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Abstract

We present a theoretical model of a calorimeter, with particular reference to the Perkin-Elmer DSC-7, with the aim of

emulating, in the simplest possible manner, the essential operations of this instrument. The basic idea is to assign a working

transfer function to each of its fundamental elements: differential temperature ampli®er, average temperature ampli®er and

programmer. From these transfer functions we get the theoretical output of the calorimeter. This output is used to ®t the

unbalance that occurs when the calorimeter switches from isothermal to scanning state. Following this, we work out the

transfer function of the calorimeter and evaluate it using the parameters obtained from the ®tting. We then use this function to

deconvolute the melting peak of indium samples and to interpret melting temperature dependence on the scanning rate.

# 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many authors have described the general working

principles of a differential power scanning calorimeter

(DPSC) [1±7], but a theory which enables us to

describe the characteristic features of a measured

curve is not yet available. In this paper we propose

a mathematical model of DPSC, in the limit of linear-

ity, with particular reference to a DSC-7 manufactured

by Perkin-Elmer. We use a discrete elements

approach, taking into account the inevitable construc-

tion differences between the two calorimeters.

The theoretical output of the calorimeter is obtained

from the working transfer functions of the three

fundamental elements of the DSC-7: average tem-

perature ampli®er, differential temperature ampli®er

and programmer. The number of parameters envisaged

in the general model are then critically reduced. To

ascertain that this simpli®ed model still meets our

main objective (i.e. to emulate, in the simplest possible

manner, the essential operations of a DPSC like the

DSC-7), it is tested by ®tting the unbalance that occurs

when the calorimeter switches from the isothermal to

the running state.

The positive result of the ®tting led us to believe that

the model could be used to tackle some problems of

interest to calorimeter users, such as that of how to

obtain the impulse response of the instrument. This

response has already been obtained by numerical

differentiation of the unbalance that occurs when

the DPSC switches from isothermal to running state

[5]. It has also been worked out experimentally, using

a very short light ¯ash [8]. Nobody, as far as we know,

has provided an analytical expression of the impulse

response of the calorimeter. We get it from our model

and evaluate it by introducing the parameters obtained
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by the ®tting. It is then used to deconvolute the fusion

peak of indium samples and to interpret the delay in

the onset temperature of fusion with the scan rate.

2. Operating equations

A holder of a DSC-7 is schematically shown in

Fig. 1. It is made up of a small wafer-shaped block

ABCD over which the compartment for a pan is

located. The resistances for heating and measuring

the temperature are insulated platinum wires wound

around a rectangular aluminum oxide chip, sur-

rounded by powdered aluminum oxide, pressed

between two platinum alloy disks. The bottom resis-

tance works as a heater and the top resistance as a

temperature sensor.

The problem of heat conduction, taking into

account that the distances involved are very small,

can be dealt with in a very simple manner by a discrete

elements approach. To this end we divided slab ABCD

of the holder into two parts, as indicated by the broken

line in Fig. 1, and we considered the pan (plus the

sample to be studied) as a third part.

Applying the energy conservation law to the various

parts, we get

P�t� � C1
dT1�t�

dt
� T1�t�

R1

� T1�t� ÿ T2�t�
R12

;

T1�t� ÿ T2�t�
R12

� C2
dT2�t�

dt
� T2�t�

R2

� T2�t� ÿ T3�t�
R23

;

T2�t� ÿ T3�t�
R23

� C3
dT3�t�

dt
� T3�t�

R3

(1)

where t is the time, P�t� the power provided to the

holder from outside, C1, C2, and C3 are the thermal

capacities of the various parts, R1, R2 and R3 are the

coupling thermal resistances between the three parts

and the holder enclosure block (HEB, hatched in

Fig. 1), R12 the coupling resistance between parts

(1) and (2), R23 the coupling resistance between parts

(2) and (3), T1�t�, T2�t� and T3�t� are the temperatures

of the various parts referred to temperature T1 of the

HEB. Obviously, isotherm temperature TI, instead of

T1, can be used as a reference, but in this case power

P�t� must also be referred to its isothermal value. In

the following, all quantities will be referred to their

isothermal values.

We now examine the particular case of an empty

holder. In this case C3 � 0 and R23 !1, conse-

quently the system (1) reduces to

P�t� � C1
dT1�t�

dt
� T1�t�

R1
� T1�t� ÿ T2�t�

R12
;

T1�t� ÿ T2�t�
R12

� C2
dT2�t�

dt
� T2�t�

R2

(2)

If we eliminate T1�t� from Eq. (2), we get

P�t� � R12C1C2
d2T2

dt2
� C1 � C2 � R12C1

R2

� R12C2

R1

� �
� dT2

dt
� 1

R1
� 1

R2
� R12

R1R2

� �
T2 (3)

In a DSC-7, temperature control of the two coupled

holders is realized in two half-cycles: the average

power half-cycle and the differential power half-cycle

[9]. These two operations are performed by the aver-

age temperature ampli®er and by the differential

temperature ampli®er, respectively [9]. During the

power half-period t=2, the same amount of energy

Fig. 1. Schematic representation of a holder in its surroundings.

