

Thermochimica Acta 376 (2001) 37–42

thermochimica acta

www.elsevier.com/locate/tca

Excess enthalpies of the system containing pentyl ethanoate, 1,2-dimethylbenzene and n-nonane at 298.15 and 318.15 K

M. Kuus* , H. Kirss, E. Siimer, L. Kudryavtseva

Institute of Chemistry at Tallinn Technical University, Akadeemia tee 15, 12618 Tallinn, Estonia Received 19 March 2001; accepted 17 May 2001

Abstract

Calorimetric measurements of excess enthalpies are reported for the ternary system pentyl ethanoate $+1.2$ -dimethylbenzene $+n$ -nonane and for binaries pentyl ethanoate $+1,2$ -dimethylbenzene at 298.15 and 318.15 K and pentyl ethanoate $+n$ -nonane at 318.15 K. The results, together with those previously published for constituent binaries, were well correlated with a modified Redlich–Kister equation. The ternary excess enthalpies at 318.15 K were considered together with the excess Gibbs energies calculated by the Wilson equation with temperature dependence parameters. \odot 2001 Elsevier Science B.V. All rights reserved.

Keywords: Liquid mixtures; Excess enthalpy; Ternary system; Ester; Hydrocarbons

1. Introduction

The excess thermodynamic properties of multicomponent systems constitute a key element for the prediction ability of theoretical models. The excess molar enthalpies, H^E , are useful for fitting model parameters and for determination of the temperature dependence of interaction parameters in predictive models. In this paper, excess molar enthalpies of the ternary mixture pentyl ethanoate + 1,2-dimethylbenzene + *n*-nonane at temperatures 298.15 and 318.15 K are reported. The measurements are a part of a long-term study of ternary systems containing different families of organic compounds.

There appears to be no H^E data in the literature at 298.15 and 318.15 K for this ternary system as well as for the binary pentyl ethanoate $+1,2$ -dimethylbenzene and at 318.15 K for the binary pentyl ethanoate $+n$ -nonane. The excess molar enthalpies for pentyl ethanoate $+n$ -nonane at 298.15 K and for 1, 2-dimethylbenzene $+n$ -nonane obtained by us earlier [1,2] were used in this work.

The new experimental H^E data are intended to complement the data available in the literature and they are compared with values correlated using the modified Redlich–Kister equation [2]. To connect the ternary H^E data with those of vapor–liquid equilibrium for this ternary system reported recently [3], the Wilson excess Gibbs energy model [4] was used.

The interaction parameters of this model considered to vary linearly with temperature [5].

2. Experimental

A Calvet-type differential microcalorimeter DAK-1-1 [6] was used for measurements of excess enthalpies at 298.15 and 318.15 K. The details of

^{*}Corresponding author.

E-mail address: siimer@chemnet.ee (M. Kuus).

^{0040-6031/01/\$ –} see front matter \odot 2001 Elsevier Science B.V. All rights reserved. PII: S 0040-6031(01)00572-X

Table 1

calorimetric procedure and reproducibility have been described elsewhere [7]. The uncertainty of H^E was estimated to be less than 2% as a result of electrical calibration confirmed by check measurements on cyclohexane + benzene at 298.15 K [8] and 1-propanol + *n*-heptane at 318.15 K [9].

Experiments were carried out at atmospheric pressure. All mixtures were prepared by mass. The mole fractions, x_i , were determined with an accuracy of ± 0.0002 .

Pentyl ethanoate and 1,2-dimethylbenzene ''purum'' grade materials were twice distilled. n-Nonane ''puriss'' grade material was used without further purification.

Pentyl ethanoate (GLC purity >99.8%), 1,2 dimethylbenzene (GLC purity $>99.5\%$) and *n*-nonane (GLC purity >99.8%) densities were found to be 875.4, 880.1 and 717.6 kg m⁻³ at 293.15 K, respectively. Densities were measured using a capillary pycnometer with a calibrated accuracy of ± 0.2 $\rm kg~m^{-3}.$

3. Results

The experimental molar excess enthalpies of two binary systems containing pentyl ethanoate are given in Table 1. Table 2 lists ternary experimental results. Binary H^E data were fitted with Eq. (1)

$$
H^{E}(\text{J mol}^{-1}) = x_1(1-x_1) \sum_{i=1}^{k} A_i (2x_1 - 1)^i \tag{1}
$$

by the method of least squares, all points were weighed equally. The H^E data for pentyl ethanoate $+n$ -nonane at 298.15 K and for 1,2-dimethylbenzene $+n$ -nonane at 298.15 and 318.15 K of interest investigated earlier, for convenience, are given in Table 3 as correlation results with Eq. (1).

