

Thermochimica Acta 366 (2001) 105-120

thermochimica acta

www.elsevier.com/locate/tca

The excess enthalpies of liquid Ag–Ga–Te and Ag–In–Te alloys

F. Römermann, R. Blachnik^{*}

Institut für Chemie, Universität Osnabrück, Barbarastraße 7, D-49069 Osnabrück, Germany

Received 7 September 2000; received in revised form 27 September 2000; accepted 29 September 2000

Abstract

The excess enthalpies of liquid alloys in the ternary systems Ag–Ga–Te and Ag–In–Te were determined in a heat flow calorimeter for four sections Ag_yGa_yTe with y = 0.2, 0.4, 0.5, and 0.6 at 1173 K, for the section $Ag_{0.5}Ga_{0.5}$ –Te at 1073 K, for five sections Ag_yIn_{1-y} –Te with y = 0.2, 0.4, 0.5, 0.6, and 0.8 at 1173 K, and for the section $Ag_{0.5}In_{0.5}$ –Te at 973 and 1073 K. The thermodynamic functions of the system Ag–Ga and Ag–In were optimized, using the association model and the Lukas

program to get a reliable data base for the calculation of ternary thermodynamic data.

However, ternary interactions had to be considered for the analytical description of the excess enthalpies of the liquid Ag–Ga–Te and Ag–In–Te alloys. The enthalpy surface of both systems is characterized by a valley of exothermic minima from the congruently melting compound Ag₂Te to Ga₂Te₃ or In₂Te₃. The numerical values of the enthalpies decrease with increasing temperature by dissociation of binary telluride associates. \bigcirc 2001 Elsevier Science B.V. All rights reserved.

Keywords: Liquid alloys; Enthalpies of mixing; Ag-Ga-Te; Ag-In-Te; Optimization; Ag-Ga; Ag-In

1. Introduction

The behavior of melts of binary systems with chalcogen as one constituent component differs considerably from that of melts with metallic bond character. The thermodynamic data of chalcogen systems exhibit more or less triangular shaped functions of the composition. The apex of the triangle corresponds to the composition of a congruently melting compound of the systems. Such a behavior was for the first time observed and explained by Wagner [1]. He assumed that either an electron transfer to the more electronegative chalcogen or covalent bonding between metal and chalcogen cause this effect. Melts of these system reveal a similar behavior in other physical properties like viscosity, electrical or thermal conductivity, too.

* Corresponding author. Fax: +49-541-969-3323.

E-mail address: bl@chnik.de (R. Blachnik).

During a systematic survey of the enthalpies of mixing of ternary alloys with tellurium [2] we have now investigated the systems Ag–Ga–Te and Ag–In–Te.

2. Experimental

The measurements were performed with the aid of a high temperature heat flow calorimeter [3] in the isoperibolic procedure. The experimental arrangement and the procedure to determine excess enthalpies of liquid alloys have been described previously [4]. Ag (Degussa, 99.95%), Ga (Ingal, 99.999%), In (Degussa, 99.999%), and Te (ABCR, 99.999%) were used for the experiments. Ag_yM_{1-y} alloys (y = 0.2, 0.4, 0.5 and 0.6 with M = Ga; y = 0.2, 0.4, 0.5, 0.6 and 0.8 with M = In) were by prepared weighing appropriate amounts of Ag and M (M = Ga, In) into silica ampoules which were evacuated and then sealed. The ampoules were heated to melt and mix the

^{0040-6031/01/\$ –} see front matter 0 2001 Elsevier Science B.V. All rights reserved. PII: \$0040-6031(00)00726-7

components, annealed below the solidus temperature of the alloys for 14 d and then slowly cooled to room temperature. The measurements started on the metal rich side of the sections $Ag_{\nu}M_{1-\nu}$ -Te with $Ag_{\nu}M_{1-\nu}$ alloys, which were brought into the calorimeter tube and allowed to heat to the temperature of the measurement. Small amounts of pure Te at 298 K were consecutively added to the melt. On the tellurium rich part of the sections small amounts of $Ag_{\nu}M_{1-\nu}$ were successively added to liquid tellurium. The enthalpy increments H(T-298 K) of $Ag_v M_{1-v}$ and Te were needed to calculate the excess enthalpies of the ternary alloys. These data were determined by dropping $Ag_{v}M_{1-v}$ or Te from ambient temperature into liquid $Ag_{\nu}M_{1-\nu}$, or Te, respectively. The temperatures of these measurements were the same as for the determination of enthalpies of mixing. A calibration was carried out after each measurement by dropping pieces of tin into a second tube, which ends in the liquid alloy. The enthalpy increments H(T-298 K) of tin were taken from Barin [5]. The reproducibility of the heat effects was better than $\pm 5\%$. All experiments were carried out under dry argon gas at atmospheric pressure.

3. Binary systems

3.1. Phase diagrams

The five binary systems are well known [6]. Intermediate phases in the system Ag-Te are the liquid with a miscibility gap and the compounds $Ag_{1,9}$ Te, Ag₅Te₃ and Ag₂Te, only the latter melts congruently. The system Ga-Te has a small miscibility gap within its galliumrich part and four intermetallic compounds, of which GaTe and Ga₂Te₃ melt congruently. Ga₃Te₂ decomposes peritectically and Ga2Te5 is a peritectic high temperature phase. The system In-Te is similar, but contains more intermediate phases, namely four compounds, In₄Te₃, In₃Te₄, In₂Te₅, and In₃Te₂, which decompose peritectically, the congruently melting phases InTe and In₂Te₃, as well as a miscibility gap on the indiumrich side of the system. The properties of melts in the systems Ag-Te, Ga-Te, and In-Te are determined by associates, which are derived from the congruently melting compounds Ag₂Te, Ga₂Te₃, and In₂Te₃. The appearance of associates with compositions M_2Te_3 is surprising, because the compounds GaTe and InTe melt at higher temperatures than Ga_2Te_3 and In_2Te_3 .

The system Ag–Ga was recently reinvestigated [7], it contains two peritectic compounds: one in the silverrich region with a broad homogeneity range and the line compound AgGa. The system Ag–In is similar except that the composition of the line compound is AgIn₂.

3.2. Analytical descriptions

The thermodynamic functions of the melts were optimized with the programs BINGSS and BINFKT [8,9]. The association model of Sommer [10,11] was used for the analytical description of the melts with the assumption of the associates Ag_3Ga , Ag_3In , Ag_2Te , Ga_2Te_3 and In_2Te_3 , respectively. The coefficients according to the SGTE description of the temperature dependence of the Gibbs energy for the pure elements were taken from Dinsdale [12] and Feutelais et al. [13]. Thermodynamic data which were considered in the optimization of Ag-Ga and Ag-In are collected in Table 1. The coefficients of all limiting binaries obtained from the optimizations are presented in Tables 2 and 3.

The calculated thermodynamic functions are compared with some experimental data of the systems Ag– Ga and Ag–In in Figs. 1–5. Excess enthalpies of the Ag–Ga system (Fig. 1) are at 773 K nearly triangular shaped functions of the composition with a minimum at 25 mol% Ga (Ag₃Ga). The curve has a more rounded form at higher temperatures, which indicates a diminishing concentration of associates. Chemical potentials of gallium at 980 K are depicted in Fig. 2. Excess and formation enthalpies of the Ag–In system are given in Figs. 3 and 4, the chemical potentials of Ag and In at 1173 K in Fig. 5.

