

Thermochimica Acta 383 (2002) 37-44

thermochimica acta

www.elsevier.com/locate/tca

# $\gamma$ -Promotion of thermal stability and radiolysis mechanism of atenolol $\beta$ -blocker

Morsy M. Abou-Sekkina<sup>a,\*</sup>, M.A. El-Reis<sup>b</sup>, F.A. Aly<sup>c</sup>, A.A. Wassel<sup>b</sup>

<sup>a</sup>Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
<sup>b</sup>National Organization for Drug Control and Research, Pyramid Avenue, P.O. Box 29, Cairo, Egypt
<sup>c</sup>Faculty of Science, El-Monofiya University, El-Monofiya, Egypt

Received 30 October 2000; received in revised form 6 April 2001; accepted 14 May 2001

#### Abstract

Atenolol (At)  $\beta$ -blocker antihypertensive active ingredient has been investigated for its X-ray diffraction analysis, thermogravimetric analysis (TGA), differential thermal analysis (DTA), IR-absorption spectra and electronic absorption spectra (UV-VIS) before and after exposure to  $\gamma$ -radiation doses. The results obtained indicated high resistance of the material against  $\gamma$ -irradiations. The specific  $\gamma$ -absorbed doses (40 and 60 kGy) induced higher resistance to  $\gamma$ -irradiation. Finally the mechanism of  $\gamma$ -radiolysis is putforward and achieved. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: γ-Radiolysis; X-ray diffraction; Compton effect

### 1. Introduction

Atenolol (At) is 4-(2-hydroxy-3-isopropylamino-propoxy)phenyl acetamide (Scheme 1), is one of a number of drugs collectively known as  $\beta$ -blockers.

Its pharmaceutical action is the management of hypertension, angina pectoris, where it acts preferentially upon the  $\beta$ -adrenergic receptor in the heart [1]. A review article of At and its dimerization was given [2].

Radiation effects in solids are subjects of great importance to investigate one or more features of the decomposition process [3–6].

In irradiation with  $^{60}$ Co  $\gamma$ -rays, the Compton effect has the largest-cross-section [7] except for materials of very high atomic number and diminishes [8] to zero around atomic weights of 125. ESR study of radio sterilization of

antibiotics was carried out on  $\gamma$ -ray irradiated cefazidime and ampicillin [9,10]. The effect of  $\gamma$ -radiation on the degradation of salbutamol was evaluated [10]. The thermal stability of  $\gamma$ -irradiation of tolbutamide was studied [11]. Process control and dosimeter in multipurpose irradiation facility were carried out [12]. The ESR spectroscopy was applied to the study of pharmaceuticals radio sterilization of cefoperzone [13]. In the present article X-ray, IR spectra  $\gamma$ -irradiations, thermogravimetric analysis (TGA), differential thermal analysis (DTA) has been undertaken on At  $\beta$ -blockers.

The major goal of the present manuscript is to enhance and promote thermal stability, and hence, to lengthen the expiry time by  $\gamma$ -irradiations. This in addition throws a light on the  $\gamma$ -pyrolysis.

### 2. Experimental

Atenolol (At) is a pure substance and satisfies US pharmacopoeia requirements. All chemicals used are

<sup>\*</sup>Corresponding author. Fax: +20-40-335-0804. *E-mail address*: msekkina@dec1.tanta.eun.eg (M.M. Abou-Sekkina).

of analytical pure grade (purity 99.5%). The X-ray diffraction patterns ( $2\theta$  (°/min)) were recorded with a Philips X-ray diffractometer (UK) using Cu K $\alpha$  radiation. TGA and DTA measurements were carried out using XD-30 Thermal Analyzer in air up to 500 °C and heating rate 10 °C. The IR-absorption spectra were recorded using KBr pellets and a Shimadzu (Japan)

### 3. Results and discussion

Fig. 1 represents results of X-ray diffraction studies of material under investigation before and after  $\gamma$ -doses. We can suggest the following senior author mechanism confirming that the conditions are kept identical for all samples.

| At + first dose 5 kGy<br>At + second dose 20 kGy | The degree of crystallinity suffers weakening due to partial dissociation (Fig. 1b). Further dissociation, $\gamma$ -enhanced melting resulted in a decreased degree of                                                                                |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | crystallinity as reflected from the weakening of X-ray diffraction peak intensities (Fig. 1c).                                                                                                                                                         |
| At + third dose 40 kGy                           | $\gamma$ -Enhanced back recombination of the formed free radicals or the dissociated species gave high degree of crystallinity and this reflected from the strengthening of X-ray diffraction peak intensities due to the high counts value (Fig. 1d). |

Spectrophotometer in the range  $(4000-200 \, \mathrm{cm}^{-1})$ . Perkin-Elmer UV–VIS. Spectrophotometer was used for electronic absorption in the range  $(200-400 \, \mathrm{nm})$  and ethanolic solution. A group of samples of At (five samples) were irradiated with different  $\gamma$ -doses ranging from 5 up to 60 kGy using Cs-137 source (Table 1). The dose rate was  $0.4 \, \mathrm{cGy/s}$  at a distance of 30 cm from the source in air.

