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Abstract

We presented a study of advantages and limitations of different temperature—time profiles for simultaneous multi-frequency
TMDSC measurements. Theoretical consideration was followed by some experimental examples. We showed that the optimal
program temperature should contain sharp steps. In experiments higher harmonics of heat flow rate up to 100th were detected
which means simultaneous covering two decades of frequency in a single measurement. Importance of linear conditions was
also discussed and the way to check linearity was shown. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In spite of the fact that the first temperature modu-
lated differential scanning calorimeter (TMDSC) was
made by Gobrecht et al. [1] to measure frequency
dependence of dynamic heat capacity, the technique
was widely introduced by Reading [2] to deconvolute
the total heat flow signal into the non-rapidly reversing
and the rapidly reversing parts. Further research and
practice with TMDSC showed the usefulness of mea-
surements at different frequencies of temperature
modulation. Having the frequency dependence of
complex heat capacity c¢, (other terms are: dynamic,
apparent, effective heat capacity; reversing heat capa-
city for modulus of c;) one can study, e.g. dynamic
glass transition [3], kinetics of irreversible processes
[4], dynamics of reversible melting [5,6]. Even when
heat capacity of the material is frequency independent
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one can get precise heat capacity values studying the
frequency dependence of measured c,, [7].

One way to improve the technique in respect to heat
capacity spectroscopy is to measure ¢, simultaneously
at different frequencies. This would ensure an exact
correspondence of the sample history for all frequen-
cies. Multi-frequency measurement can be realized by
looking at the spectrum of higher harmonics of the
heat flow rate under inharmonic temperature pertur-
bations. Inharmonic perturbations can be programmed
as common saw-tooth. The application of this tempera-
ture profile to multi-frequency measurements is ana-
lyzed in [8]. Since the temperature amplitude of higher
harmonics of a saw-tooth is inversely proportional to the
square of harmonic number, the heat flow rate decreases
very fast at higher harmonics resulting in a low signal-
to-noise ratio. Wunderlich et al. [7] suggested another
type of inharmonic periodic temperature—time profile, a
complex saw-tooth, which has first four even harmo-
nics with the same temperature amplitude and consist
of 14 linear heating/cooling segments per period.

The goal of the present paper is to analyze which
temperature—time profile is optimal for simultaneous
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multi-frequency TMDSC measurements and to show
which results can be achieved by applying that tem-
perature—time profile. We start our study from analyz-
ing the TMDSC data treatment to point out two
important theoretical prerequisites for dynamic heat
capacity calculations: linear and stationary response
and the presence of components at the frequency
under investigation in the input signal (temperature).
Next, in Section 3, we analyze two limiting factors
with regard to the experimental determination of
dynamic heat capacity: noise level and non-linear
response. Larger temperature amplitudes guarantee
better signal-to-noise ratio but can bring the instru-
ment and the sample beyond linear response. It is
important to find out the optimal experimental con-
ditions for heat capacity measurements. We present a
multi-frequency method where the experimental para-
meters are selected in an optimal way for simultaneous
dynamic heat capacity measurement at different fre-
quencies. After that, in Section 4, we show how to
check linearity of the thermal response. Further we
select experimental conditions (temperature ampli-
tude) based on the results of this linearity check to
perform real measurements in glass transition and
melting region, which are shown in Section 5. Finally,
in Section 6, we analyze whether the proposed multi-
frequency method gives the expected results, what are
the advantages of the method with respect to classical
TMDSC.

