi

� �
ÿ VmiBij

Vmj

ÿ 1

2
�Zi ln Bji � ZjBij ln Bij� (34)

ln g1j � 1ÿ ln
VmiBij

Vmj

� �
ÿ VmjBji

Vmi

ÿ 1

2
�Zi ln Bij � ZiBji ln Bji� (35)

The parameter Bij is solved by connecting Eqs. (34)

and (35):

Bij � eB (36)

B � 2

2� Zj

1ÿ ln r1j ÿ ln
Vi

Vj

ÿ VjBji

Vi

ÿ 1

2
ZiBji ln Bji

� �
(37)

Let a function and its derivative be, respectively,

f �Bji� � 1� Zi

2

� �
ln Bji � Vi

Vj

� ZjB

2

� �
eB � ln

Vj

Vi

� �
� ln g1i ÿ 1 (38)

f 0�Bji� � 1� Zi=2

Bji

� Vi

Vj

� Zj

2
� B

� �
B0 eB (39)

B0 � ÿ 2

2� Zj

Vj

Vi

� Zi ln Bji

2
� Zi

2

� �
(40)

According to the Newton formulae,

Bji�n�1� � Bji�n� ÿ
f �Bji�n��
f 0�Bji�n�� (41)

The initial values of Bji and Bij can be obtained from

the data of g1i and g1j through computing repeatedly

(n� 1) times until jBji�n� ÿ Bji�n�1�j � 10ÿ8. By sub-

stituting the values into Eqs. (26) and (27), the ®nal

values of Bji and Bij are determined by making

the average ®tting deviation Si;orj � �f
Pn

i;orj�1

�ai;orj�exp� ÿ ai;orj�cal��2=ng1=2
less than (�0.007±0.02)

Table 1

The related parameters of the components

i r0i (10ÿ8 cm) rmi (10ÿ8 cm) DHmi (kJ/mol) Vmi (cm3/mol)

Cd 2.54 3.00 6.109 14:00�1� 1:50� 10ÿ4�T ÿ 594��
Pb 2.76 3.26 5.104 19:42�1� 1:24� 10ÿ4�T ÿ 600��
Bi 2.78 3.34 10.878 20:80�1� 1:17� 10ÿ4�T ÿ 544��
Sn 2.68 3.14 7.196 17:00�1� 0:87� 10ÿ4�T ÿ 505��

Table 2

The values of Bji, Bij, S and S� of the binary liquid alloys i±j at 773 K

i±j T (K) Bji Bij �Si �Sj �S�i �S�j �eji ÿ eii�=k (K) �eij ÿ ejj�=k (K)

Cd±Bi 773 0.471 1.634 0.0086 0.0060 0.01 0.01 581.57 ÿ379.54

Bi±Pb 700 1.152 1.071 0.0043 0.0030 0.007 0.007 ÿ99.05 ÿ48.01

773 1.137 1.064

Cd±Pb 773 0.900 0.720 0.0032 0.0028 0.01 0.01 81.27 253.72

Bi±Sn 600 1.153 0.789 0.0076 0.0075 0.02 0.02 ÿ85.57 142.15

773 1.117 0.832

Cd±Sn 773 0.893 0.956 0.0048 0.0047 0.01 0.01 87.87 34.85

Pb±Sn 773 0.895 0.878a ± ± ± ± 85.98 100.67

a The Bji and Bij determined by g1Sn � 2:30 and r1Pb � 2:33 [11].
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of the experimental data as far as possible by adjusting

Bji and Bij. On the other hand, when the values of Bji

and Bij are known, the values of Bji and Bij at the

required temperatures can be obtained from Eq. (20)

in which the pair-potential energy interaction para-

meters �eji ÿ eii�=k and �eij ÿ ejj�=k may be assumed to

be independent of temperature, as shown in Table 2. It

can be seen from the table that the values deviate less

than the experimental ones, which shows that the

®tting effects of the model for binary liquid alloys

are excellent.