Scheme 1.

Table 1  $\gamma$ -Doses absorbed to At  $\beta$ -blocker

| No. | Dose (kGy) |  |  |  |
|-----|------------|--|--|--|
| a   | 0.000      |  |  |  |
| b   | 5          |  |  |  |
| c   | 20         |  |  |  |
| d   | 40         |  |  |  |
| e   | 5          |  |  |  |
| f   | 60         |  |  |  |

After  $\gamma$ -absorbed doses up to 60 kGy the X-ray diffraction patterns still belong to the pure structure of At [14]. After the first  $\gamma$ -absorbed dose (5 kGy) the relative intensity (counts) of the diffraction peaks suffer a decreased peak intensity due to the partial dissociation of the material as induced by  $\gamma$ -absorbed dose. After the second, absorbed dose (20 kGy) the relative intensity suffers further decreased intensity. After the third  $\gamma$ -absorbed dose (40 kGy), the X-ray peak intensity increases again to a maximum value preserving the material identity.

This increased X-ray peak is due to intensity of the increased degree of crystallinity as caused by  $\gamma$ -induced free radical recombination, and hence, polymerization besides,  $\gamma$ -induced thermal heating of At  $\beta$ -blocker (see Fig. 2).

## 3.1. Thermal stability (TGA and DTA)

Table 2 and Fig. 3 show a collection of thermal analysis TGA and DTA results of At as a function of  $\gamma$ -absorbed dose before (a) and after (b)–(f)  $\gamma$ -absorbed dose. These include temperature range, weight loss, assignment and  $\Delta H$ . It can easily be seen that the TGA and DTA curves of At belong to the pure structure of At in agreement with that previously given by Caplar et al. [15]. It can easily be seen that all behavior for the various  $\gamma$ -absorbed doses above 200 °C are not identical. Thus, it was emphasized that above 200 °C, the DTA spectra are not identical for all samples due to

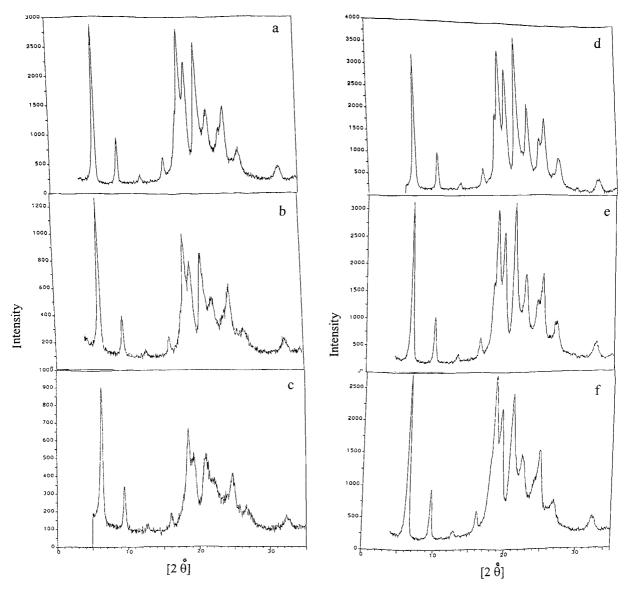



Fig. 1. X-ray diffraction patterns of At,  $\beta$ -blocker: (a) before  $\gamma$ -irradiation; (b) after  $\gamma$ -absorbed (5 kGy) dose; (c) after  $\gamma$ -absorbed (20 kGy) dose; (d) after  $\gamma$ -absorbed (40 kGy) dose; (e) after  $\gamma$ -absorbed (50 kGy); (f) after  $\gamma$ -absorbed (60 kGy) dose.

 $\gamma$ -radiation damage extent which depends on the absorbed dose.

