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Abstract

In this paper, a novel quasi-isothermal method of measuring sample’s specific heat capacity in temperature modulated
differential scanning calorimetry (TMDSC) has been studied. With the strict temperature variation rule of plate-like sample in
TMDSC model, the expression of the sample’s surface temperature lag in quasi-isothermal state has been obtained. With this
temperature lag rule, sample’s specific heat capacity and its thermal conductivity can be determined at the same time by quasi-
isothermal experiment of TMDSC.

It has been pointed out here that the obtained heat capacity value of the sample with the quasi-isothermal method is only the
average value within the measured temperature interval, and it is true that the bigger the modulated amplitude, the smother the
value of heat capacity obtained. In the situation that the specific heat capacity of sample is approximately constant within the
measured temperature interval, the quasi-isothermal method of TMDSC is better. If within the measured temperature interval
the specific heat capacity of sample is apparently the function of temperature, the best tool to measure the sample’s specific
heat capacity is traditional DSC. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction characteristics of matter effectively, how to solve the
difficult problems in the dealing of data and how

Temperature modulated differential scanning to expand the application of TMDSC are the focuses

calorimetry (TMDSC) is a novel thermal analysis
tool. Since Reading invented the TMDSC [1], the
apparatus of TMDSC has been successfully commer-
cialized [2-6]. How to use TMDSC to measure the
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of studying in the thermal analysis theoretical society
[7-12].

Specific heat capacity is a very important physical
parameter of matter. How to use TMDSC to measure
sample’s specific heat capacity exactly is an urgent
and basic problem to be solved.

Waunderlich proposed a quasi-isothermal theory of
TMDSC to survey sample’s specific heat capacity
[7,8]. In this article, at first, we study this representa-
tive method, and then compare it with the method of
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conventional DSC for measuring specific heat capa-
city of sample.

In the steady state, the basic equations of tempera-
ture variation rules of TMDSC furnace, sample and
reference are as follows [7]:

Ts(t) = To + gt + Az, sin ot ey
qCsp .

T(t) =Ty +qt — va + Agp sin(wr — ) 2)
qC; .

T.(t) = To + gt — a + Az, sin(wf — ¢) 3)

where T is the initial temperature of furnace, refer-
ence and sample, T(¢), T(¢) and T(¢) are, respectively,
the temperature of furnace, sample and reference at
time ¢, ¢, Ar, and o, respectively, represent the under-
lying heating rate, the amplitude and the angular
frequency of modulation of furnace, A () and
Ar,(t) are, respectively, amplitudes of modulation of
sample and reference, C, and C; are, respectively,
heat capacity of sample and reference, ¢ and ¢ are,
respectively, the phase lag of sample and reference.

In the derivation of above three equations, the
assumption that the heat gradients within the sample
and reference are omitted is used.

In the quasi-isothermal state, the furnace changes its
temperature in sinusoidal rule around the average
temperature 7. In this situation, Wunderlich proposed
a relation

—+C" )

with C’ representing the pan heat capacity (equal for
reference and sample), c,,, the specific heat capacity of
the sample, m the sample mass, and A, is the mod-
ulation amplitude of the temperature difference AT.

From Eq. (4) we know that the bigger Az, the
smoother the value of sample’s specific heat. It seems
that the bigger Az, the more accurate the value of
sample’s specific heat.

We have different point of view. As a matter of
fact, when A7, and w are not zero at the same time,
the sample changes its temperature around T with
the extent of 2A7, where Ay ~ Ar,. Because the
Newton’s law constant K is impossible to be infinite,
there always is temperature lag of sample relative
to furnace.

On the one side, Newton’s cooling rule must be
obeyed

dQsp _
dr

where dQ,,/dt is the heat energy absorbed from sur-
rounding by sample in a unit time.