2. Data treatment

Let us consider where heat capacity spectrum
comes from. To answer this question let us go one
step back and consider how heat capacity is calculated.
Heat capacity C of a system is introduced as the ratio
between the elementary amount of heat dQ added to
the system to respective temperature change d7,

do
- = 1
C=q7 ey
One can formally rewrite this equation as
dQ/dt HF
_dojer_IF @)
dr/dt ¢

where HF = dQ/dr is the heat flow rate to the system
and g = dT'/dt is the heating rate. This is the way in

which standard differential scanning calorimeters
(DSC) calculate heat capacity, see e.g. [9]. However,
Eq. (2) gives the same heat capacity C as Eq. (1) only
when one gives enough time for all subsystems to
reach equilibrium. In general case, with remarkable
heat transfer delay and/or relaxations in the material,
the relation between HF and ¢ is not simply propor-
tional, HF = C X ¢, but it is given by the operator
equation

HE(t) = Cq(1) (3)

where the operator C transfers a set of functions q(®) to
a set of functions HF(f) and may depend on starting
temperature T and starting time £, of the experiment.
If the operator C is linear and stationary one can
rewrite Eq. (3) as the convolution product

HE(z) = C(7) * q(1) @

where C(t)x = C. To resolve the convolution product
one selects a periodic function for ¢(r) and applies
Fourier transformation, e.g. in the following form:

2 /2
FEOI0) = 4r0) = [ 0ycoston a

2 tp/2
+i— Ff(t) sin(wt)dr (5)
Ip —tp/2
where F[f(#)](w) is the Fourier image of the function
f(?) on frequency w, another name for that is “complex
amplitude” Af(w), @ = 2n/t,, t, is the period of the
function f(f). Applying Fourier transform one can
rewrite Eq. (4) as regular product:

F[HF(1)](@) = FIC(1)](w) x Flg(1)](@) or

App(w) = C(w) x Ag(w) (6)

Then the heat capacity at given frequency C(w)
(complex value) is determined as follows:

=4

)

Note that one cannot determine heat capacity analo-
gous way in time domain, because the value C(7),
C(t) = HF(#)/q(t), would depend on the whole profile
of the function ¢(¢), that assumes infinite number of
parameters being involved in the analysis. In contrary
C(w) depends only on frequency @ and on starting
temperature. Thus, heat capacity spectrum gives
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almost all information which one can get from the
analysis of heat flow rate HF(¢) and heating rate g(¢).

The only limitation of applying Fourier transforma-
tion is that the response of the system must be linear
and stationary, see [10] for details. Stationary response
assumes that the relation between heating rate g(f) and
heat flow rate HF(#) does not change with time and
linear response assumes that the heat flow rate pro-
portionally changes with changing heating rate, i.e.
Cag(t) = aCq(t) for any complex number a.

We discuss experimental data in terms of effective
(apparent) specific heat capacity, i.e. cer(w) =
C(w)/ms where mg is sample mass. This specific heat
capacity value is not necessarily a material property
but we use it for easier comparison on graphs.

Let us assume further that for some periodic heating
rate g(¢) our instrument has such sampling rate, that we
get n points per period for HF(¢) and ¢(¢) signals. If one
is interested only in the value of c.gr(w) then it is not
necessary to determine separately Ayp(w) and A, ()
in Eq. (7), one can directly calculate c.gr(w) omitting
all normalization factors:

1 3% HF,cos(wy;) +iy.HF; sin(wt;)
omg Yorgicos(wt) +id 1, qisin(wt;)

®)
The points HF; and ¢; should be taken with the same
sampling rate (number of points per unit time) and
equidistant. This way of calculating complex ceg(®) is
preferable also because there is no need to take care
for initial phase of Ayp(w) and A,(®).

One should pay attention on the sign of the ima-
ginary part of crr(w). By tradition one write complex
frequency dependent heat capacity in form C*(w) =
C'(w) —iC"(w) or C*(w) = |C*|e”**. The delay in
the response due to relaxation processes causes some
positive peak in imaginary part C” as well as in the
phase angle ¢. However, actual phase angle between
heating rate and heat flow rate should be negative if
calculated by Eq. (8). If one wish to follow traditional
way one should take conjugate value of cerr(w) or
calculate cer(w) as

(a)) 1 Z:’:IHFi COS((,Ull') — iz:‘l:] HF; sin(a)t,-)
Ce =— . — -

ff ms Y i gicos(wt;) —iy i q;sin(wt;)
9

In further examples we presented the data of modulus
and argument of c.gr(w), calculated by Eq. (9).