## 3.2. Results of IR studies

Fig. 4 and Table 3 display the IR spectra of At before (a) and after (b)–(f)  $\gamma$ -absorbed doses from 5 up

to 60 kGy (b)–(f). The IR peaks of At before and after  $\gamma$ -irradiation were assigned as follows: 3340, 3160 cm $^{-1}$  (–CO–NH), 2940 cm $^{-1}$  (=C–H), 1652 cm $^{-1}$  (–C=C), amide, 1500 cm $^{-1}$  (–N–C=O, amide), 1400 cm $^{-1}$  (H<sub>2</sub>N–CO–), 1385 cm $^{-1}$  (I–Pr), 1390, 1235, (aryl ether) 1170 cm $^{-1}$  (I–Pr), 1105, 1080, 1030, 910, 880, 810, 740, 700, 660 cm $^{-1}$ 

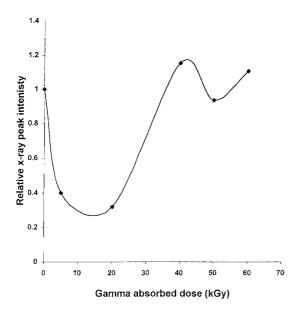



Fig. 2. The variation of relative peak intensity of X-ray vs.  $\gamma$ -absorbed dose for At  $\beta$ -blocker at  $2\theta$  6.4°.

dimeric compound(s). From these results as in Fig. 4, the IR-absorption spectra suffer: (a) decreased intensity of peak after dose 5 kGy; (b) increased intensity of peak after dose 40 kGy. These results are supported from X-ray data.

## 3.3. Electronic absorption spectra

The effect of  $\gamma$ -irradiation doses on the electronic absorption spectra of At was studied by using 20  $\mu g$  ml $^{-1}$  in anhydrous ethanol in the range 200–400 nm. Thus, Fig. 5 represents the relation between electronic absorption (UV) and the absorbed  $\gamma$ -doses. For At before and after  $\gamma$ -irradiation the spectra in all cases (273.5 nm) indicate that the material still preserves its identity after  $\gamma$ -absorbed doses. The variation of optical density of the spectra with  $\gamma$ -absorbed doses displays the same trend exactly depicted from our preceding X-ray and IR spectral data.

Table 2 Thermal behavior (TGA and DTA) and their assignment for At before and after  $\gamma$ -irradiation

| Material                          | TGA data               |                 | DTA data                                                                                                                                           |                                              |                               |  |  |
|-----------------------------------|------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|--|--|
|                                   | Temperature range (°C) | Weight loss (%) | Assignment                                                                                                                                         | Temperature range (°C)                       | ΔH (kJ/g)                     |  |  |
| Before γ-irradiation              | 157.8<br>215–490       | 76.2            | Endothermic peak due to melting Exothermic peak due to stepwise oxidative decomposition                                                            | 133.6–180.2<br>290–321<br>315–343<br>426–444 | -118.6<br>-141.4<br>16<br>-19 |  |  |
| After $\gamma$ -absorbed (5 kGy)  | 157.5<br>220–498.1     | 71.8            | Endothermic peak due to melting Exothermic peak due to stepwise oxidative decomposition Endothermic peak due to dissociation of oxidation products | 131.7–175.7<br>410–436<br>441–447            | -105.5<br>-13.7<br>-1.64      |  |  |
| After $\gamma$ -absorbed (20 kGy) | 156.7<br>220–498       | 75              | Endothermic peak due to melting Exothermic peak due to stepwise oxidative decomposition Endothermic peak due to dissociation of oxidative products | 139.6–175.8<br>307–341<br>3.67               | -153.6<br>43.8<br>64.8        |  |  |
| After $\gamma$ -absorbed (40 kGy) | 158.4<br>228–498       | 74.5            | Endothermic peak due to melting Exothermic peak due to stepwise oxidative decomposition Endothermic peak due to dissociation of oxidative products | 137.4–176.6<br>300–385.5<br>458–488          | -151.9<br>334.8<br>-51.84     |  |  |
| After $\gamma$ -absorbed (50 kGy) | 158.4<br>225–499       | 75.4            | Endothermic peak due to melting Exothermic peak due to stepwise oxidative decomposition Endothermic peak due to dissociation of oxidative products | 139–180.6<br>326–380<br>435.4–470            | -162.4 $18.9$ $-152.4$        |  |  |
| After $\gamma$ -absorbed (60 kGy) | 157.9<br>225–499       | 75.4            | Endothermic peak due to melting Exothermic peak due to stepwise oxidative decomposition Endothermic peak due to dissociation of oxidative products | 138–179<br>325–385<br>430–474                | -150<br>20<br>-151            |  |  |

