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Abstract

A new method of step response analysis in DSC was developed which allows the fast generation of heat capacity spectra. In
common temperature modulated calorimetry, like 3m-method, AC-calorimetry and temperature modulated differential
scanning calorimetry (TMDSC), periodic perturbations are used to get dynamic heat capacity. In contrary, the proposed
method uses a single step in program temperature followed by an isothermal segment to obtain the spectrum of heat capacity.
To follow system evolution with time or temperature, one can repeat the temperature step, like in StepScan-DSC™
(PerkinElmer Instruments), several times also in a non-periodic manner. Measured heat flow rate is evaluated in time domain.
With this method, it is possible to cover more than two orders of magnitude in frequency in a single measurement. This allows
a dramatic shortening of the measuring time compared to TMDSC. A linearity check and the comparison with TMDSC results
are presented. Complete data analysis is performed by a software available for download from our website. © 2001 Elsevier

Science B.V. All rights reserved.
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1. Introduction

In differential scanning calorimetry (DSC), one
commonly measures the heat flow rate into the sample
under non-zero heating/cooling rate, i.e. under scan-
ning of temperature. In general case, the relation
between heating rate and heat flow rate can be very
complicated. Under linear and stationary thermal
response, this relation is described by a convolution
product. There are two ways to resolve the convolution
product: either to use Fourier or Laplace transforma-
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tion. Temperature modulated DSC (TMDSC), intro-
duced first time by Gobrecht et al. [1], applies periodic
temperature oscillations to the system and analyzes
amplitude and phase of the corresponding periodic
heat flow rate. The measured signals are Fourier
transformed to obtain dynamic heat capacity ¢, which
equals the ratio between heat flow rate amplitude and
heating rate amplitude. The value of ¢;, often depends
on frequency of temperature modulation. The detailed
study of the ¢, spectrum is very informative since it
contains almost all information about the measured
system which one can get by analyzing the heat flow
rate. The ¢, spectrum can be used for studying
dynamic glass transition [2], kinetics of irreversible
and reversible processes [3-5], for determination of
the accurate value of heat capacity [6] and the thermal
conductivity [7].
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Another way to resolve the complicated relation
between the heat flow rate and the heating rate is the
analysis in time domain of a heat flow rate as a
response on a step perturbation. To the best of our
knowledge, the first stepwise method for differential
thermal analysis (DTA) was introduced by Staub and
Perron [8]. In their “‘step heating programming tech-
nique”’, the temperature is increased stepwise; the heat
flow peak after the temperature step is integrated in
time domain to determine the enthalpy changes, which
corresponds to the temperature increase. This integral
value equals the Laplace transformed heat flow with
the variable set to zero. However, relaxation times and
spectra were not evaluated by these authors. Such
methods are in use for purity determination and in
the PerkinElmer Instruments StepScan™-DSC soft-
ware for heat capacity measurements.

Schawe et al. [9,10] proposed a method to measure
the dynamic behavior of DSC instruments by steps in
heating rate (switching from isotherm to heating with
constant heating rate and switching from heating to
isotherm, respectively). The apparatus function, which
is calculated by applying Laplace transformation to the
heat flow rate just after switching, describes the dyna-
mic behavior of the instrument and how the measured
signal is smeared. This apparatus function is used to
desmear the whole measured heat flow signal.

Agarwal and Farris [11,12] proposed the pulsed
DSC method, where an input pulse of temperature
is applied to the system and the output heat flow rate is
collected. Essential point of the method is that both the
input and output must return to their initial unper-
turbed state at the end of the experiment. A simple
Laplace analysis of the input and output data yields the
equilibrium specific heat and a mean relaxation time,
whereas the frequency dependent quantities are cal-
culated by Fourier transform [11].

We present another method of generating frequency
dependent quantities by DSC where the programmed
temperature undergoes a sharp single step followed by
an isothermal segment. To follow system evolution
with time or temperature, one can repeat the tempera-
ture step, like in StepScan-DSC™ (PerkinElmer
Instruments), several times also in a non-periodic
manner. Measured heat flow rate is evaluated in time
domain by Laplace transformation to obtain the heat
capacity spectrum. For better understanding of how
the method works, why it gives the right heat capacity

spectrum and what are the limitations, we first review
the data treatment of classical TMDSC method [1] and
that of multi-frequency TMDSC [13] and present the
data treatment which can be applied to a single step
analysis. This is done in Section 2. Next, we show two
examples how to perform the step analysis measure-
ment. After that, in Section 4, we demonstrate how a
linearity check can be performed and compare the
results from the step response analysis with that from
classical TMDSC. In Section 5, we show how to
measure ¢, spectrum even faster depending on sample
response. Finally, in Section 6, we compare the pre-
sented method with other possible ways to generate
heat capacity spectra.