Ceff(w)

To apply Fourier transformation we should have a
periodic signal in heating rate (under stationary
response we get automatically periodic heat flow rate
as well). Usually one tends to use the simplest periodic
function — sinusoid. In this case A;(w) # 0 only at
the basic frequency w, and we get only one point in the
spectrum of cg (). However, from the theory nothing
is said about the shape of the input signal. It can be any
periodic function with the only limitation, that A,(w)
could not equal zero, see Eq. (7). Therefore, we can
add some higher harmonics to the sinusoidal heating
rate and measure them simultaneously at the same
time. One can add any frequency ® = kmy as long as k
is integer without changing the basic period of the
resulting signal. In fact it is not necessary to program
all higher harmonics of interest, it is enough to take
some non-harmonic periodic heating rate profile and
to analyze the higher harmonics it has. So which
profile is the better one for real measurements?

3. Favorable generation of the heat capacity
spectrum

3.1. Noise level

Real measurements are always accompanied by
noise. If it is mainly white noise, it has equal con-
tribution at all frequencies. If the measured heat flow
rate has the same amplitude at all harmonics then the
heat capacity spectrum is determined with about the
same uncertainties due to the noise at different

q(t)

T®

t

Fig. 1. Heating rate profile consisting of one delta function per
period and corresponding temperature—time program.
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T®

t

Fig. 2. Temperature—time programs with the same steps in
temperature and different underlying heating rates.

frequencies. Since the amplitude of the heat flow rate
is proportional to the heating rate amplitude (not
temperature amplitude) an optimal heating rate signal
would be one with all higher harmonics of the same
amplitude. Such heating rate profile can be generated
with one delta function (¢ — ;) in heating rate per
period, see Fig. 1. The corresponding temperature
profile consists of step-wise increasing segments.

Whether one has isotherm or slow heating or cool-
ing between steps in temperature depends on under-
lying heating or cooling rate, which can be easily
added to the temperature—time program, see Fig. 2.

Whenever it is necessary the temperature steps can
be negative as well, see Fig. 3.

In all examples above heating rate consists of
all even and odd higher harmonics. In contrary,

q(t)

T®

t

Fig. 3. Heating rate profile consisting of negative delta functions.
Temperature—time program has negative steps.

q(t)

T()

t

Fig. 4. Heating rate profile consisting of positive and negative delta
functions. Temperature—time profile has rectangular shape.

rectangular temperature profile, shown in Fig. 4, has
only odd harmonics and no even ones. This gives a
possibility to monitoring linearity and stationarity of
the response — under linear and stationary conditions
even harmonics in the heat flow rate should equal
zero, see also Fig. 6.

In the temperature—time diagram we simply connect
the steps in temperature by linear heating or cooling
segments or by isotherms. Of course one can combine
the steps in temperature with any periodic function. But
it is the temperature step, which generate a homoge-
neous heating rate spectrum.

——A ©  3Abs(c )Abs(c )
q eff eff’
0.74 * SArg(ce“)/('l rad) 17
0.6+ —46
; c
g 0.5 45 3
E E =3
v 0.4 4 5
£ 03 13 =2
s =
< 52 42 =3
R
0.14 -1
0.0 0
1E-3 1

fin Hz

Fig. 5. Measured heating rate amplitude and relative uncertainties
in modulus Abs(c.sr) and phase angle Arg(c.e) of effective heat
capacity, calculated by Eq. (9), vs. frequency for a temperature—
time profile consisting of 1K steps in temperature, period
t, = 3 min. Perkin-Elmer Pyris-1 DSC, PS disk of 62 mg.
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sinusoidal temperature program
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Il nonlinear part
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number of harmonic number of harmonic
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Fig. 6. Schematic representation of heating rate (A,) and heat flow rate (A{ yr}) spectra for: (a) harmonic temperature perturbations; (b) saw-
tooth temperature perturbations; (c) rectangular temperature perturbations. The linear part of the A{ ygr} spectrum corresponds to linear
response to heating rate perturbations, non-linear part corresponds to harmonic distortions of the response on basic frequency (the values were

taken from [11] for 8 K temperature amplitude).