4. Ternary systems

4.1. Phase diagrams

The phase diagram Ag–Ga–Te was investigated by Guittard et al. [24]. The system is divided by the quasibinary section $Ag_2Te-Ga_2Te_3$ which contains the compounds Ag_9GaTe_6 , $AgGaTe_2$, and $AgGa_5Te_8$

Reference	Method	Function	Temperature (K)	Concentration x_{Ga}	
Ag–Ga					
[13]	Calorimetry	H^{E}	773	0.413-0.992	+
[14]	Calorimetry	H^{E}	1243	0.13-0.87	+
[15]	Calorimetry	H^{E}	773-1028	0.1–0.8	+
[16]	Calorimetry	H^{E}	1050	0.102-0.880	+
[17]	EMF	$\mu_{ m Ga}$	780-1020	0.3-0.9	+
Ag–In					
				Concentration x_{In}	
[18]	Calorimetry	H^{for}	723	0.672-0.945	+
[19]	EMF	μ_{In}	673–973	0.05-0.95	+
[20]	Calorimetry	H^{E}	1248	0.05-0.95	+
[21]	EMF	μ_{In}	1000-1020	0.208-0.823	_
[15]	Calorimetry	H^{E}	773	0.628-0.951	+
[14]	Calorimetry	H^{E}	1243	0.105-0.904	+
[22]	Knudsen-MS	μ_{Ag}, μ_{In}	1173–1473	0.1–0.9	+
[23]	Calorimetry	$H^{ ilde{ ext{E}}}$	1280	0.10-0.95	+

Table 1 Thermodynamic investigations of the system Ag–Ga and Ag–In $^{\rm a}$

^a '+': used, '-': rejected.

Table 2 Analytical description of the systems Ag–Ga and Ag–In

Phase	Analytical description	Parameter		Parameter	
Melt	Association model	$\Delta H^0_{Ag_2Ga}$ (J mol ⁻¹)	-33590	$\Delta H^0_{Ag_3In} (J \text{ mol}^{-1})$	-60250
		$\Delta S^0_{Ag_2Ga}$ (J mol ⁻¹ K ⁻¹)	-2.489	$\Delta S^0_{Ag_2In}$ (J mol ⁻¹ K ⁻¹)	-44.22
		$C_{\text{Ag},\text{Ag}_3\text{Ga}}^H$ (J mol ⁻¹)	-1437	$C_{\text{Ag,Ag}_2\text{In}}^H (\text{J mol}^{-1})$	37510
		$C_{Ag,Ag_{2}Ga}^{S}$ (J mol ⁻¹ K ⁻¹)	-6.034	$C^{S}_{\mathrm{Ag},\mathrm{Ag},\mathrm{In}}$ (J mol ⁻¹ K ⁻¹)	46.28
		$C_{Ag,Ga}^{H}$ (J mol ⁻¹)	1530	_	
		$C_{Ag,Ga}^{S}$ (J mol ⁻¹ K ⁻¹)	16.34	_	
		$C_{\text{Ga},\text{Ag}_3\text{Ga}}^H$ (J mol ⁻¹)	8810	$C_{\text{In,Ag_3In}}^H (\text{J mol}^{-1})$	39470
		$C_{\mathrm{Ga},\mathrm{Ag}_{3}\mathrm{Ga}}^{S}$ (J mol ⁻¹ K ⁻¹)	20.14	$C_{\mathrm{In,Ag_3In}}^{S}$ (J mol ⁻¹ K ⁻¹)	75.41

Table 3 Parameters of the association model of the binary tellurium systems

Parameter	Ag–Te	Ga–Te	In–Te
i, j	2,1	2,3	2,3
$\Delta H^0_{A_i Te_i} (J \text{ mol}^{-1})$	-67847.34	-292372.40	-248868.26
$-\Delta S_{A_iTe_i}^0$ (J mol ⁻¹ K ⁻¹)	13.12515	173.67977	145.21077
$C_{\mathrm{A},\mathrm{A}_{i}\mathrm{Te}_{i}}^{H}$ (J mol ⁻¹)	28303.06	184470.13	73767.95
$-C_{\mathrm{A},\mathrm{A}_{i}\mathrm{Te}_{i}}^{S}$ (J mol ⁻¹ K ⁻¹)	-3.81835	-210.74260	-177.36618
$C_{\rm A,Te}^{H}$ (J mol ⁻¹)	_	_	-57983.18
$-C_{A,Te}^{S}$ (J mol ⁻¹ K ⁻¹)	_	_	2.87127
$C_{\mathrm{B},\mathrm{A}_i\mathrm{Te}_i}^H$ (J mol ⁻¹)	20048.28	124796.04	62674.69
$-C_{B,A_iTe_j}^S (J \text{ mol}^{-1} \text{ K}^{-1})$	-23.31501	-126.18462	-95.48235

Fig. 1. Experimental and calculated excess enthalpies of liquid Ag–Ga alloys.

[25–32]. Phase equilibria in the system Ag–In–Te have been determined by Bahari et al. [33,34]. The quasibinary section $Ag_2Te-In_2Te_3$ [35–38] divides the phase diagram into two subsystems. Two compounds were observed with the formal composition AgInTe₃ and AgIn₅Te₈, both with broad homogeneity ranges. Thermodynamic investigations have not been reported for these systems.

Fig. 2. Experimental and calculated chemical potentials of gallium in liquid Ag–Ga alloys at 980 K.

Fig. 3. Experimental and calculated excess enthalpies of liquid Ag–In alloys.

4.2. Analytical description

Ternary parameters have to be considered for systems containing tellurium if thermodynamic data of ternary phase diagrams are calculated from the

Fig. 4. Experimental and calculated enthalpies of formation of liquid Ag–In alloys obtained from solid Ag and liquid In.

Fig. 5. Experimental and calculated chemical potentials of Ag and In in liquid Ag–In alloys at 1173 K.

constituent binaries. These parameters represent interactions between an associate of a binary system with tellurium or a component metal or between two different associates. The calculation of the excess enthalpies H_{A-B-Te}^{E} was performed with the aid of the general Eq. (1).