Allowing the Cd±Bi±Pb, Cd±Bi±Sn, Bi±Sn±Cd and

Sn±Bi±Cd liquid alloys to be the 1±2±3 system and the

Cd±Bi±Pb±Sn liquid alloys the 1±2±3±4 system, the

activity coef®cients of component 1 of the 1±2±3

and the 1±2±3±4 systems can be written from

Eq. (29) as

Substituting the corresponding Bji and Bij into

Eqs. (42) and (43), the activities of components

of those multicomponent liquid alloys have been

predicted, as shown in Tables 3±5. It can be seen

from the tables that the predicted values are in

good agreement with the experimental data and all

the predicted deviations S1 are less than the experi-

mental ones S�. This shows that Eq. (29) is a con-

venient and reliable means of predicting the

thermodynamic properties of a multicomponent solu-

tion that requires only the binary parameters and

provides an important economic advantage since the

amount of experimental and computing work required

to represent multicomponent behavior is thereby very

much reduced.

Table 5 also lists the predicted results of the P±F and

Wilson models. It can be seen that P±F appears to be

ln g1 � 1� ln
Vm1

x1Vm1 � x2Vm2B21 � x3Vm3B31

� �
ÿ x1Vm1

x1Vm1 � x2Vm2B21 � x3Vm3B31

ÿ x2Vm1B12

x1Vm1B12 � x2Vm2 � x3Vm3B32

ÿ x3Vm1B13

x1Vm1B13 � x2Vm2B23 � x3Vm3

ÿ 1

2

� Z1�x2B21 � x3B31��x2B21 ln B21 � x3B31 ln B31�
�x1 � x2B21 � x3B31�2

 
� Z2x2B12��x2 � x3B32� ln B12 ÿ x3B32 ln B32�

�x1B12 � x2 � x3B32�2

� Z3x3B13��x2B23 � x3� ln B13 ÿ x2B23 ln B23�
�x1B13 � x2B23 � x3�2

!
(42)

ln g1 � 1� ln
Vm1

x1Vm1 � x2Vm2B21 � x3Vm3B31 � x4Vm4B41

� �
ÿ x1Vm1

x1Vm1 � x2Vm2B21 � x3Vm3B31 � x4Vm4B41

ÿ x2Vm1B12

x1Vm1B12 � x2Vm2 � x3Vm3B32 � x4Vm4B42

ÿ x3Vm1B13

x1Vm1B13 � x2Vm2B23 � x3Vm3 � x4Vm4B43

ÿ x4Vm1B14

x1Vm1B14 � x2Vm2B24 � x3Vm3B34 � x4Vm4

ÿ 1

2

� Z1�x2B21 � x3B31 � x4B41��x2B21 ln B21 � x3B31 ln B31 � x4B41 ln B41�
�x1 � x2B21 � x3B31 � x4B41�2

 

� Z2x2B12��x2 � x3B32 � x4B42� ln B12 ÿ x3B32 ln B32 ÿ x4B42 ln B42�
�x1B12 � x2 � x3B32 � x4B42�2

� Z3x3B13��x2B23 � x3 � x4B43� ln B13 ÿ x2B23 ln B23 ÿ x4B43 ln B43�
�x1B13 � x2B23 � x3 � x4B43�2

� Z4x4B14��x2B24 � x3B34 � x4� ln B14 ÿ x2B24 ln B24 ÿ x3B34 ln B34�
�x1B14 � x2B24 � x3B34 � x4�2

!
(43)
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the best, while Eq. (29) is better than Wilson from the

predicted deviations, but actually Eq. (29) is the best,

Wilson not quite so and P±F the worst because P±F

model requires the experimental activities of compo-

nent Cd of the three binaries Cd±Bi, Cd±Pb and Cd±Sn

and the three ternaries Cd±Bi±Pb, Cd±Bi±Sn and Cd±

Pb±Sn as well as the 35 measured values of activity

of component Cd of the quaternary to ®t the 18

multicomponent parameters which had no physical

meanings [10]; and Wilson's model was not suitable

for liquid±liquid partial miscible systems and its

binary parameters lacked a clear physical meaning

although it had been successfully applied to the pre-

diction of thermodynamic properties of liquid alloys

[12±16], molten salts [17], molten slags [18] and

molten mattes [19], whereas Eq. (29) not only could

Table 3

Comparison of the predicted values with the experimental data of activity of component Cd in the Cd±Bi±Pb and the Cd±Bi±Sn liquid alloys at