The broken line divides slab ABCD into two parts 1 and 2, where

the heater and sensor respectively are embodied. Pan (plus its

content) is the third part.
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P�t�t=2 is supplied to the two holders. The relevant

control system operates so that the average tempera-

ture TA � 1
2
�T2S � T2R� increases linearly with time,

thus tracking as closely as possible the signal TP�t�
coming from the programmer (letters S and R in the

subscripts refer to the sample-holder and the refer-

ence-holder, respectively). During the differential

half-cycle the difference in temperature of the two

holders is controlled and the energy �P� D=2�t=2 is

supplied to the holder with the lower temperature and

the energy �Pÿ D=2�t=2 is supplied to the holder

with the higher temperature, in order to decrease their

temperature difference.

Eq. (3) written for the two holders, together with the

equations for the temperature control of the two half-

cycles, are the fundamental equations describing the

operation of an empty calorimeter. For generality's

sake, we use a PID (proportional, integral, differential)

control for both the half-cycles at this stage. We will

specialize the system afterwards. We get the following

system of equations:

P�t� � D�t�
2
� a2

d2T2S

dt2
� a1

dT2S

dt
� a0T2S;

P�t� ÿ D�t�
2
� b2

d2T2R

dt2
� b1

dT2R

dt
� b0T2R;

P�t� � KP�TP ÿ TA� � KI

Z
�TP ÿ TA� dt

� KD
d�TP ÿ TA�

dt
;

D�t� � ÿHPTD�t� ÿ HI

Z
TD�t� dt ÿ HD

dTD�t�
dt

;

TA�t� � T2S�t� � T2R�t�
2

; TD�t� � T2S�t� ÿ T2R�t�
(4)

where for the sake of brevity we put

a2 � R12SC1SC2S;

a1 � C1S � C2S � R12S
C1S

R2S

� C2S

R1S

� �
;

a0 � 1

R1S

� 1

R2S

� R12S

R1SR2S

; b2 � R12RC1RC2R;

b1 � C1R � C2R � R12R
C1R

R2R

� C2R

R1R

� �
;

b0 �
1

R1R

� 1

R2R

� R12R

R1RR2R

(5)

KP, KI, KD are the constants for the power half-cycle

control system and HP, HI, HD are the constants for the

differential half-cycle control system. In the tempera-

ture control equation for the differential half-cycle we

considered the temperature of the reference-holder

greater than that of the sample-holder (T2R > T2S)

and we used the minus sign because, conventionally,

D�t� is considered positive in this case. In these

equations TP�t� is the input and all the other quantities,

namely: TA�t�, TD�t�, P�t�, D�t�, T2S�t� and T2R�t� are

the outputs. The power difference D�t� is an output

provided by the DSC-7 calorimeter.

TP�t�, the reference signal for the average tempera-

ture ampli®er, is generated by the programmer, which

is the third fundamental device of a DSC-7 calorimeter

in addition to the average temperature ampli®er and

differential temperature ampli®er [9]. TP�t� must

increase linearly with time at rate uP. The input of

the programmer is the so-called programmed tem-

perature, W�t� � uP�t � q�, which is the abscissa of the

measured curve and is generated by the timing source

of the instrument. We, of course, do not know the

exact transfer function of the programmer; we know

only what it must perform. So we approximate this

transfer function by a linear second-order equation.

We put

tP�L� � o2uP

L2 � 2zoL� o2

1

L2
� q

L

� �
(6)

The three parameters o, z and q are to be deter-

mined by the ®tting. The terms in the round brackets

TP�t� is the Laplace transforms of TP�t�. According to

Eq. (6), we have the following initial values:

TP�0� � T 0P�0� � 0, and T 00P �0� � qo2uP. Moreover,

for the steady state, we get

TP;1�t� � �t � q�uP ÿ 2z
o

uP (7)

TP;1�t� has then a delay �2z=o�uP with respect to

input W�t�. It follows then, that not only heat-transfer,

as envisaged in Eq. (4), but also the action of the

programmer is to be considered in the total delay with

respect to W�t�.
In order to have the outputs as functions of the

input, we must solve system (4). In the limits of

linearity, all parameters are constants and this inte-

gro-differential system can be more easily solved
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using Laplace transforms. If we suppose momentarily

all initial conditions equal to zero, system (4) becomes

p�L� � 1
2

d�L� � �a2L2 � a1L� a0�t2S�L�;
p�L� ÿ 1

2
d�L� � �b2L2 � b1L� b0�t2R�L�;

p�L� � KP�tP�L� ÿ tA�L�� � KI

L
�tP�L� ÿ tA�L��

� KDL�tP�L� ÿ tA�L��;
d�L� � ÿHP�t2S�L� ÿ t2R�L�� ÿ HI

L
�t2S�L� ÿ t2R�L��

ÿ HDL�t2S�L� ÿ t2R�L��;
tA�L� � 1

2
�t2S�L� � t2R�L��;

tD�L� � �t2S�L� ÿ t2R�L�� (8)

In these formulas L is a complex variable and the

small letters stand for the Laplace transforms of

the functions indicated by capital letters in the time

domain. System (8) can now be treated as an algebraic

system with p, d, t2S, t2R, tA, tD unknown. The

outlines of the solution of this system are reported

in Appendix A.

In the case of a pan placed in a holder, solving

system (1) in the complex domain with respect to

t2�L�, we get

p�L� �
�

R12C1C2L2 �
�

C1 � C2 � C1R12

R2
� C2R12

R1

� C1R12

R23

C3L� 1=R3

C3L� 1=R3 � 1=R23

� ��
L� 1

R1

� 1

R2

� R12

R1R2

� R12

R23

1

R1

� 1

R12

� �
� C3L� 1=R3

C3L� 1=R3 � 1=R23

� ��
t2�L� (9)

This equation coincides with the transform of Eq. (3),

apart from the two fractional terms in square brackets.