In real measurements, however, measured (real)
temperature is smeared by the instrumental lag, which
leads to a damping of higher harmonics of the heating
rate. Heat transfer and possible time-dependent pro-
cesses in the sample damp the heat flow rate spectrum
in addition.

How uncertain do we measure heat capacity spec-
trum then? Let us consider the results, shown in Fig. 5.
Here we have a heating rate spectrum measured just in
the upper limit of the frequency window of the instru-
ment. Instead of constant amplitude of higher harmo-
nics of the programmed heating rate, measured
heating rate (that is time derivative of measured
temperature) has decreasing amplitude with fre-

quency. In spite of this decrease the uncertainty of
heat capacity determination (which comes from sig-
nal-to-noise ration in heat flow rate) remains constant
up to frequencies of about 0.15 Hz and it is below
1.5% for the modulus and phase of effective heat
capacity. Note that at 0.15 Hz the realized heating
rate amplitude is already four times lower than that of
the basic frequency (5.6 mHz). It means that apparatus
damps not only the heat flow spectrum but also the
noise spectrum. Further increase of frequency finally
leads to decreasing signal-to-noise ratio and uncer-
tainties in heat capacity determination become larger.
In the frequency range relevant to classical TMDSC
(lower than 0.1 Hz) we have practically the same
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signal-to-noise ratio in the heat flow rate for all
frequencies.

If we would apply a saw-tooth temperature oscilla-
tion instead of temperature steps, heating rate ampli-
tude would decrease with frequency much stronger
resulting in higher uncertainties at the high frequency
part of the heat capacity spectrum. On the other hand
temperature oscillations with increasing heating rate
amplitude with frequency would result in higher
uncertainties at the low frequency part of the heat
capacity spectrum. Only steps in temperature yield the
optimal signal-to-noise ratio against other periodic
signals.

3.2. Non-linear thermal response

Another and even more important reason to have
higher harmonics in the heating rate with the same
amplitude is the following. Often the response of the
sample to temperature changes is non-linear. In this
case under pure sinusoidal temperature oscillations the
heat flow rate has already some higher harmonics, e.g.
3% of third harmonic at glass transition with tempera-
ture amplitude 8 K [11], see Fig. 6a. If we apply
symmetric saw-tooth temperature oscillations where
the heating rate amplitude of the third harmonic equals
33% of that of basic frequency, then we get already
10% of the heat flow signal from harmonic distortion,
see Fig. 6b. The result would differ for about 10%
from that measured separately on this frequency.
When perturbing the system with the same heating
rate amplitude on the third harmonic as on the first one
the response contains only 3% from harmonic distor-
tions, see Fig. 6c. Remember that under non-linear
response the first harmonic is already distorted to
some extent regardless of the shape of the temperature
profile.

We can think about having higher harmonics in
heating rate with increasing amplitude. This can be
realized for example by having delta functions in
temperature profile, or creating some of the harmonics
by applying complex saw-tooth temperature profile
[7]. But then heat capacity at lower harmonics will be
more uncertain than that at higher harmonics, as was
already discussed in Section 3.1. Total peak-to-peak
periodic temperature changes of such temperature
profiles are larger than temperature amplitude of basic
harmonic. On the other hand we are not allowed to

A
a
Temperature profile: %
% complex sawtooth
—&— rectangular
4aft ——
o
o} T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10

number of harmonic

Fig. 7. Schematic representation of heating rate spectrum for
rectangular temperature profile (close squares) and for complex
saw-tooth (open stars, the values were taken from [7]) at the same
peak-to-peak temperature changes a. Complex saw-tooth gives
larger A, value only at 7th harmonic, all others are smaller than that
from rectangular temperature profile.

increase the temperature changes above a given limit
because of non-linearity. This means that one cannot
use optimal way the given limit of temperature
changes, see Fig. 7.

In contrary, if we apply rectangular temperature—
time profile, the amplitude of basic harmonic is even
larger than total temperature changes, see Fig. 8.