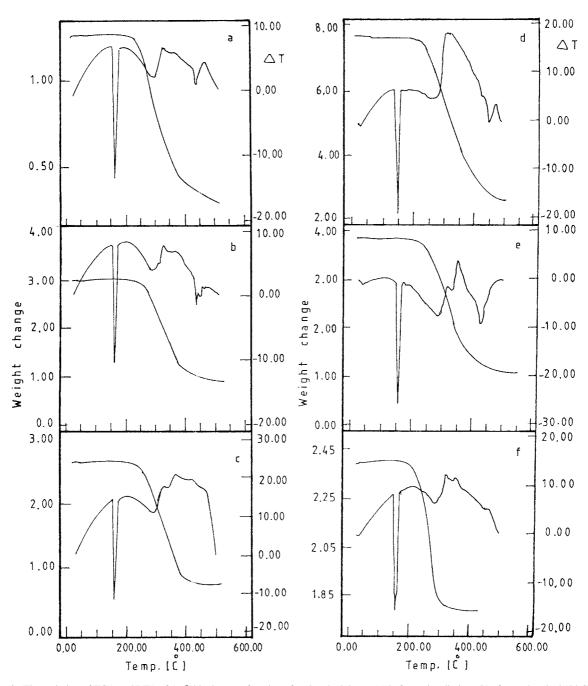



Fig. 3. The variation of TGA and DTA of At  $\beta$ -blocker as a function of  $\gamma$ -absorbed doses: (a) before  $\gamma$ -irradiation; (b) after  $\gamma$ -absorbed (5 kGy) dose; (c) after  $\gamma$ -absorbed (20 kGy) dose; (d) after  $\gamma$ -absorbed (40 kGy) dose; (e) after  $\gamma$ -absorbed (50 kGy) dose; (f) after  $\gamma$ -absorbed (60 kGy) dose.

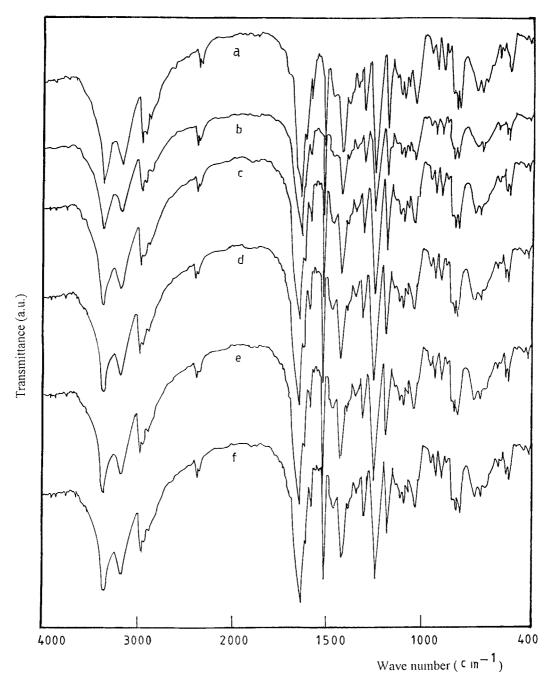



Fig. 4. IR-absorption spectra of At  $\beta$ -blocker at various  $\gamma$ -absorbed doses: (a) before  $\gamma$ -irradiation; (b) after  $\gamma$ -absorbed (5 kGy) dose; (c) after  $\gamma$ -absorbed (20 kGy) dose; (d) after  $\gamma$ -absorbed (40 kGy) dose; (e) after  $\gamma$ -absorbed (50 kGy) dose; (f) after  $\gamma$ -absorbed (60 kGy) dose.

Table 3 The characteristic IR-absorption spectra and their band assignment of At  $\beta$ -blocker at 5 up to 60 kGy  $\gamma$ -absorbed doses