$$\begin{aligned} H_{A-B-Te}^{E} &= nA_{i}B_{j} \cdot \Delta H_{A_{i}B_{j}}^{0} + \frac{n_{A} \cdot n_{B}}{n} \cdot C_{A,B}^{H} \\ &+ \frac{n_{A} \cdot n_{A_{i}B_{j}}}{n} \cdot C_{A,A_{i}B_{j}}^{H} + \frac{n_{B} \cdot n_{A_{i}B_{j}}}{n} \cdot C_{B,A_{i}B_{j}}^{H} \\ &+ n_{A_{k}Te_{l}} \cdot \Delta H_{A_{k}Te_{l}}^{0} + \frac{n_{A} \cdot n_{Te}}{n} \cdot C_{A,Te}^{H} \\ &+ \frac{n_{A} \cdot n_{A_{k}Te_{l}}}{n} \cdot C_{A,A_{k}Te_{l}}^{H} + \frac{n_{Te} \cdot n_{A_{k}Te_{l}}}{n} \\ &\cdot C_{Te,A_{k}Te_{l}}^{H} + n_{B_{u}Te_{v}} \cdot \Delta_{B_{u}Te_{v}}^{0} + \frac{n_{B} \cdot n_{Te}}{n} \\ &\cdot C_{B,Te}^{H} + \frac{n_{B} \cdot n_{B_{u}Te_{v}}}{n} \cdot C_{B,B_{u}Te_{v}}^{H} \\ &+ \frac{n_{Te} \cdot n_{B_{u}Te_{v}}}{n} \cdot C_{Te,A_{i}B_{j}}^{H} + \frac{n_{B} \cdot n_{A_{k}Te_{l}}}{n} \\ &\cdot C_{Te,A_{i}B_{j}}^{H} + \frac{n_{B} \cdot n_{A_{k}Te_{l}}}{n} \cdot C_{B,A_{k}Te_{l}}^{H} \\ &+ \frac{n_{A} \cdot n_{B_{u}Te_{v}}}{n} \cdot C_{A,B_{u}Te_{v}}^{H} + \frac{n_{A_{i}B_{j}} \cdot n_{A_{k}Te_{l}}}{n} \\ &+ \frac{n_{A} \cdot n_{B_{u}Te_{v}}}{n} \cdot C_{A,B_{u}Te_{v}}^{H} + \frac{n_{A_{i}B_{j}} \cdot n_{A_{k}Te_{l}}}{n} \\ &+ \frac{n_{A_{i}} \cdot n_{B_{u}Te_{v}}}{n} \cdot C_{A_{i}B_{j},A_{k}Te_{l}}^{H} \\ &+ \frac{n_{A_{i}} \cdot n_{B_{u}Te_{v}}}{n} \cdot C_{A_{i}B_{j},B_{u}Te_{v}}^{H} \end{aligned}$$

where n_i are moles of associates and constituent components, *n* the total moles, ΔH_j^0 the enthalpies of formation of binary associates and C^H constant parameters.

If the metallic system A–B does not form associates in the melt, terms with associate A_iB_j can be canceled.

5. Enthalpies of mixing

The heats of solution ΔQ of the sections Ag_yGa_{1-y} -Te were determined for four sections with constant concentration ratio of the two components at 1173 K and in addition of the sections $Ag_{0.5}Ga_{0.5}$ -Te at 1073 K, for five sections Ag_yIn_{1-y} -Te at 1173 K, and for the section $Ag_{0.5}In_{0.5}$ -Te at 973 and 1073 K.

The experimental enthalpies H_{exp}^{E} of the reaction

$$(1 - x)Ag_{y}M_{1-y}(1) + xTe(1) \to Ag_{y(1-x)}M_{(1-y)(1-x)}Te_{x}(1)$$
(2)

with M = Ga, In and the ternary excess enthalpy H^E of the reaction

$$(1-x)(y)Ag(1) + (1-x)(1-y)M(1) + xTe(1) \rightarrow Ag_{y(1-x)}M_{(1-y)(1-x)}Te_x(1)$$
(3)

are presented in Tables 4 and 5, and in Figs. 6 and 7 for one representative section of each system. The excess enthalpies of liquid alloys in both systems are strongly temperature dependent, because associates dissociate with increasing temperatures, especially those formed in the systems Ga–Te and In–Te.

If the excess enthalpies of the ternary mixtures were only calculated from the data of the limiting binaries the curves were not well reproduced (dashed lines in Figs. 6 and 7), therefore these ternary interactions were taken into account. The best fits were obtained with the interactions and interaction parameters which are given in Table 6.

Figs. 8 and 9 show the isoenthalpics for the ternary excess enthalpies of the systems in a projection onto the Gibbs triangle. Exothermic minima are found near the section $Ag_2Te-M_2Te_3$.

Table 4

Heat of solution ΔQ , experimental excess enthalpies $H^{\rm E}_{Ag_yGa_{1-y}Te}$ and ternary excess enthalpies $H^{\rm E}_{Ag-Ga-Te}$ according to the reactions (1) and (2) along the section Ag_yGa_{1-y} -Te

Added amount,	Mole fraction,	Heat effect,	Experimental	Ternary $H^{\rm E}$,
n _{Te} (mol)	x _{Te}	ΔQ (J)	$H^{\rm E}, H^{\rm E}_{\rm exp}$ (J/mol)	H ^E (J/mol)
Starting amount: n.	- - 0.020540 mol (T - 1173	K)	×	
0.001100	$Ga_{0.8} = 0.029340 \text{ mor} (1 = 1173)$	30.0	-581	_549
0.001488	0.081	29.0	-1707	-1676
0.001465	0.131	20.2	-3452	-3423
0.001945	0.178	77	-5449	-5422
0.001545	0.232	_3.7	-8082	-8056
0.002308	0.232	_32.8	-11/03	-11/69
0.002004	0.336	61.0	15153	15130
0.003303	0.383	08.1	10268	10248
0.003393	0.383	137.3	23700	23600
0.003182	0.460	100.1	26901	25090
0.003182	0.488	-109.1	-20901	-20885
0.002958	0.511	-78.9	20160	20152
0.002098	0.511	-19.8	-30109	-30132
Starting amount: $n_{Ag_{0,2}}$	$_{\text{Ga}_{0.8}} = 0.021306 \text{ mol } (T = 1173)$	K)		
0.001106	0.049	23.9	-1121	-1089
0.001691	0.116	24.9	-3119	-3089
0.001858	0.179	-7.3	-6352	-6324
0.001861	0.234	3.0	-8784	-8758
0.002087	0.288	-14.5	-11750	-11726
0.002463	0.342	-35.3	-15321	-15299
0.002573	0.390	-94.4	-20160	-20140
0.003197	0.441	-127.8	-25537	-25518
0.003162	0.484	-103.3	-29478	-29460
Starting amount: n _A	$r_{m} = 0.025255 \text{ mol} (T = 1173)$	K)		
0.001257	0.047	37.9	-674	-1686
0.001639	0.103	22.6	-2413	-3366
0.001784	0.156	16.4	-4364	-5260
0.001915	0.207	8.0	-6516	-7358
0.001979	0.253	-19	-8785	-9578
0.002349	0.302	-22.8	-11724	-12466
0.002/95	0.347	-43.5	_1/95/	-15648
0.002455	0.386	-55.9	-18071	-18723
0.002402	0.424	_73 7	_21387	_21000
0.002752	0.462	-81.3	-24631	-25202
0.002467	0.489	_31.5	_26252	-26795
0.002407	0.510	3.8	-26232	-20795
0.002140	0.527	27.4	-27003	-27506
0.001005	0.527	27.4	-27005	-27500
Starting amount: $n_{Ag_{0.4}}$	$_{\text{Ga}_{0.6}} = 0.020731 \text{ mol } (T = 1173)$	K)		
0.000940	0.043	21.1	-951	-1967
0.001473	0.104	20.4	-2832	-3784
0.001672	0.165	14.4	-5048	-5936
0.001995	0.227	-1.3	-8020	-8841
0.002100	0.283	-20.7	-11375	-12136
Starting amount: $n_{A_{a_n}}$	$G_{a_{0.6}} = 0.019076 \text{ mol } (T = 1173)$	K)		
0.001172	0.058	37.0	-739	-1739
0.001625	0.128	24.8	-2842	-3768
0.001818	0.195	12.1	-5518	-6373
0.001966	0.256	1.5	-8436	-9226
0.002548	0.324	-32.6	-12835	-13553
0.002549	0.380	-52.8	-17162	-17821