2. Data treatment
2.1. TMDSC

Gobrecht et al. [1] added an alternating current to
the reference current of temperature control of power
compensated DSC. One should note that to determine
the amplitude of a heat flow rate was not a simple task.
They realize mechanically a lock-in technique and
calculate in-phase and quadrature components of a
heat flow rate Iz, and Iy, respectively (phase shift is
determined with respect to periodic temperature of the
sample holder). Further, they determine a complex
thermal admittance ¥ = G + iB as G = nlg./2At and
B = nly, /2At, where A is the temperature amplitude,
the integration time of Ig. and Ij,. From complex
thermal admittance of network of heat capacities, they
determine the complex heat capacity consisting of two
parts: a vibrational part C,;, showing no relaxation
behavior, and a configuration part C,,,, which relaxes
with a time constant 7 [1].

In fact mlro/2t equals Ayggre and nlp, /2t equals
AHF 1m> Where Agg = Agpre + 1Agrm 1S the heat flow
rate amplitude. Therefore, complex thermal admit-
tance is determined as ¥ = Apg/A. On the other hand,
Y = iwCer (), where Cer(®) is an effective (appar-
ent) heat capacity of the measured system (a network
of heat capacities), which reads:

_ AHF((U) _ AHF(CO)
iwA Ag(w)’

where A (w) is a heating rate amplitude.

Cetr() ey
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One can further calculate from that value the true
sample heat capacity by means of a calibration pro-
cedure [14] but it is not an essential point for our
consideration here. The important point is that the
heat capacity at frequency w can be calculated only
at a non-zero heating rate amplitude, A, (w), which
means that the heating rate ¢(¢#) should have a
periodic component with frequency w. If the instru-
ment has such a sampling rate that we get n points
per period for HF(7) and ¢(¢) signals, then Eq. (1) can
be rewritten as

_ 2o HF; cos(wn) —iy77  HF; sin(wt;)
Yoigicos(wt) — iyl g; sin(wt;)

Cefi ()

2)
2.2. Single step analysis

As shown in [13], the periodic heating rate g(¢)
should contain a delta function to generate an uniform
heat flow rate spectrum (that is equal to A (wy) at
different frequencies wy = kwyg, wy = 21/ Iy, tp is the
basic period of g(?), k the integer). Then the tempera-
ture—time profile should have infinite sharp stepwise
changes. Let us consider a single period of such a
heating rate function together with the respective heat
flow rate as shown in Fig. la.

If the period between pulses is long enough, then the
heat flow rate reaches the steady state value before the
next temperature step. Since the heat flow rate is
periodic, each peak in the heat flow rate starts from
the same steady state value. We can set the steady state
value of the heat flow rate to zero without influencing
the amplitudes of all harmonics. The same we can do
with the heating rate.

Since we have a steady state part of the heat flow
rate before the peak, the peak itself does not “feel’” the
previous peaks. Consequently, the shape of the peak is
exactly the same as that of a single peak measured with
only one heating rate pulse, see Fig. 1b. We can treat
this single peak as a single period of some fictitious
periodic function with basic period tl’D ort”, see Fig. 1c,
and calculate C.w) at the set of frequencies
wy = k2n/t, or wy = k2rn/t]. The shortest possible
basic period #, min of such a function is the time the
heat flow rate returns back to the steady state value
after the perturbation. The longest basic period #, max
is the time interval the heat flow rate has been actually

q(t) a

HF(t)

q(t) b
t
HF (1)
t
aft . c
o
2
troo
P | '
: — t
HF ()

t

Fig. 1. Heating rate g(¢) as a delta function and the corresponding
heat flow rate HF(7) for periodic heating rate (a), single heating rate
pulse (b), single heating rate pulse, which can be followed by
another pulse after the time interval tl’D or t]’n’ (©).

measured after the temperature step. Since we can vary
the basic period in a certain range for this single step in
temperature, we generate a continuous spectrum of
heating rate instead of a discrete spectrum in case of
the periodic ¢(f). Then Cs{w) can be calculated for a
continuous frequency range w > 27/fpmax.