C3, the thermal capacity of the pan plus the sample, is

about 2:5� 10ÿ2 J Kÿ1, i.e. an order of magnitude

smaller than the thermal capacity of a holder. We

can therefore approximate the fractional term by its

power expansion in C3:

C3L� 1=R3

C3L� 1=R3 � 1=R23

� R23

R23 � R3

� R23R2
3

�R23 � R3�2
LC3

ÿ R2
23R3

3

�R23 � R3�3
L2C2

3 � � � � (10)

Substituting this equation in (9) and using positions

(5) concerning the sample-holder, we have

p�L� � a2L2 �
�
a1 � C1SR12S

R23S

�
R23S

R23S � R3S

� R23SR2
3S

�R23S � R3S�2
LC3S � � � �

��
L� a0 � R12S

R23S

� 1

R1S

� 1

R12S

� ��
R23S

R23S � R3S

� R23SR2
3S

�R23S � R3S�2

� LC3S ÿ R2
23SR3

3S

�R23S � R3S�3
L2C2

3S � � � �
�

(11)

In this substitution we neglected the terms in L which

would generate an equation of an order higher than

two; in this way we get an equation which can easily

be compared with the transform of Eq. (3) for an

empty holder. Reordering and using the explicit form

of a1, a2 and a3, we see that these expressions can be

rede®ned in the following manner:

a2 � R12SC1S C2S � R2
3S

�R23S � R3S�2
C3S

" #

ÿ 1� R12S

R1S

� �
R3

3S

�R23S � R3S�3
R23SC2

3S;

a1 � C1S � C2S � R2
3S

�R23S � R3S�2
C3S

" #

� R12S

R1S

C2S � R2
3S

�R23S � R3S�2
C3S

" #

� R12SC1S
1

R2S

� 1

R23S � R3S

� �
;

a0 � 1

R1S

� 1� R12S

R1S

� �
1

R2S

� 1

R23S � R3S

� �
(12)

Comparing Eq. (12) with their analog (5) we see that,

apart from the quadratic term in C2
3S, in the ®rst-order

approximation, placing a pan in an empty holder is the

same as increasing its capacity C2 and its thermal

conductance 1=R2 by the respective amounts:

C2 � R2
3

�R23 � R3�2
C3 ! C2;

1

R2

� 1

R23 � R3

! 1

R2

(13)

These positions allow us to consider a holder with a

pan as if it were empty, but of course the best ®tting
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parameters must be recalculated. When we put a pan

in a holder an RC-term is added in series with the

holder and consequently an extra exponential should

appear in the general solution. This is quite clear if we

inspect Eq. (9). It turns out to be a third-order equa-

tion, while Eq. (2), concerning an empty holder, is of

the second order. In the empty holder approximation

(EHA) the number of exponentials is still that of an

empty calorimeter, nevertheless the measured curves

can always be ®tted quite well. We considered two

fundamentally different experimental situations: (a)

when the calorimeter is well balanced (e.g. a pan is

placed in both holders), in this case the EHA should

apply to both holders and (b) when the calorimeter is

unbalanced (e.g. a pan is placed in the sample-holder

and the reference-holder is empty). In this case the

EHA should apply only to the sample-holder. In both

experimental situations the measured curves can be

®tted quite well. This gives us con®dence that the

EHA is a good approximation adequate to describe the

output of the instrument.

3. Fitting of the experimental curve

The theoretical output D�t� is given in the complex

domain by Eq. (A.10) of the appendix and its coef®-

cients are given by (A.6) and (A.9). Taking into

account Eq. (6) for tP�L� and the initial condition

T 00P �0� � qo2uP, we can rewrite Eq. (A.10) in the

following form, which is that used for the ®tting:

d�L� � PD3L3 � PD2L2 � PD1L� PD0

A5L5 � A4L4 � A3L3 � A2L2 � A1L� A0

� o2uP

L2 � 2zoL� o2

1

L2
� q

L

� �
ÿ PD3qo2uP

A5L5 � A4L4 � A3L3 � A2L2 � A1L� A0

(14)

In the programme there is the option to introduce a

delay between the start of scanning and the end of the

isotherm. Calling XP this dead time, the function to

minimize turns out to be

w2�C1S;C1R;C2S;C2R;R1S;R1R;R2S;R2R;R12S;R12R;

KI;KP;KD;HI;HP;HD; z;o; q;XP�
�
X
�D�t� ÿ Y�t��2 (15)

where Y�t� is the experimental output. The general

function of ®tting depends on 20 parameters, but in

®tting the measured curves of our DSC-7 we always

worked with a smaller number.

The DSC-7 output is usually reported to be propor-

tional to the difference in temperature of the two

holders [6,8]. Accordingly, for the differential half-

cycle we put: HI � HD � 0. As a further simpli®ca-

tion we also put: KD � 0.