Added amount, n_{Te} (mol)	Mole fraction, x_{Te}	Heat effect, ΔQ (J)	Experimental $H^{\rm E}$, $H^{\rm E}_{\rm ave}$ (J/mol)	Ternary H ^E , H ^E (J/mol)
0.002008	0.425	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	21776	00076
0.002998	0.435	-74.2	-21776	-22370
0.003130	0.483	-05.4	-23419	-23908
0.003313	0.520	102.3	25044	-20843
0.002390	0.334	102.5	-23044	-23318
Starting amount: $n_{Ag_{0.5}C}$	$G_{a_{0.5}} = 0.023206 \text{ mol} \ (T = 1073)$	K)	201	2057
0.000927	0.038	22.4	-701	-2857
0.001214	0.084	3.4	-2565	-4617
0.001676	0.141	5.1	-4849	-6775
0.002392	0.211	3.2	-7796	-9564
0.002434	0.271	-0.2	-10450	-12083
0.002738	0.329	-39.7	-14129	-15633
0.002808	0.379	-115.3	-19336	-20728
0.003346	0.430	-166.5	-25320	-26597
0.003242	0.472	-95.3	-28747	-29930
0.003563	0.512	65.1	-28403	-29497
Starting amount: $n_{Ag_{n,s}C}$	$G_{a_{0.5}} = 0.017981 \text{ mol } (T = 1073)$	K)		
0.001190	0.062	23.9	-1388	-3491
0.001560	0.133	3.4	-4314	-6258
0.002055	0.211	3.9	-7580	-9349
Starting amount: n _h	T = 0.017161 mol (T = 1073)	K)		
0.001400	0.075	15.2	-2383	-4456
0.001906	0.162	-20.5	-7114	_8993
0.001900	0.102	0.2	-10489	-12189
0.002205	0.242	_7 3	_13617	-15166
0.002203	0.373	70.4	10178	20853
0.002528	0.428	-127.9	-25483	-26765
Ct	0.022072	V)		
Starting amount: $n_{Ag_{0.5}C}$	$G_{a_{0.5}} = 0.0239/2 \text{ mol} (I = 11/3)$	K) 24.4	606	2516
0.001120	0.102	54.4 25.5	-000	-2310
0.001011	0.102	23.3	-2289	-4064
0.001870	0.101	15.7	-4491	-0109
0.002074	0.218	10.3	-0657	-8221
0.002557	0.274	-2.4	-9420	-108/3
0.003048	0.335	-29.4	-13188	-14518
0.003292	0.391	-//.4	-1//62	-18980
0.003093	0.435	-87.7	-21765	-22895
0.002560	0.467	-/5.2	-24720	-25/85
0.002309	0.495	-9.9	-23904	-20973
Starting amount: $n_{Ag_{0.5}C}$	$a_{0.5} = 0.019106 \text{ mol } (T = 1173)$	K)	22.	
0.001253	0.062	37.6	-884	-2760
0.001579	0.129	17.2	-3229	-4970
0.001764	0.194	8.6	-5927	-7539
0.002170	0.262	8.5	-8821	-10297
0.002329	0.323	-25.3	-12650	-14004
0.002658	0.381	-97.1	-18526	-19763
0.002772	0.432	-75.9	-22909	-24045
0.002574	0.472	-32.4	-25328	-26383
0.001895	0.499	21.1	-25719	-26722
0.001237	0.514	34.2	-25435	-26406
Starting amount: $n_{A_{T}}$	$a_{0.4} = 0.020459 \text{ mol} (T = 1173)$	K)		
0.000946	0.044	38.9	-141	-3084
0.001082	0.090	15.4	-1585	-4385

Added amount,	Mole fraction,	Heat effect,	Experimental	Ternary $H^{\rm E}$,
n _{Te} (mol)	x _{Te}	ΔQ (J)	$H^{\rm E}, H^{\rm E}_{\rm exp}$ (J/mol)	$H^{\rm E}$ (J/mol)
0.001727	0.155	16.9	2056	6556
0.001757	0.135	21.8	-5950	-0550 -8556
0.001902	0.219	16.2	8774	-10978
0.002580	0.264	-44.4	_13253	-15267
0.002090	0.340	-44.4	-17513	-19368
0.002843	0.357	61.7	21264	22075
0.002343	0.444	-01.7	22028	-22975
0.003303	0.519	82.4	-22928	-23673
0.002300	0.519	02.4	-22172	-25075
Starting amount: $n_{Ag_{0.6}G}$	$a_{0.4} = 0.019942 \text{ mol } (T = 1173)$	K)		
0.001080	0.051	41.2	-320	-3240
0.001424	0.112	11.8	-2589	-5323
0.001877	0.180	19.9	-4991	-7515
0.002005	0.243	17.8	-7311	-9643
0.002103	0.299	-14.1	-10546	-12705
0.002226	0.350	-61.7	-15011	-17014
0.002266	0.394	-54.7	-18691	-20556
0.002003	0.429	-40.3	-21317	-23075
0.001991	0.460	-22.0	-23155	-24818
0.001570	0.482	28.6	-23277	-24872
0.001724	0.504	62.8	-22618	-24145
Added amount	Mole fraction	Heat effect	Experimental	Ternary HE
$n_{\rm total}$ (mol)	Ym	AQ(I)	H^{E} H^{E} (I/mol)	$H^{\rm E}$ (I/mol)
$n_{Ag_{0.2}Ga_{0.8}}$ (mor)	жте	$\Delta \mathcal{Q}(\mathbf{J})$	m , m_{exp} (s/mor)	11 (3/1101)
Starting amount: $n_{\text{Te}} =$	0.015835 mol (T = 1173 K)			
0.001800	0.898	-96.6	-9194	-9191
0.002390	0.791	-135.2	-19197	-19189
0.002424	0.705	-120.6	-26425	-26415
Starting amount: " -	0.018225 mol (T - 1173 K)			
Starting amount. $n_{\rm Te} =$	0.018223 mor (I = 1173 K)	76.2	7604	7600
0.002105	0.894	-70.2	-/004	-/000
0.002556	0.801	-110.3	-13698	-15091
0.002048	0.718	-1/3.1	-24675	-24005
Added amount,	Mole fraction,	Heat effect,	Experimental	Ternary $H^{\rm E}$,
$n_{Ag_{0.4}Ga_{0.6}}$ (mol)	x _{Te}	ΔQ (J)	$H^{\rm E}, H^{\rm E}_{\rm exp}$ (J/mol)	$H^{\rm E}$ (J/mol)
<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	0.01(950 - 1)(T - 1172 K)			
Starting amount: $n_{\rm Te} =$	0.010859 mol (I = 1173 K)	26.0	2714	2790
0.001289	0.929	-26.0	-3/14	-3789
0.001558	0.856	-29.5	-/458	-/611
0.001952	0.778	-49.2	-11953	-12188
0.001918	0.715	-53.1	-15846	-16149
0.002153	0.655	-63.6	-19680	-20046
0.002286	0.602	-55.6	-22677	-23100
0.002401	0.554	-20.8	-24105	-24578
Starting amount: $n_{Te} =$	0.017574 mol (T = 1173 K)			
0.001154	0.938	-28.2	-3483	-3548
0.001430	0.872	-35.4	-7269	-7405
0.001711	0.804	-49.1	-11459	-11668
0.001835	0.741	-48.4	-15101	-15376
0.002131	0.680	-78.4	-19540	_19880
0.003025	0.609	-85.5	-23821	_2/236
0.003023	0.551	-14 1	-25053	-24230 -25530
0.0030+7	0.331	-17.1	-25055	-25550