On the another side, after absorbing heat from
surrounding, sample must enhance its temperature,
so we have

(1)L~ o
PUTdr T dr

According to energy conservation law, the basic
equation can be obtained

Col(T)dT = —K[T(1) — T3(1)] )

To reach Eq. (4) form Eq. (7), we must assume the
heat capacity of sample is constant in the temperature
interval T & Ayp. If in the general situation in which
the heat capacity is a function of temperature, the heat
capacity Cy,(7T) must be replaced by the average heat
capacity Cy,(7) in this temperature interval to ensure
the validity of Eq. (4). So if heat capacity is a function
of temperature, the heat capacity obtained from Eq. (4)
is only an average value of heat capacity in the
temperature interval T + Agp.

From traditional DSC theory, the heating rates of
surrounding influence the experimental curve greatly.
If the heating rate is zero, for a sufficiently long time,
the temperatures of sample and reference are the same.
The bigger the heating rate, the bigger the temperature
differences between sample and reference, and the
higher the detecting sensitivity. In the quasi-isothermal
situation of TMDSC, the instantaneous heating or cool-
ing rate is not always equal to zero. The biggest value of
heating or cooling rate is proportional to the multiple of
modulation amplitude and angular frequency. Because
the envelope line of TMDSC curve in the quasi-iso-
thermal situation is just corresponding to the extremum
of heating or cooling rate, so the detecting sensitivity
and precision are enhanced greatly. Thus, if in a tem-
perature interval the heat capacity of the sample is
constant or a slow changing function of temperature,
the heat capacity obtained in TMDSC can be antici-
pated more accurate than that in conventional DSC.

In the general situation that the variation of heat
capacity with temperature cannot be omitted, because
the quasi-isothermal method of TMDSC only can

—K[T(z) = Ts(1)] ©)

Q)
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obtain the average value of heat capacity of sample,
much important information included in the heat
capacity may be lost. In this situation, conventional
DSC precedes TMDSC.

On account of the actuality that almost all TMDSC
theories of detecting sample’s heat capacity, including
Wunderlich’s theory [7,8], neglected the influence of
an important factor, temperature gradients within the
sample and reference, it is difficult to obtain the exact
value of sample’s heat capacity, although some cali-
brations are made [13,14]. To exert the advantage of
TMDSC sufficiently, it is necessary to develop a novel
quasi-isothermal theory of TMDSC in which tempera-
ture gradients in the sample are fully considered. The
following is a general quasi-isothermal method of
TMDSC.

2. Novel quasi-isothermal theory of TMDSC

In general situation in which the temperature gra-
dients in the sample are considered, the temperature
variation rule of plate-like sample in TMDSC has been
drawn with strict mathematical derivation [10]. The
temperature variation rule is as follows:

T(x,t) = Ty + gt + Ar, sinwt + A(x, 1)
=Ty + gt + Az, sinwt
= (K2 + k202 4 kK)

. KA .
X (sm I + 7" cos Anx)

q

x [A2a*(cos ot — e’iiazt) + wsin wt]} 3)

ATSU)

—22d%t
J— e n + S —
) a4+ o2
n

T(x,1)
+o00 2
2K
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04 s ;in(l('zl—&-hczii—FKK)

A q —22dt
X <s1n}”x+ X COS/{M){WU —e Mt

A A /12 2 7/'%(121‘
+ e sin(wr+o,) ——T“fj nd© },
[ 2304 + o2 A,at 4+ o?
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where @ =/ pCp, p is the mass density of sample, K
the thermal conductivity of sample, «,, is defined as
2 2
La

- ©)

1/ iia“ + w?

and 4, is the root of following equation:

o, = arcsin

K
)»n:;ctg/lnl, n=20,1,2,... (10)

In the quasi-isothermal situation, the temperature
variation rule of plate-like sample is

T(x,t) =T + Az, sinwt + A(x, 1)
- <X 2K?
=T+ Ar smwt—zk 5
3 (K2 + K22, + KkK)
A
(sm Ik + —cos an> 477560
A,at + w?
x [22a® cos wt + o sin o] (11)
+0o0 2
— 2K
T(x,t) =T+ Ar, sinwt — Z

= (K21 + 1202 + kK)
o ((sinjx+ Khn P
sin A,x + —-cos
X x

A
59 Sin(wr + o) (11A)

\/ Apat + @?
where T is the average temperature of surrounding. In
the quasi-isothermal situation, the initial temperature
influence can be rationally omitted, so in the Eq. (11)
the item e 4" is neglected.