The ternary H^E concentration dependence was represented as sum of binary terms with an added ternary contribution, Eq. (2):

$$
H_{\text{calc}}^{\text{E}} = H_{12}^{\text{E}} + H_{31}^{\text{E}} + H_{23}^{\text{E}} + H_{123}^{\text{E}} \tag{2}
$$

where the values of H_{jk}^{E} were calculated from Eq. (1), and H_{123}^{E} is the ternary term expressed as

$$
H_{123}^{E} = x_1 x_2 x_3 [C_0 + C_1 x_1^m + C_2 x_2^m + C_3 x_3^m]
$$
 (3)

The experimental molar excess enthalpies H^E in J mol⁻¹ for binary systems

The coefficients C_i were calculated by the least squares method using the ternary H^E data. The values of coefficients A_i of Eq. (1) and C_i of Eq. (3) are listed in Tables 3 and 4 along with the standard deviations $\sigma(H^{\text{E}})$, defined by Eq. (4):

$$
\sigma(H^{E})(J \text{ mol}^{-1}) = \left[\frac{\sum (H_{calc}^{E} - H_{exp}^{E})^{2}}{(N - k)}\right]^{1/2}
$$
(4)

where N is a number of experimental values and k is a number of coefficients. The m value in Eq. (3) is equal to 4 as an optimum value in most cases found [2]. The ternary excess molar enthalpies calculated by Eq. (3) are compared with experimental values in Table 2.

The relative mean deviations between calculated and experimental results are equal to 1.92 and 2.83% at temperatures 298.15 and 318.15 K, respectively.

Table 2 (Continued)

298.15 K (calculated)

Table 2

 $x_1/x_2 = 1.0$

 $x_1/x_2 = 0.5$

 $x_1/x_2 = 2.0$

 $x_1/x_3 = 1.0$
0.437

 $x_1/x_3 = 0.5$
0.072

 $x_2/x_3 = 1.0$
0.148

 $x_2/x_3 = 0.5$
0.696

 $x_2/x_3 = 2.0$
0.196

 $x_1/x_2 = 1.0$

The experimental molar excess enthalpies H^E in J mol⁻¹ for ternary system pentyl ethanoate $(1) + 1,2$ -dimethylbenzene $(2) + n$ nonane (3)

 x_1 x_2 x_3 Experimental H^E at

0.459 0.460 0.081 90 90 0.416 0.416 0.168 305 301 0.176 0.176 0.648 654 629 0.121 0.121 0.758 509 520

0.272 0.543 0.185 311 302 0.209 0.418 0.373 553 540 0.150 0.301 0.549 595 583 0.100 0.199 0.701 491 503

0.560 0.280 0.160 343 333 0.463 0.232 0.305 614 602 0.336 0.168 0.496 758 756 0.151 0.075 0.774 541 570

0.437 0.126 0.437 793 790 0.278 0.444 0.278 660 683 0.242 0.516 0.242 399 393 0.152 0.696 0.152 235 229

0.072 0.785 0.143 226 217 0.153 0.542 0.305 443 445 0.229 0.313 0.458 623 623 0.284 0.148 0.568 747 750

0.148 0.426 0.426 547 538 0.292 0.354 0.354 570 571 0.628 0.186 0.186 445 434 0.784 0.108 0.108 287 292

0.696 0.101 0.203 510 517 0.482 0.172 0.346 699 688 0.337 0.221 0.442 702 705 0.114 0.295 0.591 549 543

0.196 0.536 0.268 424 416 0.340 0.440 0.220 395 386 0.504 0.331 0.165 337 323 0.711 0.193 0.096 211 216

0.427 0.427 0.146 295 288 0.375 0.376 0.249 497 495 0.263 0.263 0.474 700 682 0.199 0.199 0.602 701 638

4. Discussion

 H^E of pentyl ethanoate + 1,2-dimethylbenzene mixing is negative (exothermic) but relatively small and decreases with temperature increasing. Changing the temperature from 298.15 to 318.15 K causes the H^E values to become less negative (from -150 to -130.5 J mol⁻¹ at $x = 0.5$) confirming the weak intermolecular interaction between the polar ester group (COO) and π -electrons of 1,2-dimethylbenzene. On

Binary system	T(K)	A ₁	A_2	A ₃	A_4	A_5	A ₆	σ (J mol ⁻¹)
Pentyl ethanoate (1) + 1,2-dimethylbenzene (2)	298.15	-600.45	102.26	86.13	24.33	-339.05		0.83
	318.15	-522.44	86.09	-122.21	-304.00	277.50	463.15	1.03
Pentyl ethanoate (1) + n -nonane (2)	$298.15^{\rm a}$	3738.40	-409.26	60.84	149.74	686.55		6.6
	318.15	3752.23	-363.07	54.17	-171.19			16.4
1,2-Dimethylbenzene (1) + n -nonane (2)	298.15^{b}	1727.90	420.50	29.90	-419.92			7.6
	318.15^{b}	1709.93	287.95	-74.09	-91.06	391.24		8.3
a [1].								

