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Abstract

The conventional isoconversional plots, ln b versus 1/T and ln(b/T2) versus 1/T, have some errors in calculating the activation

energy due to the use of an approximate value of p(x). In order to obtain the `exact' value of activation energy of a reaction, an

iterative procedure has been established after the ratios, H(x) and h(x), were introduced to determine `exact' p(x) instead of the

approximate values of p(x) used in the conventional isoconversional plots. The iterative procedure is wide applicable, no matter

how little or how great the E/RT value of the reaction is. # 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The isoconversional methods, Ozawa method [1]

and Kissinger±Akahira±Sunose method [2,3], have

been widely used to estimate activation energies

regardless of the rate expressions of the reactions.

The successful application is ascribed to the approx-

imate expressions used in the integration of Arrhe-

nius equation [4,5]. For the same reason, however,

the calculated activation energies contain some

errors, which are dependent on E/RT value. An

analysis of the error of Kissinger±Akahira±Sunose

method was reported by Ortega et al. [6]. In their

work, the error was evaluated at separate E/RT

values in comparison to the `exact' integral of the

Arrhenius equation. In practice, calculation of acti-

vation energy in the isoconversional methods is

made over a range of E/RT values corresponding

to the temperatures at different heating rates. The

error of calculated activation energy is thus con-

cerned in a regressive way with all the errors at

the E/RT values within the range. This is the reason

why Ozawa method can give a useful estimate of the

activation energy usually although the approximation

adopted in integrating the Arrhenius equation is

rather rough. Nevertheless, the errors in the calcu-

lated activation energy will become larger as E/RT

value decreases below 15. In the present work,

through a thorough consideration of the errors of

the conventional isoconversional methods, we pre-

sent an improved scheme to obtain exact values for

the activation energy, no matter how little or how

great the E/RT value of the reaction is.

2. Theoretical

In non-isothermal analyses, the reaction rate is

generally expressed by the derivative of the fractional
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conversion as Eq. (1).

da
dt
� AeÿE=RT f �a� (1)

Furthermore
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where x � E=RT , T0 � 0 K, b is the heating rate of a

linear temperature-programmed process. As is well

known, the p function has no analytical solution

and is expressed by several approximate expressions

[4,5].

p�x� � 0:0048 exp�ÿ1:0516x� (3)

p�x� � exp�ÿx�
x2

(4)

From Eq. (3) Ozawa adopted a linear plot of ln b
against 1/T at the same fractional conversion. Simi-

larly, a linear plot of ln(b/T2) against 1/T from Eq. (4)

was adopted by Kissinger et al.
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These two methods of plotting a linear regressive

curve at the same fractional conversion are the so-

called isoconversional methods. The plot of ln(b/T2)

against 1/T in Eq. (6) has been proved to give an

activation energy with an error within 1% when x is

greater than 15 compared with the use of the `exact'

integral of Arrhenius equation [6]. The `exact' p(x)

was regarded as Eq. (7).

p�x� � exp�ÿx�
x2

h�x� (7)

where

h�x� � x4 � 18x3 � 88x2 � 96x

x4 � 20x3 � 120x2 � 240x� 120
(8)

As a matter of fact, reaction rate should be

expressed by derivative of mass decrease of a reactant

(or mass increase of reaction product) as Eq. (9) in the

strictest sense.

ÿ dm

dt
� AeÿE=RT f �m� (9)

Of course, because m � m0�1ÿ a�, Eq. (9) can be

rewritten as

da
dt
� AeÿE=RT 1

m0

f �m0; a� (10)

When the reaction under study is a nth order reac-

tion, m0 can be separated from a, that is

da
dt
� AeÿE=RT mnÿ1

0 �1ÿ a�n (11)

In this way, Eqs. (5) and (6) should be rewritten as

Eqs. (12) and (13).

ln b � ln
0:0048AE

R
ÿ ln g�m0; a� ÿ ln m0

� �
ÿ 1:0516E

RT
(12)

ln
b
T2
� ln
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E
ÿ ln g�m0; a� ÿ ln m0

� �
ÿ E

RT
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It is evident that the initial mass of sample m0 must

be kept at constant in all measurements at different

heating rates to maintain a rigorous linear relationship

for Eqs. (12) and (13). However, it is often seen that

the initial mass of sample was not kept constant in the

literature [7,8]. When m0 is separated with a in f(m0,

a), keeping the same initial mass in all measurements

is not necessary since the term of m0 can be combined

into the term containing b.