Fig. 8. Rectangular temperature—time profile, which consists of
heating and cooling temperature steps. At given limit of
temperature changes a the rectangular profile realizes the largest
possible peak-to-peak heating rate amplitude 8a/t, (with 7, period),
which corresponds to effective temperature oscillations with 4a/n
peak-to-peak amplitude.
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Often occurring are the limiting cooling capabilities
of the DSC because the instrument at given tempera-
ture could not cool faster than certain value ¢<°%'. In

this case heating rate amplitude A, < g<°%! for quasi-
isothermal measurements with sinusoidal temperature
oscillations. However, heating capability of the same
instrument is much better. Therefore, one can use a
periodic temperature profile consisting of sharp heat-
ing and slow cooling with ¢() = ¢%°%!. This way one
gets an increasing of heating rate amplitude A, almost
for two times and therefore one doubles the signal-to-
noise ratio.

If the instrument cannot realize sharp step-wise
changes in temperature then this is an instrument
limitation but not a limitation of the method. Then
it is impossible to make the instrument react faster by
any other temperature—time program.

Consequently, at quasi-linear response the steps in
temperature yield optimal signal-to-‘‘harmonic distor-
tion” ratio against other periodic signals. The question
remains: which temperature steps should we use? In
general the larger the amplitude the better the signal-
to-noise ratio. But this obvious conclusion is not valid
under non-linear response, because the harmonic dis-
tortions can increase with the amplitude. Then the
question arises: under which conditions the response is
linear or quasi-linear? To answer the question we have
to perform a linearity check.

4. Linearity check

It is worth to repeat once again that multi-frequency
method as well as classical TMDSC is only correct
when the response of the system (apparatus + sample)
is linear and stationary. To decrease non-linearity
one should decrease the amplitude of the tempera-
ture oscillations. To decrease non-stationarity (instru-
mental drift, evolution of sample properties) one
should shorten the modulation period or/and slow
down sample evolution by decreasing underlying
heating rate, changing crystallization temperature,
etc. [12].

Sometimes one mixes non-linearity with differ-
ences in specific heat capacity by measuring differ-
ent sample masses. In this case the response is not
necessarily non-linear. One has the differences
because one measures different systems. To get the

51.04

50.54

in °C

50.01 —~75Kmin'

prog

— 150 K min”

T

49.54

- 300 K min”

48.0

0 50 100 150 200 250
timeins

Fig. 9. Temperature—time program for linearity check. The length
of each isotherm is 1 min, each heating and cooling segment is
0.4 s, heating and cooling rate is 75, 150 and 300 K min", which
makes temperature steps of 0.5, 1 and 2 K, respectively. Perkin-
Elmer Instruments Pyris-1 DSC, #, =2 min, block temperature
Tpiock = —20°C.

same specific values is the question of right correction
but not of linear response.

The linearity check in TMDSC has the same impor-
tance as calibration of the instrument. To check lin-
earity of the response one can vary the perturbation
amplitude, i.e. temperature amplitude, which is
applied to the same system. The same system means
that sample inside the instrument should not be
removed or replaced between subsequent measure-
ments with different temperature amplitudes. In Fig. 9
we have three similar temperature—time programs
with different temperature amplitudes.

We took an aluminum disk as the sample, which
obviously has linear thermal response at the tempera-
ture range of interest. This way we check linearity of
the instrument only. The results of ¢ () for the three
different temperature amplitudes are shown in a Cole—
Cole plot, see Fig. 10.

Under linear response conditions ceg(w) should
not depend on the modulation amplitude. The values
of cefr(w) coincide with each other for 0.5 and 1 K
temperature steps. The values of cepr(w) for 2K
temperature steps remarkably deviate from others,
especially at higher harmonics (points which are
closer to the origin of the coordinates in the complex
plane). This means that at given rectangular tempera-
ture—time profile the response was linear till peak-
to-peak amplitude of 1K. In this particular case
most probably the limiting cooling capabilities of
the instrument caused the non-linearity at 2 K peak-
to-peak amplitude.
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Fig. 10. Cole-Cole plot of ce(w) with frequency as a parameter
for three different temperature amplitudes. The horizontal and
vertical axes show the real and imaginary parts of cesr(w),
respectively. Perkin-Elmer Pyris-1 DSC, aluminum disk of
16 mg. Experimental conditions as in Fig. 9.