To have a rough evaluation of the thermal capacity

of a holder, we used an old measuring head of our

calorimeter. We obtained for block ABCD a value of

' 0:5 and then ' 0:25 J Kÿ1 for its two half-parts. In

the ®tting we set C1S � C1R � C2R � 0:25 J Kÿ1,

leaving only C2S to vary. A rough evaluation of

resistances R1 and R2 was performed by calculating

the thermal ¯ux between a holder and the HEB. For

the HEB at 200 K and the holder at 273 K we get

R1 ' 130 K Wÿ1, R2 ' 320 K Wÿ1. Also in this case

we set constants R1S � R1R � 130 K Wÿ1 and R2R �
320 K Wÿ1, leaving only R2S to vary. Values of C1S,

C1R, C2R, R1S, R1R, R2R within 10% of the quoted

values practically provide ®ttings with the same stan-

dard deviation. Resistance R12 has instead a value of

few units. In the process of ®ttings we kept R12R as a

constant and R12S as a variable parameter. The best

®ttings were obtained with R12R ' 2:3 K Wÿ1. These

positions, while reducing the number of parameters,

still account for the asymmetries between the two

coupled holders. In fact, their differences in thermal

capacity and conductance are all incorporated in the

®tting parameters C2S, R2S and R12S.

At this point, the parameters left free to vary in the

process of ®tting are therefore: KI, KP, HP, C2S, R2S,

R12S, z, o, q, XP. This number can be further reduced

by two by imposing that the steady state solution of

Eq. (14) should coincide with the asymptotic behavior

of the experimental curve. If we denote by Z1t � Z2

the straight line that ®ts the experimental curve when

the initial transient is over, then from Eq. (14), we get

Z1A0 � PD0uP;

Z1�A1o� 2zA0� � Z2A0o � �PD0q� PD1�ouP (16)

In our ®tting programme these equations are used to

get R2S and C2S.

Eq. (14) and their coef®cients (A.6) and (A.9) show

that the function is not linear in its ®tting parameters
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and consequently the error function can have more

than one minimum in the parameter hypersurface. It is

therefore necessary, at the beginning of the process of

®tting, to localize one of these minima, either tenta-

tively or by using one of the searching techniques in

the parameter space [10]. In reality, we tentatively

determined a point near a minimum, then we opti-

mized the parameters by the Marquardt method [10].

>From Eq. (A.11) and taking into account what has

been said before concerning Eq. (14), we get for

t2S�L�:

t2S�L� � T�S3L3 � T�S2L2 � T�S1L� T�S0

A5L5 � A4L4 � A3L3 � A2L2 � A1L� A0

� o2uP

L2 � 2zoL� o2

1

L2
� q

L

� �
ÿ T�S3qo2uP

A5L5 � A4L4 � A3L3 � A2L2 � A1L� A0

(17)

whose coef®cients, (A.6) and (A.12), can be calcu-

lated using the parameters obtained from the ®tting of

the measured curve D�t�.
The second of Eq. (2) allows us to get temperature

t1S�L�. This equation, using the symbols relating to the

sample-holder and resolved with respect to tempera-

ture T2S�t�, becomes in the complex domain:

t1S � R12SC2SL� R12S

R2S

� 1

� �� �
t2S�L� (18)

where all the parameters are known from the ®tting of

D�t�. The third of Eq. (1) written in the complex

domain becomes:

t3S�L� � 1=C3SR23S

L� �1=C3SR3S � 1=C3SR23S� t2S�L� (19)

and may allow us to evaluate temperature t3S�L�,
provided R3S and R23S are known.

4. Transfer function

The EHA enables us to work out the transfer

function of the calorimeter in two different experi-

mental situations: (a) when the transient of the signal

generated by the programmer is still in progress and

consequently tP�L� is given by (6). This is the case

when the calorimeter switches from the isothermal to

the running state (or vice versa) and (b) when the

reference signal has reached its steady state. In this

case the action of the programmer is simply to produce

a delay of the amount 2zuP=o in its input, as expressed

in the time domain by Eq. (7). If, for simplicity's sake,

we do not consider the term q, the reference signal in

the complex domain turns out to be

tP�L� � uP

L2
eÿ�2zuP=o�L (20)

A signal coming from a pan should affect only the

operations of the average temperature ampli®er and

the differential temperature ampli®er but not the

programmer. Consequently, in our view, the impulse

response to use in the deconvolution of a signal

coming from a pan should be that relating to (b).

Let us ®rst consider this second case. If we inspect

the explicit expression of coef®cients PD3, PD2, PD1,

PD0, we realize that in order to have a response from

the calorimeter it is necessary to have a difference in

the thermal capacities or the conductances of the two

coupled holders. In EHA, whatever happens in a pan

can be seen by the calorimeter only as a change in

capacity C2S or conductance 1=R2S of the upper part of

the sample-holder (where, in view of positions (13),

both the pan and the sample are embodied). We should

therefore investigate how Eq. (14) is affected when

1=R2S or C2S changes by a constant amount Z.

Let us suppose that there is an increase in the

conductance between the upper part of the sample-

holder and its environment by a constant amount Z. If

we make the substitution

1

R2S

� Z! 1

R2S

(21)

Eq. (5) concerning the sample-holder are transformed

as follows:

a1 � ZR12SC1S ! a1; a0 � Z� Z
R12S

R1S

! a0

(22)

In the second substitution the third addend can be

dropped, if we take into account that the fractional

term has a very small value compared to the second.