773 K

Cd±Bi±Pb Cd±Bi±Sn

xCd xBi xPb aCd,exp [8] aCd,pre xCd xBi xSn aCd,exp [9] aCd,pre

0.109 0.299 0.591 0.217 0.211 0.871 0.097 0.032 0.880 0.870

0.199 0.269 0.531 0.357 0.350 0.692 0.231 0.077 0.701 0.688

0.314 0.231 0.455 0.490 0.490 0.429 0.429 0.143 0.414 0.417

0.420 0.195 0.385 0.594 0.591 0.200 0.600 0.200 0.193 0.190

0.563 0.147 0.290 0.703 0.697 0.077 0.692 0.231 0.076 0.073

0.655 0.116 0.229 0.760 0.755 0.905 0.048 0.048 0.910 0.906

0.691 0.104 0.205 0.789 0.777 0.702 0.149 0.149 0.723 0.711

0.812 0.063 0.125 0.858 0.851 0.481 0.259 0.259 0.500 0.498

0.877 0.041 0.081 0.903 0.896 0.250 0.375 0.375 0.269 0.265

0.938 0.021 0.041 0.947 0.943 0.053 0.474 0.474 0.059 0.056

0.118 0.588 0.294 0.166 0.158 0.871 0.032 0.097 0.881 0.876

0.233 0.511 0.256 0.303 0.296 0.692 0.077 0.231 0.727 0.716

0.429 0.381 0.190 0.509 0.500 0.429 0.143 0.428 0.486 0.478

0.552 0.299 0.149 0.619 0.613 0.200 0.200 0.600 0.251 0.245

0.629 0.247 0.124 0.687 0.679 0.077 0.231 0.692 0.101 0.099

0.822 0.119 0.059 0.857 0.840 ± ± ± ± ±

0.950 0.033 0.017 0.956 0.952 ± ± ± ± ±

SCd � �0:0065, S�Cd � �0:01 SCd � �0:0057, S�Cd � �0:01

Table 4

Comparison of the predicted values with the experimental data of activity of components Bi and Sn in the Bi±Sn±Cd and Sn±Bi±Cd liquid

alloys at 773 K

Bi±Sn±Cd Sn±Bi±Cd

xBi xSn xCd aBi,exp [9] aBi,pre xSn xBi xCd aSn,exp [9] aSn,pre

0.692 0.231 0.077 0.692 0.699 0.200 0.600 0.200 0.240 0.237

0.429 0.429 0.143 0.424 0.429 0.429 0.429 0.143 0.479 0.472

0.200 0.600 0.200 0.197 0.194 0.692 0.231 0.077 0.721 0.714

0.600 0.200 0.200 0.591 0.596 0.143 0.429 0.429 0.192 0.189

0.333 0.333 0.333 0.310 0.310 0.333 0.333 0.333 0.408 0.398

0.143 0.429 0.429 0.124 0.123 0.600 0.200 0.200 0.649 0.643

0.429 0.143 0.429 0.403 0.404 0.077 0.231 0.692 0.122 0.116

0.200 0.200 0.600 0.167 0.171 0.200 0.200 0.600 0.281 0.274

0.077 0.231 0.692 0.060 0.062 0.429 0.143 0.429 0.507 0.506

SBi � �0:0028, S�Bi � �0:01 SSn � �0:0050, S�Sn � �0:01
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characterize a multicomponent solution with only the

binary parameters where physical senses were clear

but also was put on the bases of statistical thermo-

dynamics and could be used to predict the liquid±

liquid immiscible systems.

5. Conclusions

The basic feature of the new models is of moving

the liquid molecules by non-random migration. The

molecular cells are not prison cages restraining them

but are the carriers of migration. The new expressions

of the con®gurational partition function as well as the

excess Gibbs energy of liquids and their mixtures have

been derived from statistical thermodynamics.