We performed analogous linearity check (by vary-
ing temperature amplitude) with temperature—time
profiles consisting of cooling steps only and heating
steps only. Cooling steps up to 1 K height and heating
steps of 2 K height did not violate the linearity of
instrumental response.

5. Experimental results

Here we present three types of multi-frequency
measurements: cooling steps, heating steps and rec-
tangular profile consisting of heating and cooling
steps. The step height was selected taking care not
to violate linear response conditions.

5.1. Glass transition of polystyrene

The following example shows how broad can be the
spectrum of complex heat capacity, calculated from a
single run.

The 168 N polystyrene (PS) sample was from BASF
(p=1.047gem >, M, =95000gmol™'; M, =
270,000 g mol ™ "). The temperature—time profile was
programmed by repeating of two segments: isotherm
and fast cooling. The duration of the isotherm was
10 min and the cooling step was 1 K high (to keep
linear instrumental response) with 30 K min~" cool-
ing rate that makes a duration of the cooling segment

130+

120+

1104

100+
time in min

90

Tin°C

80

70

60

T T T \ \ T \ 1

0 100 200 300 400 500 600 700
time in min

Fig. 11. Temperature—-time profile, consisting of repetition of

isotherm-cooling segments. Perkin-Elmer Instruments Pyris-1
DSC. Insert shows closer view on two periods.

of 2 s. The whole temperature—time profile is shown in
Fig. 11. The insert shows the program temperature
Torog and the measured sensor temperature (called
“sample temperature” in Pyris™™ software) Tmeasured
for two periods. One can see that in this temperature—
time scale measured temperature follows very tightly
program temperature.

Fig. 12 shows the measured heat flow rate of a
sample run after subtraction of the baseline heat flow
rate. The very sharp negative peaks correspond to the
very short cooling segments with high cooling rate.
One can see by eye that the peaks height became

0.5

0.0 4 N

-0.5

-2.0

Heat Flow in mW

2.5

-3.0

-3.5

T T T T T T T T T T T T T 1
0 100 200 300 400 500 600 700
time in min
Fig. 12. Heat flow rate vs. time which corresponds to temperature—
time program, shown in Fig. 11. Perkin-Elmer Instruments Pyris-1

DSC, PS sample, mg =25 mg with standard aluminum pan of
about 25 mg.
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g~1 K
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70 8 90 100 110 120 130
Tin°C
Fig. 13. Modulus of specific heat capacity of PS vs. temperature

for 1st, 2nd, 3rd, 5th, 7th, 10th, 15th and 2Ist harmonics.
Experimental conditions as in Figs. 11 and 12.

smaller after the sample was vitrified (after about
300 min, i.e. below 100°C).

Further we calculated the effective heat capacity by
Eq. (9) and applied the advanced calibration algo-
rithm, described in [13] to get the correct value of
complex specific heat capacity c,. The result for
modulus of ¢, is shown in Fig. 13.

We had to use an intercooler to keep the DSC block
at low temperatures (Tpjock = —50°C) to be able to
realize the fast cooling rate. Sample run and empty-
pan run did not optimally correspond to each other
because of ice formation during changing the sample.
Due to this reason the quality of the results shown in
Fig. 13 is not the best that one can achieve with the
instrument. Therefore, we performed another mea-
surement, this time with warm block (Tpock = 5°C)
using heating steps. The temperature—time profile was
programmed by repeating isotherm and fast heating
segments. The duration of the isotherm was 20 min
and the heating step was 2 K high (again to keep linear
conditions for the instrument) with 150 K min~ ! heat-
ing rate that makes duration of the heating segment
0.8s.

The result is shown in Fig. 14 (modulus of c;) and
Fig. 15 (phase angle of c;). c;(w) at 64th harmonic is
noisier than lower harmonics because corresponding
heating rate amplitude is smaller.