Carrying out substitutions (22) in (A.6) and (A.9)

and taking into account Eq. (20), Eq. (14) can be
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written as

d�L� � Dd � ZN2�L�
D� ZD4�L�

uP

L2
eÿ�2zuP=o�L (23)

where, for brevity's sake, we indicated the numerator

and the denominator of Eq. (A.10) with Dd and D
respectively, and with N2�L� and D4�L� the two poly-

nomials of the second and fourth degree, which turn up

in the numerator and in the denominator of Eq. (A.10)

as a result of substitutions (21). When Z � 0 we get the

baseline. When Z 6� 0 we get a response that is not

linear as input Z also appears in the denominator. If Z is

small we can expand Eq. (23) by a power series, and if

we retain only the ®rst-order term, we get

d�L�� Dd

D
uP

L2
� N2�L�

D
ÿ DdD4�L�

D2

� �
Z

uP

L2

� �
eÿ�2zuP=o�L

(24)

The ®rst addend represents the baseline, while the

second addend represents the response to the ramp

input ZuP=L2 of strength ZuP. The second fraction

inside the round bracket can generally be neglected

as the coef®cients of the polynomial Dd are very small,

since they are linear combinations of the differences

CS ÿ CR and 1=RS ÿ 1=RR. Using this approximation,

the transfer function for a change in conductance

1=R2S can be written as

d�L� � N2�L�
D

� N2L2 � N1L� N0

A5L5 � A4L4 � A3L3 � A2L2 � A1L� A0

� eÿ�2zuP=o�L (25)

where N2, N1, N0 are the coef®cients of the polynomial

N2�L�, which are given by the following expressions:

N2 � HPKPR12SC1S; N1 � HPKP � HPKIR12SC1S;

N0 � HPKI (26)

Let us suppose that it is the thermal capacity C2S

that increases by a constant amount Z. In this case the

substitution to be made is

C2S � Z! C2S (27)

and, operating as in the previous case, we get in place

of substitutions (22):

a2 � R12SC1SZ! a2; a1 � Z� R12S

R1S

Z! a1

(28)

and in place of Eq. (23), we have

d�L� � Dd � ZLN2�L�
D� ZLD4�L�

uP

L2
eÿ�2zuP=o�L (29)

The series expansion gives

d�L�� Dd

D
uP

L2
� N2�L�

D
ÿ DdD4�L�

D2

� �
Z

uP

L

� �
eÿ�2zuP=o�L

(30)

As in the previous case, the ®rst addend represents the

baseline, while the second addend represents the

response to the step function ZuP=L of strength ZuP.

Comparing the terms in round brackets in Eqs. (24)

and (30) we see that they are identical. So also in this

case the transfer function is still given by Eq. (25)

which can be reasonably considered the transfer func-

tion of the calorimeter, at least in the ®rst-order

approximation.

The transfer function related to case (a) is simply

that related to case (b) but using as transfer function of

the programmer the one given by Eq. (6), i.e.

d�L� � N2�L�
D

� N2L2 � N1L� N0

A5L5 � A4L4 � A3L3 � A2L2 � A1L� A0

� o2uP

L2 � 2zoL� o2
(31)

5. Results and discussion

To test the theory, we used it: (a) to ®t with Eq. (14)

the unbalance that occurs when the calorimeter

switches from the isothermal to the running state, in

order to understand the characteristics of the measured

curve; (b) to calculate the transfer function of the

instrument by which we deconvolute the melting peak

of indium samples and then we interpret the depen-

dence of the melting temperature on the scanning rate

[11]. This problem has already been addressed with

different approaches [12,13].
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Measurements were carried out with a DSC-7

calorimeter operating in subambient mode (with

Intracooler II accessory), with helium as purge

gas. Aluminum pans were used in all experiments.

The following settings were maintained throughout

all experiments: ordinate filter factor � 0; lag com-

pensation � 0; DT balance � 56; slope � 51:1.

Temperature calibration was made at 5 K minÿ1 using

Hg and In as standards. Ordinate calibration was

performed using In as the standard. An empty pan,

closely matched with the one enclosing the sample,

was put in the reference-holder.

To describe the details of the procedure used we

refer to an In sample of 2.937 mg heated at 40, 30, 20,

10, 5, 2 K minÿ1. Figures reported refer to the scan at

40 K minÿ1. Fig. 2 shows the ®tting, by Eq. (14), of the

start of a measured curve. The results are generally as

good as this, particularly when samples are scanned at

high rates as a consequence of the high signal-to-noise

ratio. The ®xed parameters are reported in Table 1, the

ones obtained from the ®tting are reported in Table 2.

It is interesting to match the particular features of a

measured curve with the various terms of the theore-

tical curve. Eq. (14) turns out to be the sum of four

fractional terms whose numerators are PD0, PD1L,

PD2L2, PD3L3. We do not lose in generality if in this

discussion we do not consider the terms containing q,

taking into account that q is generally small and that

these terms do not add any new particular aspect. The

exponents of the variable L in the complex domain

corresponds to derivatives in the time domain. Con-

sequently, as shown in Fig. 3, the total response D�t� in

the time domain turns out to be the sum of the

following responses: (1) the term with PD0, which

Fig. 2. Unbalance in a DSC curve on switching from isotherm to heating at 40 K minÿ1. Pan plus indium sample of 2.937 mg in sample-

holder, empty pan in reference-holder: (a) experimental points, recorded in 0.2 s steps, and ®tting function (solid line) in accordance with

Eq. (14); (b) difference between measured and ®tting curves.