Table 4

 b [2].

Coefficients C_i of Eq. (3), and standard deviations $\sigma(H^E)$ for ternary systems pentyl ethanoate $+$ 1,2-dimethylbenzene $+$ n-nonane

the contrary, binary systems containing n -nonane investigated here and earlier [1,2] show endothermic mixing. H^E of those are relatively large and are in the temperature range from 298.15 to 318.15 K practically independent of temperature. All constituent binaries at both temperatures exhibit extremity at mole fraction close to 0.5. A small exothermic mixing region in ternary system adjoins the binary system pentyl ethanoate $+1,2$ -dimethylbenzene. The most of ternary compositions exhibit endothermic mixing due to destruction of packing in pure components and weakening of interaction between pentyl ethanoate and 1,2-dimethylbenzene.

The experimental H^E values of the ternary mixture at 318.15 K and molar ratio of two components x_i/x_k equal to 1 are shown in Fig. 1 together with excess molar Gibbs free energy, G^E , and excess entropy term

TS^E. Assuming that Wilson parameters λ_{ij} – λ_{ii} and λ_{ji} – λ_{ii} vary linearly with temperature [5], the G^E values at 318.15 K were obtained from our vapor–liquid equilibrium data [3]. Table 5 shows the values of coefficients $m_{i(j)}$ and $n_{i(j)}$ of Eqs. (5) and (6) expressing the temperature dependence of Wilson interaction parameters.

$$
\lambda_{ij} - \lambda_{ii} = m_i + n_i T \tag{5}
$$

$$
\lambda_{ji} - \lambda_{jj} = m_j + n_j T \tag{6}
$$

 TS^E versus x curves were calculated from well-known relation $TS^E = H^E - G^E$. In all three cases the positive excess molar enthalpy is larger than TS^E and G^E which are also positive and have close values. Only in the vicinity of the binary system pentyl ethanoate $+1,2$ dimethylbenzene all three excess functions are negative, changing to positive with increasing mole fraction of *n*-nonane (Fig. 1a).

Table 3

Fig. 1. Excess enthalpy H^{E} (–*–), Gibbs energy G^{E} (––) and TS^{E} (---) values (J mol⁻¹) at different compositions of the ternary system pentyl ethanoate (1) + 1,2-dimethylbenzene (2) + n-nonane (3) at 318.15 K. For H^E, the experimental data (*) and smoothed curves are given, G^E values are calculated using the modified Wilson equation, TS^E is calculated as $H^{E} - G^{E}$. Constant molar ratios used: a — $x_1/x_2 = 1$, b — $x_1/x_3 = 1$, c — $x_2/x_3 = 1$.

Acknowledgements

The Estonian Ministry of Education is gratefully acknowledged for its support of this work.

References

- [1] L. Kudryavtseva, M. Kuus, E. Siimer, Thermochim. Acta 233 (1994) 199.
- [2] E. Siimer, H. Kirss, M. Kuus, L. Kudryavtseva, J. Chem. Eng. Data 42 (1997) 619.
- [3] H. Kirss, E. Siimer, M. Kuus, L. Kudryavtseva, J. Chem. Eng. Data 46 (2001) 147.
- [4] G.M. Wilson, J. Am. Chem. Soc. 86 (1964) 127.
- [5] E. Siimer, M. Grinchak, M. Kuus, L. Kudryavtseva, Thermochim. Acta 140 (1989) 49.
- [6] K.V. Kiryanov, Termodin. Org. Soedin. (1983) 58.
- [7] H. Kirss, M. Kuus, E. Siimer, L. Kudryavtseva, J. Chem. Eng. Commun. 162 (1997) 15.
- [8] R.H. Stokes, K.N. Marsh, R.P. Tomlins, J. Chem. Thermodyn. 1 (1969) 211.
- [9] C.G. Savini, D.R. Winterhalter, H.C. Van Ness, J. Chem. Eng. Data 10 (1965) 168.