Added amount,	Mole fraction,	Heat effect,	Experimental	Ternary $H^{\rm E}$,
$n_{Ag_{0.5}Ga_{0.5}}$ (mol)	x _{Te}	ΔQ (J)	$H^{\rm E}, H^{\rm E}_{\rm exp}$ (J/mol)	$H^{\mathbb{H}}$ (J/mol)
Starting amount: $n_{T_2} =$	0.017049 mol (T = 1073 K)			
0.001822	0.903	-25.0	-4287	-4503
0.001833	0.823	-35.9	-8359	-8755
0.002539	0.734	-79.3	-14210	-14807
0.002796	0.655	-117.7	-20498	-21272
0.003018	0.587	-104.9	-25164	-26091
0.003215	0.528	-54.4	-27401	-28458
Starting amount: $n_{Te} =$	0.016538 mol (T = 1073 K)			
0.001314	0.926	-26.8	-3761	-3926
0.001935	0.836	-43.1	-8574	-8942
0.002296	0.749	-64.3	-13783	-14346
0.002585	0.670	-93.2	-19332	-20071
0.003328	0.591	-120.4	-24981	-25899
0.002872	0.536	-75.7	-27964	-29005
0.002153	0.501	14.5	-27703	-28822
Starting amount: $n_{\text{Te}} =$	0.015743 mol (T = 1173 K)			
0.001234	0.927	-10.3	-3174	-3320
0.001535	0.850	-19.7	-6907	-7206
0.002230	0.759	-44.1	-12092	-12574
0.002832	0.668	-68.5	-17791	-18455
0.003007	0.592	-52.9	-21767	-22582
Starting amount: $n_{\text{Te}} =$	0.014386 mol (T = 1173 K)			
0.001350	0.914	-29.3	-4897	-5068
0.001738	0.823	-27.9	-9523	-9876
0.002218	0.731	-52.4	-15093	-15631
0.002394	0.651	-51.3	-19610	-20307
0.002814	0.578	-43.8	-23147	-23991
Added amount,	Mole fraction,	Heat effect,	Experimental	Ternary $H^{\rm E}$,
$n_{Ag_{0.6}Ga_{0.4}}$ (mol)	x _{Te}	ΔQ (J)	$H^{\rm E}$, $H^{\rm E}_{\rm exp}$ (J/mol)	$H^{\rm E}$ (J/mol)
Starting amount: n	0.019353 mol (T - 1173 K)			
0.001105	0.019555 mor $(1 - 1175 K)$	-13.2	-2634	-2800
0.001451	0.883	-96	-5334	-5693
0.001451	0.815	-13.8	-8363	-8934
0.001030	0.747	-23.0	-11605	-12383
0.002921	0.671	-53.3	-16008	-17020
0.002921	0.605	-47 9	-19550	-20764
0.002256	0.566	-33.7	-21673	-23010
0.002129	0.532	-22.5	-23178	-24618
0.002092	0.503	16.1	-23502	-25030
Starting amounts a	0.016401 mol (T = 1172 K)	10.1	23302	23030
Starting amount: $n_{\text{Te}} =$	0.010491 mor (I = 1175 K)	11.1	3661	2016
0.001400	0.917	-11.1	-5001	-3910
0.001398	0.842	-10.1	-0885	-/3/0
0.0018/1	0.709	-13.1	-10198	-10910
0.002240	0.090	-29.7	-13972	-14908
0.002060	0.025	-30.7	-1/404	-10000
0.002003	0.308	-21.2	-2010/	-21497

Table 5

Heat of solution ΔQ , experimental excess enthalpies $H_{Ag_yIn_{1-y}-Te}^{E}$ and ternary excess enthalpies $H_{Ag_-In-Te}^{E}$ according to the reactions (1) and (2) along the section Ag_yIn_{1-y} -Te

Added amount,	Mole fraction,	Heat effect,	Experimental	Ternary,
n _{Te} (mol)	x _{Te}	ΔQ (J)	$H^{\rm E}, H^{\rm E}_{\rm exp}$ (J/mol)	$H^{\rm E}$ (J/mol)
Starting amount: n.	-0.020686 mol (T - 1173)	K)	×	
0.001213	$_{1}In_{0.8} = 0.020080$ III01 ($I = 1173$	к) 24	-2348	_3/17
0.001213	0.119	_62	-5/38	-6/35
0.002001	0.188	-0.2	_0380	-10308
0.002601	0.264	-50.8	-14455	-15288
0.002021	0.334	82.3	100/3	20608
0.002947	0.400	-82.5	23640	-20098
0.003418	0.460	-44.0	25514	-24320
0.003833	0.515	79.3	-25565	-26123 -26144
Starting amounts a	0.016505 mol(T = 1172)	V)		
Starting amount: $n_{Ag_{0.2}}$	$_{2In_{0.8}} = 0.010505$ III01 ($I = 1175$	K) 2.0	2222	2204
0.000944	0.125	2.9	-2235	-3304
0.001025	0.155	-0.7	-0175	-/134
0.002030	0.219	-24.9	-11009	-11933
0.002087	0.307	-57.7	-1/248	-18052
0.003193	0.389	-33.4	-22505	-25195
0.003652	0.462	-1.3	-25146	-25756
0.003662	0.519	51.9	-25683	-26227
0.004096	0.570	107.5	-24874	-25500
Starting amount: $n_{Ag_{0.4}}$	$_{\mu In_{0.6}} = 0.019129 \text{ mol } (T = 1173)$	K)		
0.001149	0.057	14.1	-1817	-4563
0.001659	0.128	4.8	-4812	-7351
0.002305	0.211	-11.6	-9048	-11345
0.002952	0.297	-50.3	-14730	-16777
0.003286	0.372	-53.9	-19691	-21518
0.003468	0.437	6.5	-22017	-23657
0.003783	0.493	70.4	-22390	-23866
Starting amount: n_{Ag_0}	$_{In_{0.6}} = 0.017545 \text{ mol} (T = 1173)$	K)		
0.000867	0.047	12.5	-1407	-4181
0.001463	0.117	9.7	-4079	-6649
0.001975	0.197	-9.0	-8128	-10466
0.002592	0.282	-48.3	-13943	-16033
0.003100	0.363	-73.9	-20048	-21902
0.003397	0.433	-4.5	-22859	-24510
Starting amount: n_{Ag_0}	$_{In_{0.6}} = 0.016757 \text{ mol } (T = 1173)$	K)		
0.001045	0.059	13.3	-1855	-4595
0.001343	0.125	4.4	-4607	-7155
0.001977	0.207	-7.4	-8675	-10985
0.002161	0.280	-36.7	-13560	-15655
0.002307	0.345	-48.1	-18214	-20120
0.001603	0.384	-19.7	-20478	-22272
0.001301	0.412	-3.0	-21672	-23384
0.001097	0.434	2.4	-22430	-24079
0.001426	0.460	12.1	-23047	-24619
0.001345	0.482	23.3	-23210	-24718
0.001755	0.509	45.4	-22967	-24397
Starting amount: n _* -	$T_{\rm m} = 0.018142 \text{ mol} (T = 973 \text{ k})$	0		
0 000974	0.051	-3.0	-2186	-6313
0.001195	0.107	-9.9	-4886	-8771
0.001598	0.172	-21.3	-8406	-12007
· · · · · · · · · ·			- · · · ·	