Table 1

Parameters kept ®xed in all ®tting procedures

C1S

(J Kÿ1)

C1R

(J Kÿ1)

C2R

(J Kÿ1)

R1S

(K Wÿ1)

R1R

(K Wÿ1)

R2R

(K Wÿ1)

R12R

(K Wÿ1)

KD

(W s Kÿ1)

HD

(W s Kÿ1)

HI

(W Kÿ1 sÿ1)

0.25 0.25 0.25 130 130 320 2.3 0 0 0

22 N. Zucca et al. / Thermochimica Acta 366 (2001) 15±30



is the answer to the reference signal TP�t�, which in

turn is the solution of Eq. (6), (2) the term with PD1,

which is the answer to the ®rst derivative dTP=dt, (3)

the term with PD2, which is the answer to the second

derivative d2TP=dt2 and (4) the term with PD3, which is

the answer to the third derivative d3TP=dt3. Now let us

look at the expressions of the coef®cients PD0, PD1,

PD2, PD3 in (A.9). The ®rst term basically depends on

the difference in conductance of the sample-holder

and reference-holder and is responsible for the slope

of the measured curve. The second term basically

depends on the difference in capacity of sample-

holder and reference-holder and is responsible for

the intercept of the measured curve. The third and

the fourth terms affect only the transient. They mainly

depend on internal resistance and capacity of the two

holders. The fourth term accounts for the negative

spike in the experimental curve, since if PD3 < 0 then

d3TP=dt3 is subtracted. If we increase the thermal

capacity of the sample-holder, all coef®cients, except

the ®rst, increase and we observe a progressive dis-

appearance of the negative minimum in the experi-

mental curve.

In Section 4, we obtained two different expressions

for the transfer function of the calorimeter. In our

opinion, the function to be used to deconvolute a

melting peak is the one obtained in accordance with

point (b), as the reference signal TP�t� has already

reached its steady state when the phase transition takes

place. Fig. 4 shows the impulse response calculated by

Eq. (25) using the parameters reported in Tables 1 and

2. As envisaged by this equation, the response has a

delay of 2zuP=o. Fig. 5 shows the deconvolution of the

peak of fusion by the impulse response of the calori-

meter shown in Fig. 4, normalized to 1, carried out

using the Fourier transforms with no ®ltering. We

often used both the numerical and the Fourier decon-

volution technique, always obtaining the same results.

Table 2

Fitting parameters related to the measured curve in Fig. 2, obtained by Eq. (14), together with the standard deviation s and the correlation

coef®cient r. C25 and R25 worked out using the constraints expressed by Eq. (16)

C2S

(J Kÿ1)

R2S

(K Wÿ1)

KP

(W Kÿ1)

KI

(W Kÿ1 sÿ1)

HP

(W Kÿ1)

z (±) o
(sÿ1)

R12S

(K Wÿ1)

q (s) XP

(s)

s (mW) r (±)

0.2526 119.26 0.902 0.521 0.522 0.863 0.627 2.232 0 0 1:9� 10ÿ3 0.999997

Fig. 3. Component curves (PD0, PD1, PD2, PD3) of the ®tting function (D�t�) of Fig. 2, in accordance with Eq. (14).
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Table 3 reports the values of the melting tempera-

ture as a function of the scanning rate, which is

reported in column 1. Column 2 shows the value of

the melting temperature worked out directly from the

output of the calorimeter. Column 3 reports the value

of the melting temperature obtained from the peaks

deconvolted using the impulse response of the calori-

meter worked out from the measured curve at

40 K minÿ1. As one can see they are practically inde-

pendent of the scanning rate. Column 4 reports results

Fig. 4. Impulse response worked out by inserting the ®tting parameters, reported in Tables 1 and 2, into Eq. (24).

Fig. 5. Measured indium melting peak (dotted line), clipped from the curve whose initial unbalance is reported in Fig. 2. Deconvoluted peak

(solid line), by the impulse response shown in Fig. 4.
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analogous to those in column 3 but obtained using the

data worked out from the ®tting of the experimental

curve at 10 K minÿ1.

Figs. 6±8 report the results relating to an In sample

of 1.203 mg, but using the measured curves obtained

after our calorimeter had been updated to enable it to

perform measurements of dynamic differential scan-

ning calorimetry (DDSC) as well. The relevant ®tting

parameters are reported in Tables 1 and 4. Table 5

reports the values of the melting temperature as a

Table 3

Melting temperatures of the indium sample as in Fig. 2, worked out at different scan rate

Heating rate uP (K minÿ1) From experimental peak T (K) After deconvolutiona T (K) After deconvolutionb T (K)

40 431.78 429.40 429.41

30 431.19 429.40 429.46

20 430.64 429.45 429.46

10 430.08 429.49 429.49

5 429.75 429.46 429.45

2 429.54 429.43 429.42

aUsing impulse response of Fig. 4 at 40 K minÿ1.
bFollowing the same procedure so as to arrive at column 3 but from the measured curve at 10 K minÿ1.

Fig. 6. Unbalance in a DSC curve on switching from isotherm to heating at 40 K minÿ1. Pan plus indium sample of 1.203 mg in sample-

holder, wide pan in reference-holder: (a) experimental points, recorded in 0.2 s steps, and ®tting function (solid line) in accordance with

Eq. (14); (b) difference between measured and ®tting curves.