If it is supposed that the initial mass of sample is

kept constant in all measurements at different heating

rates, then Eqs. (5) and (6) can be adopted in the

following discussion for convenience. Here, we also

regard Eq. (7) as exact p(x), then evaluate the errors of

activation energies obtained from Eqs. (5) and (6) in

comparison to the exact p(x). It is certain that more

accurate the used approximate expression of p(x),

more accurate the calculated activation energies. Even

although, if there is an approximate p(x), no matter

how rough it is, having a constant ratio to the exact

p(x), the approximate p(x) will give the same value of

activation energy as the exact p(x) does. The ratio of

the exact p(x) (Eq. (7)) to Eq. (4) is h(x) (Eq. (8)),

which varies slightly with x, from 0.8910 to 0.9729
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corresponding to x � 15±70. The ratio of the exact

p(x) to Eq. (3) is de®ned as H(x).

H�x� � exp�ÿx�h�x�=x2

0:0048 exp�ÿ1:0516x� (14)

H(x) was found to vary greatly with x value. The

variations of H(x) and h(x) with x are shown in Fig. 1.

The form of the function H(x) can be obtained by

®tting the ratios against x, but it has to be a long

polynomial to re¯ect accurately these variations. After

taking h(x) and H(x) into account, Eqs. (5) and (6) can

be rewritten as Eqs. (15) and (16).

ln
b
H
� ln

0:0048AE

R
ÿ ln g�a�

� �
ÿ 1:0516E

RT
(15)

ln
b

hT2
� ln

AR

E
ÿ ln g�a�

� �
ÿ E

RT
(16)

Eqs. (15) and (16) are perfect relations since the

exact function of p(x) is used. It can be seen that plots

of ln b versus 1/T and ln(b/T2) versus 1/T in the

conventional isoconversional methods are conse-

quences of ignoring the variation of H(x) and h(x)

with x. This is the reason for errors in the conventional

isoconversional methods. In an accurate kinetic study,

an iterative calculation should be performed by the use

of Eq. (15) or Eq. (16). The iterative procedure is as

follows.

� Step 1: supposing H�x� � 1 or h�x� � 1 to estimate

the initial value of the activation energy E1. The

conventional isoconversional methods stop calcu-

lating at this step.

� Step 2: using E1 calculate H(x) or h(x), then from

Eq. (15) or Eq. (16) calculate a new value E2 for the

activation energy from the plot of ln(b/H) versus 1/

T or ln(b/hT2) versus 1/T.

� Step 3: repeat step 2, replacing E1 with E2.

And so on until the absolute difference of

(Ei ÿ Eiÿ1) is less than a de®ned small quantity such

as 0.1 kJ molÿ1 generally. The last value Ei is the exact

value of activation energy of the reaction. The error in

the conventional isoconversional calculation of acti-

vation energy can then be given by value of (E1 ÿ Ei)/

Ei. If the reaction mechanism is known, the exact pre-

exponential factor A can be calculated from the inter-

cept of the plot at the same time.

On the other hand, one can ®t an approximate p(x)

more accurate than Eq. (3) over the range of x of the

being considered reaction for evaluating error of

activation energy calculated from Ozawa plot with

the use of Eq. (3). As ordinary reactions correspond to

Fig. 1. The variations of H(x) (open circle) and h(x) (black circle) with x.
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range of Dx around 3±4 at usual heating rates, the

®tting of a more accurate approximate p(x) in the form

of Eq. (3) from the exact p(x) (Eq. (7)) was made at

several intervals of Dx � 5. The approximate p(x)

function are indicated in Table 1. It can be seen that

Eq. (3) is very similar to the ®tted p(x) at x � 35±40.

So it is obvious that Ozawa plot using Eq. (3) will lead

to a larger value at lower x values and a less value at

higher x values than the exact values of activation

energy.

3. Experimental

Thermal decomposition of a polyamide 6 (lot No.

1013B, Ube Industries Ltd., Japan) was carried out in a

thermogravimetric analyzer (Shimadzu, TGA-50,

Japan) in a ¯owing atmosphere of dry nitrogen (¯ow

rate 40 cm3 minÿ1) from 373 to 873 K at heating rate

of 2, 4, 6 and 10 K minÿ1, respectively. The sample

cells were platinum crucibles. The sample mass was

4.867±5.384 mg. Calcium oxalate monohydrate (of

special grade, Kanto Chemical Co., Japan) was dehy-

drated in the same thermogravimetric analyzer in

nitrogen gas ¯ow of 40 cm3 minÿ1 from ambient

temperature at heating rate of 1, 2, 5 and 10 K minÿ1,

respectively. The sample mass was 3.687±7.110 mg.