| Dose            |                     |               |               |               |               | Assignment                          |  |
|-----------------|---------------------|---------------|---------------|---------------|---------------|-------------------------------------|--|
| 0.0 kGy         | 5 kGy               | 20 kGy        | 40 kGy        | 50 kGy        | 60 kGy        |                                     |  |
| Absorption band | (cm <sup>-1</sup> ) |               |               |               |               |                                     |  |
| 3340, 3160      | 3340, 3160          | 3340, 3160    | 3340, 3160    | 3340, 3160    | 3340, 3160    | -CO-NH                              |  |
| 2940            | 2940                | 2940          | 2940          | 2940          | 2940          | =C $-$ H                            |  |
| 1652            | 1652                | 1652          | 1652          | 1652          | 1652          | -C=C, amide 1                       |  |
| 1500            | 1500                | 1500          | 1500          | 1500          | 1500          | -N-C=O, amide 2                     |  |
| 1400            | 1400                | 1400          | 1400          | 1400          | 1400          | H <sub>2</sub> N-CO-                |  |
| 1385            | 1385                | 1385          | 1385          | 1385          | 1385          | I–Pr                                |  |
| 1390, 1235      | 1390, 1235          | 1390, 1235    | 1390, 1235    | 1390, 1235    | 1390, 1235    | Aryl ether                          |  |
| 1170            | 1170                | 1170          | 1170          | 1170          | 1170          | I–Pr                                |  |
| 1105, 1080      | 1105, 1080          | 1105, 1080    | 1105, 1080    | 1105, 1080    | 1105, 1080    | Dimeric and polymeric compound [15] |  |
| 1030, 910       | 1030, 910           | 1030, 910     | 1030, 910     | 1030, 910     | 1030, 910     | •                                   |  |
| 880, 810, 790   | 880, 810, 790       | 880, 810, 790 | 880, 810, 790 | 880, 810, 790 | 880, 810, 790 |                                     |  |
| 700, 660        | 700, 660            | 700, 660      | 700, 660      | 700, 660      | 700, 660      |                                     |  |

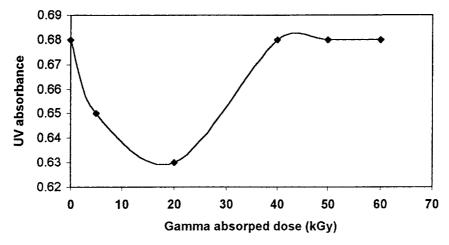



Fig. 5. Relation between electron absorbance (UV) and  $\gamma$ -absorbed dose of At  $\beta$ -blocker.

## 4. Conclusion

Atenolol (At)  $\beta$ -blockers display high resistance to nuclear  $\gamma$ -absorbed dose from 20 up to 50 kGy throughout a  $\gamma$ -induced polymerization mechanism. Results and discussion given by X-ray, thermal analysis, IR spectra and electronic absorption (UV–VIS) lead to good analysis support of one another. Alternatively  $\gamma$ -absorbed dose 40 kGy could be used safely for sterilization and extension of expiry date of At  $\beta$ -blocker for special application.

## References

- [1] A.G. Gilman, L.S. Goodman, The Pharmacological Basis of Therapeutics, 7th Edition, New York, 1985, p. 202.
- [2] K. Flovy, Anal. Profile Drug 13 (1985) 215.
- [3] T.J. Manger, D.M. Wieland, J. Wu, J. Org. Chem. 47 (1982) 1484.
- [4] J.P. Weichertal, et al., Int. J. Appl. Radiat. Isot. 37 (1986) 907.
- [5] G. El-Shaboury, K. Farah, Appl. Radiat. Isot. 42 (1991) 1091.
- [6] A.A. El-Bellih, A.M. Abdel-Badei, El-H.M. Diefalla, Thermochim. Acta. 165 (1990) 147.
- [7] R.D. Euas, The Atomic Nucleus, Mc-Graw Hill, New York, 1967.

- [8] G.D. Dienes, G.H. Vineyard, Radiation Effects in Solid, Interscience, New York, 1957.
- [9] T. Miyazaki, T. Kaneko, T. Yoshimura, A.S. Cruca, B. Tilquin, J. Pharm. Sci. 83 (1994) 86.
- [10] T. Miyazaki, J. Arai, T. Kaneko, K. Yamamoto, M. Gibella, B.T. Tilquin, J. Pharm. Sci. 83 (1994) 1643.
- [11] M.A. El-Ries, M.M. Abou-Sekkina, J. Therm. Anal. 52 (1999) 291.
- [12] E.G. Gabalfin, L.G. Lanuza, H.M. Solomon, Radiat. Phys. Chem. 55 (1999) 78.
- [13] J.P. Basly, I. Basly, M. Bernard, J. Pharm. Biomed. Anal. 17 (1998) 871.
- [14] J. Kountourellis, Department of Pharmacy, Aristotelian University, the Salnaki, Greece ICDD Grant-in-Aid, 1990.
- [15] V. Caplar, Z. Mikotic, Mihun, H. Hofman, J. Kuftiec, F. Okjfez, Anal. Profiles Drug Subst. 13 (1984).