We have testified that for a general sample the
dominant item of correction function is sufficient
[10]. So Eq. (11) can be written as

X

— , 2K?
T(x,t) =T + Ar, sinwt —
Jo(K2L+ 1k272 4 kK)
A A
X (sin Aox + Qcos Xox> 4T—5
K Aoat + w?
x [Aga* cos wt + o sin o] (12)
— . 2K?
T(x,t) =T+ Ar, sinwt —

Jo(K2L+ IK275 + kK)

K
X <sin Aox + 70005 }tox)

A
59 Sin(owr + o) (12A)
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In the general thermal apparatus the temperature
detector (e.g. thermocouple) is placed in the central
position under the sample support. If the thermal
conductivities of sample support and sample pan
are much bigger than that of sample, the temperature
gradients within the sample pan and its support can be
rationally omitted. In this situation the measured
temperature actually is the sample’s surface tempera-
ture 7(0, £), so Eq. (12) can be rewritten as

2Kx

T(0,t) =T + Ar sinwt —
©.) & K21+ 1273 + kK

Arw 2 2 :
X ————[Asa” cos wt + w sin wt 13
iga“—i—wz[ 0 bas

2Kx

T(0,t) =T + Az, sinwt —
©. " K2+ 1222 + kK

Ar,

s

Xi
\/ Agat + w?

The average temperature of furnace 7', the modulation
amplitude A7, and angular frequency w are pro-
grammed, and they are known. Now, let us analyze
the very important information included in the signal
of sample’s surface temperature lag to furnace. The
format of Eq. (13A) is more suitable for the study of
this project, so we will accept it in the following.

The signal of sample’s surface temperature lag to
furnace is

sin(wt + o) (13A)

oT(t) =T(0,1) — Ty

2Kk AT w .
=—— v s sin(wt + o)
K21+ Ix? 2y + kK /)Lga“—i—aﬂ
= —A’sin(wt + o) (14)

where A’ is defined as

A 2Kk Ar.w

- K2Z+ZK213+KK /iga4+w2

In the real quasi-isothermal experiments of
TMDSC, the sample’s temperature lag signal can be
detected. This temperature lag signal satisfies the Eq.
(14), so by using Eq. (14) the parameters of sample’s
physical properties can be obtained. From Eq. (14), it
is easy to know that this temperature lag signal gives
two useful items at the same time, amplitude A" and
phase lag 0. From definitions Egs. (9) and (15), A’ and

5)

o are, respectively, related to the Newton’s law con-
stant of pan, sample’s thermal conductivity, mass
density, depth, specific heat capacity and angular
frequency of modulation, and A’ is also related to
modulation amplitude of furnace. Thus, with the
temperature lag signal detected in the quasi-isother-
mal experiment, two physical quantities of sample can
be obtained at the same time.

For a given TMDSC apparatus, the Newton’s law
constant of pan is known in order of magnitude. For an
actual experiment, the average temperature of furnace
T, the modulation amplitude A7, and angular fre-
quency @ are programmed, and they are known.
The depth and mass density of sample can be deter-
mined with other methods. Thus, in the quasi-isother-
mal experiment the specific heat capacity and thermal
conductivity of sample can be determined at the same
time. So, the novel quasi-isothermal theory greatly
broadens the application area of TMDSC, and takes
full advantage of the useful information included in
the thermal diagram.