Added amount, n_{Te} (mol)	Mole fraction, x_{Te}	Heat effect, ΔQ (J)	Experimental $H^{\rm E}$, $H^{\rm E}_{\rm exp}$ (J/mol)	Ternary, H ^E (J/mol)
0.001838	0.236	-14.4		-14763
0.002013	0.296	-18.6	-14379	-17442
0.002190	0.351	-66.8	-18762	-21584
0.002096	0.396	-57.3	-22137	-24763
Starting amount: $n_{Ag_0,III}$	$_{0.5} = 0.012749 \text{ mol} (T = 973 \text{ K})$	()		
0.000853	0.063	-3.5	-2750	-6826
0.001087	0.132	-14.9	-6504	-10279
0.001131	0.194	-14.0	-9771	-13275
0.001554	0.266	-14.6	-13299	-16490
0.001842	0.337	-29.0	-17353	-20238
0.002252	0.406	-66.3	-22799	-25381
Starting amount: nAg0.5In	$_{0.5} = 0.019376 \text{ mol} (T = 1073)$	K)		
0.000919	0.045	10.0	-1430	-5349
0.001258	0.101	-17.1	-4616	-8307
Starting amount: $n_{Ag_{0.5}In}$	$_{0.5} = 0.015885 \text{ mol } (T = 1073)$	K)		
0.000962	0.057	16.9	-1421	-5292
0.001417	0.130	-12.3	-5278	-8849
0.001545	0.198	-6.4	-8500	-11793
0.001826	0.266	-5.1	-11600	-14614
0.002116	0.331	-47.2	-16334	-19080
0.002491	0.395	-46.1	-20566	-23051
0.002983	0.456	-21.0	-23515	-25747
Starting amount: nAg0.5In	$_{0.5} = 0.019024 \text{ mol} (T = 1173 \text{ J})$	K)		
0.001060	0.053	22.0	-1242	-4930
0.001457	0.117	14.2	-3497	-6935
0.001876	0.188	-0.5	-6790	-9953
0.002207	0.258	-16.1	-10652	-13543
0.002720	0.329	-57.0	-15896	-18509
0.003324	0.399	-23.5	-19626	-21695
0.003374	0.457	35.3	-20999	-23113
0.003608	0.508	112.7	-20263	-22180
Starting amount: $n_{Ag_{0.5}In}$	$_{0.5} = 0.015930 \text{ mol } (T = 1173)$	K)	1710	5150
0.001016	0.060	19.4	-1513	-5173
0.001430	0.133	9.3	-4339	-//15
0.001861	0.213	-3.4	-8186	-11251
0.002360	0.295	-33.7	-13452	-16196
0.002677	0.370	-37.8	-18219	-20673
0.003139	0.439	15.0 83.8	-20579 -20275	-22761 -22242
0.005125	0.495	05.0 IZ	20215	
Starting amount: $n_{Ag_{0.6}In}$	$_{0.4} = 0.01/521 \text{ mol} (I = 11/3)$	K) 17.8	1640	5051
0.001089	0.128	17.8	-1040	-3931
0.001400	0.120	J.4 17	-4318	-0.012
0.001/48	0.198	4./	- 7409	-11103
0.002101	0.200	-19.5 -78.2	-11329 -17458	-14001 -20508
0.002371	0.00	-70.2	-1/750	-20308
Starting amount: $n_{Ag_{0.6}In}$	$_{0.4} = 0.014145 \text{ mol} (T = 1173)$	к) 26.6	-1784	_6000
0.001219	0.079	20.0	-1704	-0000
0.002002	0.256	-12.7	-10290	-13697
0.002002	0.230	14.1	10270	15077

Added amount,	Mole fraction,	Heat effect,	Experimental	Ternary,
n _{Te} (mol)	x _{Te}	ΔQ (J)	$H^{\rm E}, H^{\rm E}_{\rm exp}$ (J/mol)	$H^{\rm E}$ (J/mol)
0.003006	0.421	37	19589	_22238
0.003079	0.486	96.0	-18869	-21222
Starting amount: n _{A-}	= 0.017701 mol (T = 1173)	K)		
0.001153	0.4 = 0.017701 mor (1 = 1173)	33.8	-917	-5217
0.001135	0.125	8.0	_3467	_7474
0.001050	0.202	17.0	7860	11525
0.001956	0.202	15.5	11602	14048
0.002030	0.270	-15.5	-11002	-14946
0.002042	0.341	-05.5	-1/1//	-20195
0.001114	0.508	-14.1	-18705	-21039
Starting amount: $n_{Ag_{0.8}In}$	$_{0.2} = 0.017064 \text{ mol} (T = 1173)$	K)		
0.001152	0.063	34.5	-910	-4416
0.001491	0.134	17.8	-3293	-6534
0.001875	0.209	1.9	-6770	-9729
0.002137	0.281	-21.9	-11077	-13769
0.002408	0.347	-56.4	-16301	-18746
0.002672	0.407	45.1	-17339	-19556
0.002846	0.461	104.1	-16477	-18495
Starting amount: nAg0.8In	$_{0.2} = 0.014424 \text{ mol} (T = 1173)$	K)		
0.001038	0.067	30.1	-1030	-4522
0.001496	0.149	13.4	-4063	-7247
0.001832	0.232	1.6	-7904	-10777
0.002001	0.306	-30.4	-12871	-15467
0.002346	0.377	-1.1	-16110	-18443
Added amount,	Mole fraction,	Heat effect,	Experimental	Ternary H ^E ,
$n_{Ag_{0.2}In_{0.8}}$ (mol)	x _{Te}	ΔQ (J)	$H^{\rm E}, H^{\rm E}_{\rm exp}$ (J/mol)	$H^{\rm E}$ (J/mol)
Starting amount: n	0.019085 mol (T - 1173 K)			
0.001064	0.019005 mor (1 - 1175 K)	-29.2	-3123	-3183
0.001548	0.880	-44.8	_7229	-7366
0.001348	0.380	70.0	12838	13066
0.002211	0.738	01.8	-12656	-13000
0.002707	0.624	-91.8	-18207	-16528
0.003493	0.034	-119.8	-25754	-24109
0.003034	0.303	-08.0	-20030	-2/123
Starting amount: $n_{\rm Te} =$	0.013447 mol (T = 1173 K)	24.0		
0.001181	0.919	-36.8	-5075	-5166
0.001203	0.849	-32.9	-9176	-9347
0.002180	0.747	-76.3	-16140	-16427
0.003043	0.639	-88.7	-22607	-23016
Added amount,	Mole fraction,	Heat effect,	Experimental	Ternary $H^{\rm E}$,
$n_{Ag_{0.4}In_{0.6}}$ (mol)	X _{Te}	ΔQ (J)	$H^{\rm E}, H^{\rm E}_{\rm exp}$ (J/mol)	$H^{\mathbb{E}}$ (J/mol)
Starting amount: n _{Te} =	0.014101 mol (T = 1173 K)			
0.001157	0.924	-18.5	-3926	-4146
0.001567	0.838	-28.5	-8584	-9056
0.002222	0.740	-39.8	-13844	-14600
0.002604	0.651	-48.0	-18699	-19715
0.003569	0.559	-4.9	-21310	-22593
Starting amount: $n_{T_0} =$				
0 10	0.017084 mol (T = 1173 K)			
0.001627	$0.017084 \mod (T = 1173 \text{ K})$ 0.913	-22.4	-4308	-4561