Out of the glass transition region heat capacity is
real valued and shows no frequency dependence
within experimental uncertainties. At glass transition
heat capacity is complex and frequency dependent.
Glass transition temperature T, is determined by the

2.0+
e 189 harmonic
‘TO) number
-
£ 16
x
a
L
1.4+

70 8 90 100 110 120 130
Tin°C
Fig. 14. Modulus of specific heat capacity of PS vs. temperature

for 1st, 2nd, 4th, 8th, 16th, 32nd, 64th harmonics. Perkin-Elmer
Instruments Pyris-1 DSC, PS sample, ms = 25 mg, ¢, = 20 min.

position of the half step in modulus of ¢, or by the
maximum of the imaginary part of c;, which practi-
cally corresponds to the maximum of the phase angle,
Arg(c;,). Both results for modulus and phase angle of
¢, show the typical dynamic glass transition curves for
PS — the position of Ty is shifted for about 3.5 K to
higher temperature by increasing frequency for one
order of magnitude [14,15], see Fig. 16.

5.2. Reversible melting of polyethylene oxide
Polyethylene oxide (PEO) was chosen as an exam-
ple of complicated melting behavior because it shows

enormous reorganization during step-wise heating
through the melting region.

0.10
0.05 4

0.00

Arg(c *) in rad

-0.05 T T T T T T T
70 80 90 100 110 120 130

Tin°C

Fig. 15. Argument of specific heat capacity of PS vs. temperature
for 1st, 2nd, 4th, 8th, 16th, 32nd, 64th harmonics. Perkin-Elmer
Instruments Pyris-1 DSC, PS sample, ms = 25 mg, #, = 20 min.
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Fig. 16. Activation diagram for PS. Data from 3w method, AC
calorimetry and common TMDSC were taken from [14,15]. We
added the points from the multi-frequency measurement for 1st,
2nd, 4th, 8th, 16th, 32nd, 64th and 100th harmonics, closed circles.
Even at 100th harmonic one can still detect glass transition,
however with large uncertainties, as indicated by the error bar.
Perkin-Elmer Instruments Pyris-1 DSC, PS sample, ms = 25 mg,
t, = 20 min.

The temperature—time program for each quasi-iso-
therm had three modulations. This time we took a
rectangular temperature profile consisted of 5 min
isotherm, cooling for 1 K at 150 K minfl, 5 min iso-
therm, heating for 1 K at 150 K min~! and so on, see
insert in Fig. 17. Note again that at this temperature
amplitude the instrument responds linearly, see Sec-
tion 4. After three oscillations the sample was heated
to the next quasi-isotherm (to the next mean tempera-
ture Tquasi—isotherm)-

After heating to the next mean temperature the cqgr
value relaxes with time. We presented the values at the
middle of each quasi-isothermal measurement. The
results for the absolute value of the effective heat
capacity cegr are shown in Fig. 17. From such mea-
surement one can detect up to 101st or even higher
harmonic in the heat flow (corresponding modulation
period of 6 s or less). But to get the correct absolute ¢),
value out of 101st harmonic would be difficult. There-
fore, we did not plot such high harmonics in the figure.
At each particular frequency the modulus of heat
capacity increased with increasing temperature until
64°C. At the next heating to 66°C the sample melted
completely and c.¢ dropped down to the value of ¢,, of

5.5+ 150 K min”
e

5.0 S——

4.5 —8—56°C
F'z 10 20 30 ~—-®-58C
Z 4.0 time in min A 2202
; - 82°
2’ 3.5 * 64°C

e 4 66°C

= 3.04 Qe §8°C
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1.5 T 1

1E-3 0.01 0.1
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Fig. 17. Modulus of c. vs. frequency of temperature oscillations
for different mean temperatures Tquasi-isotherm- Perkin-Elmer
Instruments Pyris-1 DSC, PEO sample, ms = 11 mg, 1 K peak-
to-peak temperature amplitude, #, = 10 min. The insert shows the
temperature—time program for the first quasi-isotherm.

the melt, which shows no frequency dependence and
almost the same values for 66 and 68°C.