If turning our quasi-isothermal theory of TMDSC
into appropriate software to deal with the real time
experimental data, it will become very convenient to
obtain sample’s specific heat capacity and thermal
conductivity at the same time.

3. Discussion on the quasi-isothermal theory
of TMDSC

To verify above theory, we will deal with two
special examples.

3.1. Example 1

Assume that in the studied temperature interval the
sample’s thermal conductivity x is 1, its mass density
p is 1, its specific heat ¢, is 1.5, so we get
a®> = k/pc, = 0.6667. We also assume that sample’
depth /is 0.1. For the simplicity, the dimension in this
example is missing purposedly. From Eq. (10) we can
get the root: 4y = 8.6033357.

Assume the Newton’s constant of pan, K, is 10,
average temperature of furnace T is 10, the modulated
amplitude and frequency, Ay, and w, are 1 and =,
respectively. We can get a relation between the tem-
perature of furnace T and the time ¢ as shown in Fig. 1.
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Fig. 1. Variation rule of furnace with time # in quasi-isothermal state.

Fig. 2 shows the variation rule of sample’s surface
temperature lag with time 7 in quasi-isothermal state,
from which the information included in the amplitude
and phase lag can be obtained.

Increasing the value of sample’s specific heat capa-
city and remaining other physical quantities constant,
in Fig. 3 we can find the variation rule of phase lag
with sample’s specific heat capacity. Contrarily, from

137

the value of phase lag, we also can obtain the sample’s
specific heat capacity.

Similarly, increasing the value of sample’s thermal
conductivity and remaining other physical quantities
constant, in Fig. 4 we can find the variation rule of
phase lag with sample’s thermal conductivity. Contra-
rily, from the value of phase lag, we also can obtain the
sample’s thermal conductivity.

3.2. Example 2

If the thermal conductivity of the sample is big
enough, that is kK — +o00, the Egs. (9) and (15) can be
simplified as follows:

A= Ar.w
(K/pcpl)® + 2
K/pcpl
(K/pcpl)* + o?

(16)

oy = arcsin a7

In the derivation process of above two equations,
the following relations are used [10]:

K
)u(z) = —

o (18)
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Fig. 2. Variation of sample’s temperature lag with time ¢ in quasi-isothermal state.
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Fig. 3. Variation of sample’s temperature lag with the specific heat capacity of sample in quasi-isothermal state.

2Kx
rL= 3 =1 19)
K2l + Ik?75 + kK
K
a® = — (20)
pcpl

In this situation, from Eqgs. (16) and (17), the ampli-
tude and phase lag of temperature lag signal, only one
unknown parameter, specific heat capacity of sample,
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Fig. 4. Variation of sample’s temperature lag with the thermal
conductivity of sample in quasi-isothermal state.

can be obtained. So if the temperature gradients within
the sample are omitted, the approximate degree of
corresponding TMDSC theories is serious, that will
inevitably result in the loss of some useful informa-
tion.

4. Conclusion

With the strict temperature variation rule of plate-like
sample in TMDSC model, in which the temperature
gradients within the sample are considered fully, the
expression of the sample’s surface temperature lag in
quasi-isothermal state can be obtained. Important
information is included in the signal of sample’s
temperature lag, so sample’s specific heat capacity
and its thermal conductivity can be determined at
the same time by quasi-isothermal experiment of
TMDSC. If the temperature gradients within the sam-
ple are omitted in the general situation, it will inevi-
tably result in the loss of some useful information.

In the quasi-isothermal experiment of TMDSC, the
obtained specific heat capacity of sample is only its
average value within the measured temperature inter-
val. If the specific heat capacity of sample is approxi-
mately constant within the measured temperature
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interval, the quasi-isothermal method of TMDSC is
better. But if within the measured temperature interval
the specific heat capacity of sample is apparently the
function of temperature, the best tool to measure
sample’s heat capacity is traditional DSC.
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