Table 4

Fitting parameters related to the measured curve in Fig. 6, obtained by Eq. (14), together with the standard deviation s and the correlation

coef®cient r. C25 and R25 worked out using the constraints expressed by Eq. (16)

C2S

(J Kÿ1)

R2S

(K Wÿ1)

KP

(W Kÿ1)

KI

(W Kÿ1 sÿ1)

HP

(W Kÿ1)

z
(±)

o
(sÿ1)

R12S

(K Wÿ1)

q (s) XP

(s)

s
(mW)

r (±)

0.2511 119.43 0.789 0.313 2.61 1.02 1.46 2.228 0.13 0 2:3� 10ÿ3 0.999986
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function of the scanning rate. As can be seen by

comparing Figs. 2 and 6, the starting parts of the

two scans are quite different, but the method works

quite well in both cases.

At ®rst glance the result of our deconvolution may

appear incomplete. However, the transfer function

used for deconvolution is that of the instrument and

consequently the result is the signal coming from the

sample still convoluted with the impulse response of

the sample [5].

We must also point out that the values of the

®tting parameters shown in Tables 2 and 4 are to be

Fig. 7. Impulse response worked out by inserting the ®tting parameters, reported in Tables 1 and 4, into Eq. (24).

Fig. 8. Measured indium melting peak (dotted line), clipped from the curve whose initial unbalance is reported in Fig. 6. Deconvoluted peak

(solid line), by the impulse response shown in Fig. 7.
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considered only as apparent values. This is the con-

sequence not only of EHA and all other simpli®cations

but also of certain controls at the operator's disposal.

Measured curves can be modi®ed drastically by

adjustment of DT balance or slope controls, as shown

in Figs. 9 and 10, respectively. They can still be ®tted

with Eq. (14) but of course with different parameter

values.

Lastly we add that all programs and subroutines

used to perform these calculations were written by us.

6. Conclusion

We have presented a linear model of DPSC

with special reference to the DSC-7 manufactured

by Perkin-Elmer. The aim is to account for the general

features of the instrument, taking into account the

inevitable asymmetries between the two coupled

holders. We obtained the theoretical output of the

instrument from the working transfer functions of

each of the three fundamental elements of the

Table 5

Melting temperatures of the indium sample as in Fig. 6, worked out at different scan rate

Heating rate uP (K minÿ1) From experimental peak T (K) After deconvolutiona T (K) After deconvolutionb T (K)

40 430.85 429.60 429.60

30 430.54 429.60 429.60

20 430.22 429.61 429.61

10 429.91 429.61 429.62

5 429.75 429.60 429.60

2 429.63 429.58 429.58

aUsing impulse response of Fig. 7 at 40 K minÿ1.
bFollowing the same procedure so a to arrive at column 3 but from the measured curve at 10 K minÿ1.

Fig. 9. Modi®cations induced by adjustment of DT balance (DTB) control on measured curves when the calorimeter is switched from isotherm

to heating. Sample-holder and reference-holder empty; heating rate, 5 K minÿ1; slope control setting, 45. Experimental points, recorded in

0.2 s steps, and ®tting functions (solid lines) in accordance with Eq. (14).
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calorimeter, namely: the average temperature ampli-

®er, the difference temperature ampli®er and the

programmer.

A model's ef®ciency increases as the number of

parameters needed to achieve its goals decreases. For

this purpose we introduced the empty holder approxi-

mation (EHA) which allows us to treat all experi-

mental situations in the same framework. Moreover,

we have seen that a maximum of eight parameters

(instead of 20 envisaged in the general model) are

needed to adequately ®t the unbalance which occurs

when the calorimeter switches from isothermal to

running state.

The EHA allows calculation of the transfer func-

tion of the calorimeter in two different experimental

situations: (a) when the calorimeter switches from

isothermal to running state (or vice versa); (b) when

the reference signal generated by the programmer

has reached its steady state. The impulse responses

obtained in situation (a) have shapes similar to

the ones worked out by differentiation of the

initial unbalance, when the thermal capacity in the

sample-holder is somewhat greater than that of the

reference-holder. The dependence of the melting

temperature on the scan rate can be eliminated

by deconvolution of the melting peaks using the

impulse response relating either to situation (a) or

situation (b) but the results of the deconvolution

are very different. When something happens in a

pan (e.g. a phase transition), the reference signal

has already reached its steady state and, in our view,

the impulse response to be used should be that of

situation (b).

Our model was successful in interpreting qualita-

tively and quantitatively the situations in which it has

been used up to now. It explains various features of a

measured curve, associating them with certain para-

meters. All this makes us hope that it can be used

pro®tably in further applications.
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Appendix A.

We express t2S and t2R in the ®rst four equations in

terms of tA and tD and substitute p and d in the ®rst two

Fig. 10. Modi®cations induced by adjustment of slope control on measured curves when the calorimeter is switched from isotherm to heating.

Sample-holder and reference-holder empty; heating rate, 5 K minÿ1; DTB control setting, 56. Experimental points, recorded in 0.4 s steps, and

®tting functions (solid lines) in accordance with Eq. (14).
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equations using the third and the fourth equations.