We do not recommend to take these data as refer-
ence for other analogous measurements where the
thermal history could be different. But what we want
to show is that at a given quasi-isotherm between 56
and 64°C the modulus of c.¢ monotonously decreased
with harmonic number, i.e. with frequency of tem-
perature oscillations. There is no appreciable scatter in
modulus, because all c. values were taken simulta-
neously at the same moment for the same thermal
history of the sample.

6. Discussions

The most important prerequisite of dynamic heat
capacity determination is linear and stationary
response. Without that any TMDSC result is uncer-
tain. As we see on the examples the whole detectable
heat flow spectrum is not distorted by the instrument.
It means that instrumental response is highly linear
and stationary. The multi-frequency method works
surprisingly good in the glass transition region. Just
at glass transition the thermal response is non-linear
which leads to harmonic distortions [11]. One expects
that harmonic distortions will interfere with the higher
harmonics we are looking at. But in reality higher
harmonics induced by the rich spectrum of heating
rate (linear part of the sample response) are much
larger than the harmonic distortions. That is why the
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method works and the results were just as expected
from dynamic measurements at single frequencies.

To have the same material properties for all mea-
surements at different frequencies may appear not to
be a big issue at glass transition, since the thermal
history often can be easily reproduced. But the situa-
tion in the melting region is quite different because
material properties change a lot and often in an irre-
producible way. For example at a given mean tem-
perature the cefr () value can relax with time. It makes
difficult the comparison of the results at different
frequencies measured common way, since measure-
ments must be performed one after another. One needs
additional assumptions, i.e. that the cer(w) values
relax similarly for all measured frequencies [5]. To
repeat the same thermal history is also difficult. Only a
multi-frequency approach can guaranty an exact cor-
respondence of the sample history for all frequencies.

Another advantage of simultaneous multi-frequency
measurements is time saving and saving of samples.
For example by studying dynamic glass transition of
amorphous metals the sample inevitably crystallizes
once heated above the glass transition temperature.
To measure the glass transition next time at another
frequency would be impossible with the same sample.
Only a multi-frequency approach can deliver the
necessary heat capacity spectrum in a single run.

Not only TMDSC is used to perform simultaneous
multi-frequency measurements of dynamic heat capa-
city. In [16] the technique called “Fourier transform
thermal analysis™ is presented where a square pulse
heat flow profile is applied to a thin film and higher
harmonics up to 42nd in temperature are observed.
Since the heat flow profile is rectangular, it corre-
sponds to a rectangular heating rate profile. Therefore,
temperature amplitude decreases very fast with har-
monic number. However, one can apply heat pulses
close to ideal delta functions to generate richer tem-
perature spectrum. Of course it is impossible to apply
very sharp cooling pulses, but it is neither necessary.
Heating pulses alone will generate a temperature
profile like shown in Figs. 1 and 2.

7. Conclusion

We presented a method for simultaneous multi-
frequency heat capacity measurements by TMDSC.

The temperature—time profile for these measurements
should contain sharp steps. This is the key to measure
simultaneously heat flow rate at all harmonics as
good as possible. The method provides good results
even when the sample response in non-linear (quasi-
linear), like at glass transition. Under temperature—
time profiles consisting of temperature steps the
instrument automatically deliver the whole heat capa-
city spectrum available. Only the lower part of the
spectrum is cut at the basic frequency. The results are
independent on the direction of temperature changes
(sharp cooling or sharp heating steps or both of them
in a rectangular temperature profile). Under limiting
cooling possibility sharp heating steps alone are
preferable. If only a couple of lower harmonics are
of interest, it is absolutely unimportant that all other
harmonics remain unconsidered. Their presence does
not influence the results. For instruments with limited
cooling capabilities asymmetric saw-tooth (fast heat-
ing and slow cooling) yields better signal-to-noise
ratio than sinusoidal temperature modulation. For
many DSC instruments which do not have TMDSC
features with sinusoidal modulation these tempera-
ture—time profiles can be more preferable and easier
to program.
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