Added amount,	Mole fraction,	Heat effect,	Experimental	Ternary $H^{\rm E}$,
$n_{Ag_{0.4}In_{0.6}}$ (mol)	x _{Te}	ΔQ (J)	$H^{\rm E}, H^{\rm E}_{\rm exp}$ (J/mol)	$H^{\rm E}$ (J/mol)
0.002222	0.756	-36.9	-12756	-13465
0.002605	0.678	-47.1	-17006	-17942
0.003405	0.597	-50.0	-20989	-22161
0.002985	0.541	-6.9	-22603	-23940
0.003535	0.487	52.8	-22426	-23921
Added amount.	Mole fraction.	Heat effect.	Experimental	Ternary H ^E .
$n_{Ag_{0.5}In_{0.5}}$ (mol)	x _{Te}	ΔQ (J)	$H^{\rm E}, H^{\rm E}_{\rm exp}$ (J/mol)	$H^{\rm E}$ (J/mol)
Starting amount: $n_{Te} =$	0.014616 mol (T = 973 K)			
0.000922	0.941	-9.1	-2170	-2428
0.001591	0.853	-27.6	-6059	-6697
0.002038	0.763	-59.4	-11355	-12387
0.002280	0.682	-74.2	-16446	-17831
0.002668	0.606	-85.9	-21144	-22857
0.003192	0.535	-84.2	-24879	-26900
0.001494	0.508	-1.6	-25030	-27171
Starting amount: $n_{T_2} =$	(0.012398 mol (T = 973 K))			
0.001619	0.884	-20.1	-4517	-5019
0.001759	0.786	-36.0	-9271	-10202
0.001864	0.703	-49.7	-13928	-15220
0.002354	0.620	-76.3	-19249	-20901
0.002828	0.543	-94.9	-24332	-26319
Starting amount: $n_{Te} =$	0.014917 mol (T = 1073 K)			
0.001115	0.930	-16.6	-3324	-3609
0.001365	0.857	-18.2	-6690	-7275
0.001929	0.772	-27.1	-10710	-11646
0.002228	0.692	-39.7	-14846	-16110
0.002442	0.622	-51.8	-18840	-20394
0.002627	0.560	-50.1	-22109	-23915
0.002027	0.518	-11.3	-23312	-25289
0.001483	0.493	15.0	-23285	-25367
Starting amount: $n_{Te} =$	0.013844 mol (T = 1073 K)			
0.001010	0.932	-10.9	-2974	-3253
0.001475	0.848	-19.9	-6897	-7522
0.001780	0.764	-22.4	-10693	-11660
0.001883	0.692	-30.9	-14328	-15591
0.002450	0.617	-42.1	-18232	-19805
0.002604	0.553	-41.1	-21396	-23232
0.001537	0.521	-6.8	-22315	-24283
0.001308	0.496	11.0	-22416	-24484
Starting amount: $n_{Te} =$	0.016085 mol (T = 1173 K)			
0.001089	0.937	-4.7	-2484	-2731
0.001599	0.857	-9.0	-5722	-6280
0.001959	0.776	-11.1	-9012	-9885
0.002539	0.691	-33.3	-13266	-14468
0.003035	0.611	-41.0	-17316	-18829
0.003347	0 542	-17.3	-19881	-21663
0.003430	0.486	51.7	-19873	-21874
Starting amount: $n_{Ta} =$	0.016768 mol (T = 1173 K)			
0.001282	0.929	-18.4	-3495	-3771

Added amount,	Mole fraction,	Heat effect,	Experimental	Ternary $H^{\rm E}$,
$n_{Ag_{0,s}In_{0,s}}$ (mol)	x _{Te}	ΔQ (J)	H^{E} , H^{E}_{exp} (J/mol)	$H^{\rm E}$ (J/mol)
			cxp · · · ·	
0.001684	0.850	-15.8	-6972	-7557
0.002057	0.770	-21.7	-10602	-11500
0.002536	0.689	-26.7	-14231	-15440
0.003028	0.613	-33.6	-17743	-19250
0.003197	0.549	-10.7	-19886	-21643
0.003115	0.498	26.8	-20478	-22432
Added amount,	Mole fraction,	Heat effect,	Experimental	Ternary $H^{\rm E}$,
$n_{Ag_{0.6}In_{0.4}}$ (mol)	x _{Te}	ΔQ (J)	$H^{\rm E}, H^{\rm E}_{\rm exp}$ (J/mol)	$H^{\rm E}$ (J/mol)
Starting amount: n	0.015246 mol (T - 1172 V)			
0.000918	0.013540 mor (I = 1175 K) 0.944	-63	-2791	-3050
0.001368	0.870	11	-5815	-6409
0.001308	0.780	1.0	-9514	-10520
0.002034	0.700	2.0	_12799	-14175
0.002271	0.628	7.2	16115	17916
0.002482	0.628	-7.2 -6.0	-10113 -19192	-1/810 -21205
0.002903	0.500	0.0	17172	21205
Starting amount: $n_{\rm Te} =$	$0.016888 \mod (I = 11/3 \text{ K})$	0.5	2141	2477
0.001334	0.927	-0.5	-3141	-3477
0.001986	0.836	1.5	-6940	-7692
0.002334	0.749	2.4	-10521	-11670
0.002874	0.664	-5.3	-14351	-15887
0.003290	0.588	-10.0	-17929	-19814
0.002007	0.550	4.4	-19394	-21455
Added amount,	Mole fraction,	Heat effect,	Experimental	Ternary $H^{\rm E}$,
$n_{Ag_{0.8}In_{0.2}}$ (mol)	x _{Te}	ΔQ (J)	$H^{\rm E}, H^{\rm E}_{\rm exp}$ (J/mol)	$H^{\rm E}$ (J/mol)
Starting amount: $n_{T_{0}} =$	0.018568 mol (T = 1173 K)			
0.001357	0.932	10.1	-2052	-2307
0.001684	0.859	15.7	-4090	-4617
0.001738	0.795	17.4	-5836	-6602
0.001738	0.730	16.9	-7762	-8771
0.002542	0.750	21.2	0707	10065
0.002343	0.604	12.2	-9707	-10905
0.002785	0.547	15.5	-11/90	-15281
0.003211	0.347	13.3	-15770	-13473
0.003287	0.498	17.5	-13411	-1/200
0.003642	0.434	37.2	-164/3	-18510
0.003724	0.416	81.8	-16398	-18584
Starting amount: $n_{\text{Te}} =$	0.014430 mol (T = 1173 K)			
0.001434	0.910	6.5	-2985	-3323
0.001874	0.814	12.4	-5937	-6635
0.002013	0.731	10.7	-8615	-9623
0.002115	0.660	10.8	-10920	-12193
0.002688	0.588	10.7	-13401	-14944
0.002863	0.526	10.6	-15537	-17310
0.002890	0.476	18.5	-17025	-18986
0.003031	0.433	19.0	-17453	-19575
Starting on	0.433	40.0		
Starting amount: $n_{\rm T_{0}} =$	0.433	48.0		
0.001074	0.433 0.017417 mol ($T = 1173$ K) 0.042	40.0	1860	2007
0.001074	0.433 0.017417 mol (T = 1173 K) 0.942 0.871	5.9	-1860	-2087
0.001074 0.001498	0.433 $0.017417 \mod (T = 1173 \text{ K})$ 0.942 0.871 0.700	5.9 12.3	-1860 -3923	-2087 -4404