If we put

AC � KP � KI

L
� KDL; BC � HP � HI

L
� HDL;

AS � a2L2 � a1L� a0 � AC;

BS � 1
2
�a2L2 � a1L� a0 � BC�;

AR � b2L2 � b1L� b0 � AC;

BR � 1
2
�b2L2 � b1L� b0 � BC� (A.1)

system (8) can be written in the following matrix

form:

0 0 AS BS 0 0

0 0 AR ÿBR 0 0

0 1 AC 0 0 0

1 0 0 BC 0 0

0 0 ÿ1 ÿ 1
2

1 0

0 0 ÿ1 1
2

0 1

������������

������������

d

p

tA

tD

t2S

t2R

�����������

�����������
�

ACtP

ACtP

ACtP

0

0

0

�����������

�����������
(A.2)

The relevant determinants of this system are easily

calculated and for the transfer functions of the various

outputs we get the following expressions:

tD�L� � DtD

D
tP�L� � �AR ÿ AS�AC

ASBR � ARBS

tP�L�;

tA�L� � DtA

D
tP�L� � �BS � BR�AC

ASBR � ARBS

tP�L�;

p�L� � Dp

D
tP�L�

� �ASBR � ARBS�AC ÿ �BS � BR�A2
C

ASBR � ARBS

tP�L�;

d�L� � Dd

D
tP�L� � �AS ÿ AR�BCAC

ASBR � ARBS

tP�L�;

t2S�L��Dt2S

D
tP�L��

�BS � BR � 1
2
�AR ÿ AS��AC

ASBR � ARBS

tP�L�;

t2R�L��Dt2R

D
tP�L��

�BS � BR ÿ 1
2
�AR ÿ AS��AC

ASBR � ARBS

tP�L�
(A.3)

Taking into account positions (A.1), the determi-

nants in Eq. (A.3) can be written in polynomial form.

Calculations are time-consuming but elementary.

We report the explicit form of the determinants D,

Dd and Dt2S
to have d�L� and t2S�L� in rational

algebraic form. The following positions are constantly

used in the process of ®tting:

KD � HD � HI � 0 (A.4)

For D, we have

D � A5L4 � A4L3 � A3L2 � A2L1 � A1L0 � A0Lÿ1

(A.5)

where we put

A5 � a2b2; A4 � �a2b1 � a1b2�;
A3 � �a2b0 � a1b1 � a0b0� � 1

2
�KP � HP��a2 � b2�;

A2 � �a1b0 � a0b1� � 1
2
�KP � HP��a1 � b1�

� 1
2

KI�a2 � b2�;
A1 � �a0b0 � KPHP� � 1

2
�KP � HP��a0 � b0�

� 1
2

KI�a1 � b1�; A0 � HPKI � 1
2

KI�a0 � b0�
(A.6)

The explicit form of the terms a and b are: (Eq. (5)

of the text)

a2 � R12SC1SC2S;

a1 � C1S � C2S � R12S
C1S

R2S

� C2S

R1S

� �
;

a0 � 1

R1S

� 1

R2S

� R12S

R1SR2S

; b2 � R12RC1RC2R;

b1 � C1R � C2R � R12R
C1R

R2R

� C2R

R1R

� �
;

b0 �
1

R1R

� 1

R2R

� R12R

R1RR2R

(A.7)

Expanding the determinant Dd, we have

Dd � �PD3L2 � PD2L1 � PD1L0 � PD0Lÿ1� (A.8)

whose coef®cients are

PD3 � �a2 ÿ b2�KPHP;

PD2 � �a1 ÿ b1�KPHP � �a2 ÿ b2�KIHP;

PD1 � �a0 ÿ b0�KPHP � �a1 ÿ b1�KIHP;

PD0 � �a0 ÿ b0�KIHP (A.9)

Therefore d�L� can be written in the following

rational algebraic form:

d�L�� PD3L3 � PD2L2 � PD1L� PD0

A5L5 � A4L4 � A3L3 � A2L2 � A1L� A0

tP�L�
(A.10)
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We now work out the explicit form for t2S�L�. For

Dt2S
, we get

DT2S
� T�S3L2 � T�S2L1 � T�S1L0 � T�S0Lÿ1 (A.11)

whose coef®cients are

T�S3 � b2KP; T�S2 � b1KP � b2KI;

T�S1 � b0KP � b1KI � KPHP; T�S0 � b0KI � KIHP

(A.12)

and for t2S�L�, we have

t2S�L�� T�S3L3�T�S2L2 � T�S1L�T�S0

A5L5 � A4L4 � A3L3�A2L2 � A1L�A0

tP�L�
(A.13)

For an easier reference we report the formulae used

for the ®tting of the starting unbalance (Eq. (14) of the

text):

d�L� � PD3L3 � PD2L2 � PD1L� PD0

A5L5 � A4L4 � A3L3 � A2L2 � A1L� A0

� o2uP

L2 � 2zoL� o2

1

L2
� q

L

� �
ÿ PD3qo2uP

A5L5 � A4L4 � A3L3 � A2L2A1L� A0

(A.14)

The values of the parameters kept constant are

KD � HD � HI � 0;

C1S � C1R � C2R � 0:25 J Kÿ1;

R1S � R1R � 130 K Wÿ1; R2R � 320 K Wÿ1;

R12R � 2:3 K Wÿ1 (A.15)

while R2S and C2S are obtained from Eq. (16) of the

text, i.e.

Z1A0 � PD0uP;

Z1�A1o� 2zA0� � Z2A0o � �PD0q� PD1�ouP

(A.16)

The transfer function of the calorimeter is given by

Eq. (25) of the text, i.e:

d�L� � N2�L�
D

� N2L2 � N1L� N0

A5L5 � A4L4 � A3L3 � A2L2 � A1L� A0

� eÿ�2zuP=o�L (A.17)

where N2, N1, N0 are given by the following expres-

sions:

N2 � HPKPR12SC1S; N1 � HPKP � HPKIR12SC1S;

N0 � HPKI (A.18)
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