4. Results and discussion

It is reported that the polyamide 6 decomposes by a

®rst-order reaction [9,10] with the formation of the

charred residue about 4 wt.% at the end [11]. So the

initial mass of the sample should have no effect on the

calculation of the activation energy for polyamide 6

according to Eq. (11) except the last part of the

decomposition. To illustrate the iterative method,

iterative calculations of the activation energy for the

thermal decomposition of the polyamide 6 were car-

ried out at a � 0:3. The results are indicated in Tables 2

and 3. It can be seen from Tables 2 and 3 that the same

value of activation energy was obtained at their last

step of iterative calculations. This is because the same

`exact' p(x) (Eq. (7)) was used in both Eqs. (15) and

(16). But Eq. (5) contained a larger error than Eq. (6)

in the initial activation energy. This can be understood

from Fig. 1. Here, h(x) is slowly varying with x,

whereas H(x) varies greatly with a small change of

x except in the range of x � 35±40. So Eq. (4) is better

for calculating the activation energy.

Similar results were seen in the iterative calcula-

tions on the dehydration of calcium oxalate monohy-

drate as shown in Tables 4 and 5. The effect of the

initial mass of the sample was not considered as the

mechanism of the dehydration was not known. Dis-

cussion of the mechanism is beyond the scope of this

paper. In this case Ozawa plot exhibited a slightly

larger error (2.6%) in the activation energy because

the E/RT values were around 24, lower than those

(around 34) for the thermal decomposition of the

polyamide 6. According to Fig. 1, the Ozawa plot

Table 1

The ®tted p(x) at the intervals of Dx � 5 from the values of the

exact p(x) vs. x

x The fitted p(x)

10±15 0.0376 exp(ÿ1.1516x)

15±20 0.0202 exp(ÿ1.1095x)

20±25 0.0126 exp(ÿ1.0858x)

25±30 0.0086 exp(ÿ1.0706x)

30±35 0.0063 exp(ÿ1.0600x)

35±40 0.0048 exp(ÿ1.0521x)

40±45 0.0038 exp(ÿ1.0461x)

45±50 0.0030 exp(ÿ1.0413x)

50±55 0.0025 exp(ÿ1.0375x)

55±60 0.0021 exp(ÿ1.0342x)

60±65 0.0018 exp(ÿ1.0315x)

65±70 0.0015 exp(ÿ1.0292x)

Table 2

An iterative calculation of activation energy for the thermal decomposition of the polyamide 6 by use of the plot of ln(b/H) vs. 1/T at a � 0.3

b (K minÿ1) T (K) h1(x) E1 (kJ molÿ1) h2(x) E2 (kJ molÿ1) h3(x) E3 (kJ molÿ1)

2 684.8 1.0 197.6 0.9827 196.6 0.9836 196.5

4 697.4 1.0 0.9858 0.9869

6 706.6 1.0 0.9884 0.9896

10 716.0 1.0 0.9914 0.9927
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is good only with x � 35±40, the plot of ln(b/T2)

against 1/T is better when x is greater than 15. When

x is lower than 15, the plot of ln(b/T2) against 1/T will

also exhibit an increased error in value of calculated

activation energy. Maybe the increased error in value

of calculated activation energy is still smaller than the

experimental error in some cases. But a perfect cal-

culation method is always expected, at least to know

how much the calculation error involved in a calcu-

lated result from the experimental data. Therefore, the

iterative calculation by means of Eq. (15) or Eq. (16) is

essential for obtaining the exact value of activation

energy of an interested reaction, especially for the

reaction of which E/RT is lower than 15.

5. Conclusions

Errors in calculating the activation energy of con-

ventional isoconversional plots, ln b versus 1/T and

ln(b/T2) versus 1/T, are due to ignoring the variation of

H(x) and h(x) with x. Iterative calculations based on

consideration of change in H(x) and h(x) by means of

plots of ln(b/H) versus 1/T or ln(b/hT2) versus 1/T give

the `exact' value of activation energy, no matter how

little or how great the E/RT value of the reaction is.

The `exact' value of activation energy is dependent on

the `exact' p(x) adopted. The procedure of iterative

calculations is general applicable, no matter what p(x)

is regarded as exact p(x).

The effect of the initial mass of sample on calcula-

tion of kinetic parameters should be considered. In the

cases where mechanism of the being considered reac-

tion is unknown, keeping initial mass of sample at a

®xed constant in all measurements is safe. If initial

mass of sample is different in the measurements at

different heating rates, the exact value of pre-expo-

nential factor cannot be obtained at least.
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