Table 5 (Continued)

Added amount, $n_{Ag_{0.8}In_{0.2}}$ (mol)	Mole fraction, x_{Te}	Heat effect, ΔQ (J)	Experimental $H^{\rm E}$, $H^{\rm E}_{\rm exp}$ (J/mol)	Ternary $H^{\rm E}$, $H^{\rm E}$ (J/mol)
0.002331	0.713	29.1	-8444	-9520
0.002488	0.647	13.5	-10632	-11954
0.002874	0.584	16.0	-12690	-14245
0.002673	0.536	11.7	-14377	-16112
0.002345	0.500	10.0	-15650	-17521
0.002256	0.470	26.6	-16265	-18250
0.002940	0.435	35.7	-16937	-19051
0.002144	0.413	40.8	-17017	-19214

Fig. 6. Experimental points and calculated excess enthalpies of the section $Ag_{0.5}Ga_{0.5}$ -Te at 1173 K.

Fig. 7. Experimental points and calculated excess enthalpies of the section $Ag_{0.5}In_{0.5}$ -Te at 1173 K.

Fig. 8. Isoenthalpics of the system Ag–Ga–Te at 1173 K projected onto the Gibbs triangle.

Fig. 9. Isoenthalpics of the system Ag–In–Te at 1173 K projected onto the Gibbs triangle.

Table 6

Ternary interaction parameters of the association model (in $kJ\,\,mol^{-1})$

System	$C^{H}_{\mathrm{Ag}_{2}\mathrm{Te},\mathrm{M}}$	$C_{\mathrm{M_2Te_3,Ag}}^H$	$C^{H}_{\mathrm{Ag}_{2}\mathrm{Te},\mathrm{M}_{2}\mathrm{Te}_{3}}$	$C_{\mathrm{Ag}_{3}\mathrm{M},\mathrm{M}_{2}\mathrm{Te}_{3}}^{H}$
Ag–Ga–Te	28.1	134.4	47.3	302.9
Ag–In–Te	5.7	110.6	4.9	199.1

Acknowledgements

The authors express their gratitude to the DFG and Fonds der Chemie for financial support.

References

- C. Wagner, Thermodynamics of Alloys, Addison-Wesley, Reading, MA, 1952.
- [2] A. Schlieper, R. Blachnik, Z. Metallkd. 91 (2000) 24, and references cited therein.
- [3] B. Gather, R. Blachnik, J. Chem. Thermodyn. 16 (1984) 487.
- [4] B. Gather, R. Blachnik, Z. Metallkd. 73 (1982) 245.
- [5] I. Barin, Thermochemical Data of Pure Substances, Part I and II, VCH, Weinheim, 1989.
- [6] T.B. Massalski (Ed.), Binary Alloy Phase Diagrams, 2nd Edition, Vol. 1–3, ASM International Materials Park, Ohio, 1990.
- [7] A.E. Gunnaes, O.B. Karlsen, A. Olsen, P.T. Zagierski, J. Alloys Compounds 297 (2000) 144.
- [8] H.L. Lukas, E.Th. Henig, B. Zimmermann, Calphad 1 (1977) 225.
- [9] H.L. Lukas, S. Fries, J. Phase Equilibria 13 (1992) 532.
- [10] F. Sommer, Z. Metallkd. 73 (1982) 72.
- [11] F. Sommer, Z. Metallkd. 73 (1982) 77.
- [12] A.T. Dinsdale, Calphad 15 (1991) 319.
- [13] Y. Feutelais, A. Haloui, B. Legendre, J. Phase Equilibria 18 (1997) 48.
- [14] R. Beja, M. Laffitte, C.R. Acad. Sci. 267C (1968) 123.
- [15] K. Itagaki, A. Yazawa, J. Jpn. Inst. Met. 32 (1968) 1294.

- [16] R. Beja, These Doctorat, Marseille, 1969.
- [17] B. Predel, D.W. Stein, Acta Met. 20 (1972) 515.
- [18] V.N. Danilin, S.P. Yatsenko, Izv. Akad. Nauk. SSSR, Metally 3 (1968) 224.
- [19] O.J. Kleppa, J. Phys. Chem. 60 (1956) 846.
- [20] E. Przezdiecka-Mycielska, J. Terpilowski, K. Strozeck, Arch. Hutn. 8 (1963) 85.
- [21] K. Ehrlich, Ph.D. Thesis, University of München, Germany, 1965.
- [22] T. Nozaki, M. Shimoji, K. Niwa, Nippon Kinzoku Gakkaishi 30 (1966) 7.
- [23] C.B. Alcock, R. Sridhar, R.C. Svedberg, Acta Met. 17 (1969) 839.
- [24] M. Guittard, J. Rivet, F. Alapini, A. Chilovet, A.-M. Loireau-Lozach, J. Less-Common Met. 170 (1991) 373.
- [25] H. Hahn, G. Frank, W. Klingler, A.D. Meyer, G. Störger, Z. Anorg. Allg. Chem. 271 (1953) 153.
- [26] V.M. Glazov, M.S. Mirgalovskaya, L.A. Petrova, Izv. Akad. Nauk. SSSR, Tekhn. 10 (1957) 68.
- [27] L.S. Palatnik, E.K. Belova, Izv. Akad. Nauk. SSSR, Neorg. Mater. 2 (1966) 1025.
- [28] L.S. Palatnik, E.K. Belova, Izv. Akad. Nauk. SSSR, Neorg. Mater. 3 (1967) 967.
- [29] L.S. Palatnik, E.K. Belova, Izv. Akad. Nauk. SSSR, Neorg. Mater. 2 (1966) 659.
- [30] K.J. Range, G. Engert, A. Weiss, Z. Naturforsch. 24B (1969) 1061.
- [31] V. Krämer, H. Hirth, W. Hofherr, H.P. Trah, Thermochim. Acta 112 (1987) 89.
- [32] M. Guittard, J. Rivet, A. Mazurier, S. Jaulmes, P.H. Fourcroy, A. Chilouet, Mater. Res. Bull. 23 (1988) 217.
- [33] Z. Bahari, J. Rivet, B. Legendre, J. Dugue, J. Alloys Compounds 282 (1999) 164.
- [34] Z. Bahari, J. Rivet, B. Legendre, J. Dugue, J. Alloys Compounds 289 (1999) 99.
- [35] L.S. Palatnik, E.I. Rogacheva, Dokl. Akad. Nauk, SSSR 174 (1967) 80.
- [36] L.S. Palatnik, E.I. Rogacheva, Izv. Akad. Nauk. SSSR, Neorg. Mater. 4 (1968) 352.
- [37] P.W. Chiang, D.F. O'Kane, D.R. Mason, J. Electrochem. Soc. 114 (1967) 759.
- [38] S.I. Radautsam, R.A. Maslyanko, M.M. Markus, Akad. Nauk. Mold. SSSR, Inst. Fiz. Mat. (1964) 153.