The local molecular fractions and the pair-potential

interaction parameters de®ned according to the

concepts of local coordination numbers have clear

physical meanings. The new model has been veri®ed

to be quite convenient and reliable by predicting the

thermodynamic properties of liquid alloys.

Table 5

Comparison of the predicted values with the experimental data of activity of component Cd in the liquid alloys Cd±Bi±Pb±Sn at 773 K

xCd xBi xPb xSn aCd

Wilson [12] Eq. (29) P±F [10] Exp. [10]

0.1000 0.1800 0.1800 0.5400 0.1414 0.1424 0.1413 0.1465

0.1998 0.1601 0.1600 0.4801 0.2703 0.2673 0.2665 0.2724

0.4000 0.1200 0.1200 0.3600 0.4860 0.4770 0.4822 0.4838

0.4999 0.1001 0.0999 0.3001 0.5768 0.5673 0.5758 0.5771

0.6000 0.0801 0.0801 0.2398 0.6611 0.6524 0.6625 0.6648

0.7000 0.0600 0.0600 0.1800 0.7417 0.7349 0.7443 0.7448

0.8000 0.0400 0.0399 0.1201 0.8222 0.8181 0.8244 0.8243

0.9001 0.0200 0.0199 0.0600 0.9067 0.9053 0.9075 0.8964

0.1001 0.1801 0.5399 0.1800 0.1933 0.1843 0.1844 0.1859

0.2002 0.1600 0.4798 0.1599 0.3432 0.3333 0.3300 0.3304

0.3001 0.1400 0.4199 0.1399 0.4615 0.4533 0.4504 0.4525

0.3999 0.1200 0.3600 0.1201 0.5577 0.5509 0.5523 0.5513

0.4999 0.1001 0.2999 0.1001 0.6388 0.6326 0.6395 0.6374

0.6002 0.0800 0.2398 0.0800 0.7105 0.7040 0.7150 0.7111

0.7000 0.0600 0.1800 0.0600 0.7767 0.7702 0.7816 0.7802

0.8001 0.0400 0.1199 0.0400 0.8424 0.8371 0.8453 0.8387

0.8999 0.0200 0.0600 0.0200 0.9133 0.9109 0.9139 0.9010

0.1007 0.2998 0.2997 0.2998 0.1480 0.1450 0.1468 0.1425

0.2002 0.2667 0.2665 0.2666 0.2789 0.2729 0.2731 0.2748

0.3002 0.2332 0.2333 0.2333 0.3943 0.3866 0.3877 0.3881

0.4000 0.2000 0.2001 0.1999 0.4956 0.4874 0.4922 0.4950

0.4999 0.1668 0.1667 0.1666 0.5863 0.5782 0.5875 0.5919

0.6001 0.1332 0.1331 0.1336 0.6697 0.6623 0.6747 0.6662

0.6997 0.1001 0.1001 0.1001 0.7485 0.7423 0.7545 0.7641

0.8000 0.0668 0.0666 0.0666 0.8269 0.8226 0.8312 0.8310

0.9001 0.0332 0.0333 0.0334 0.9086 0.9068 0.9099 0.9041

0.1001 0.5400 0.1800 0.1798 0.1179 0.1185 0.1243 0.1187

0.2001 0.4798 0.1600 0.1602 0.2334 0.2320 0.2352 0.2350

0.3000 0.4200 0.1400 0.1400 0.3433 0.3398 0.3413 0.3403

0.4001 0.3599 0.1200 0.1200 0.4472 0.4423 0.4457 0.4466

0.4999 0.3000 0.1001 0.1001 0.5450 0.5395 0.5473 0.5464

0.5999 0.2401 0.0801 0.0800 0.6381 0.6327 0.6446 0.6442

0.6999 0.1800 0.0600 0.0601 0.7279 0.7231 0.7363 0.7501

0.8500 0.0900 0.0300 0.0300 0.8604 0.8579 0.8650 0.8887

0.9193 0.0485 0.0161 0.0161 0.9229 0.9219 0.9247 0.9277

SCd � �0:0084, �0.0071, �0.0065, �0.01
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