We can start the Fourier integration just at the
position of the delta function (for real measurements
— at the beginning of the temperature step) and
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integrate over the whole period 7, or 7. In fact, heat
flow rate does not contribute to the Fourier integral any
more after its relaxation back to the steady state value.
Then the only variable for C.i(w) determination is the
frequency o.

Finally, the data treatment becomes nothing else as
an operational calculus. The complicated relation in
time domain between heat flow rate and heating rate,
which is given by a convolution product, can be
resolved using the Laplace transformation
L(p) = 0+ *f(t) e7P" dt, where variable p can be any
complex number and f{(f) represents heating rate g(t)
and heat flow rate HF(r). We can set p =iw and
choose the time scale so that + = 0 at the very begin-
ning of the temperature step. We calculate Laplace
transformation of the heating rate g(¢) and the heat
flow rate HF(?) as

—+00 A )
L(iw) = f()ye ' dr = / f(t)e " dt A3)
0 0

because remaining integral fjoof(t) e ' dt equals
zero for both g(f) and HF(r) (rpemember that we set
the steady state values of g(f) and HF(¢) to zero by
subtracting the constant offset values). We can deter-
mine the effective heat capacity as follows:

JHE(r) e dr

f(;lgq(t) efiwt dr

We fix the integration limits and vary only the fre-
quency o to get the heat capacity spectrum. If we
sample n points of heat flow rate and of heating rate
during the time interval (0, tl’)), the integrals can be
changed to sums and Eq. (4) equals exactly Eq. (2),
since e ! = cos(wt) — isin(wt). Further for real
measurement, we use Eq. (2).

The area under the heat flow rate peak in
time domain is the total amount of heat absorbed
by the sample due to the stepwise increase of
temperature. This heat equals the numerator in
Eq. 4) for w =0, that is then simply integral
fé"HF(t) dz, and the height of the temperature step
equals the denominator. Therefore, C.g(0), calculated
by Eq. (4) or Eq. (2) for w = 0, corresponds to the total
heat capacity.

Presented data treatment can be performed by a
software package available for download from our
website (see [15]).

Cerr(®) “

3. How to perform the measurements?

As we see from previous section, the single step
measurement can be analyzed as a fictitious periodic
measurement under the condition that ¢(f) and HF(?)
start and end at the same steady state values. There-
fore, to get correct Ceg(w) values by Eq. (2), the
measurements should start from steady state. The step
in temperature can be approximated as a very steep
heating (or cooling) ramp in short time. In the exam-
ples shown in Figs. 2 and 3, we used a programmed
heating rate of 75 K/min for 0.8 and 1.6 s to have 1 and
2 K temperature steps, respectively. After the tem-
perature step the heat flow rate HF(r) should be
recorded until it returns back to steady state.

As one can see from both figures the measured step
in the temperature—time profile is not as sharp as it was
programmed because of instrumental delay. The
power compensated system (Fig. 2), having much
smaller furnaces than the heat flux system (Fig. 3),
responds much faster and follows more tightly the
program temperature (note the difference in the time
scale in both figures). For C.{(w) determination by
Eq. (2), a large part of the instrumental delay can be
eliminated by using the measured heating rate instead
of the programmed one.

Cer(w) values, calculated by Eq. (2) correspond to
some average values of actual Cep(®) spectrum in the
temperature range (7o, Tp + AT) and in the time
interval (o, fo + fpmax), Where Ty is the starting tem-
perature of the step measurement, AT the height of the
temperature step, o the starting time, #;, max the total
measuring time of the single step. If one further wishes
to monitor the evolution of the C.p(®) spectrum with
changing temperature or with time (e.g. during iso-
thermal crystallization), one can repeat the step per-
turbation at another temperature or at another time.

4. Linearity check and comparison with
TMDSC results

To compare the results from this step analysis with
that from classical TMDSC, we took two extreme
cases of a very good heat conducting sample with
small mass and another larger and poor heat conduct-
ing sample. A thin aluminum disk (with 0.25 mm
thickness and 16 mg mass) and a thick polystyrene
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Fig. 2. Heating rate gprogrammed(t) and gmeasurea(t) and heat flow rate HF(#) versus time for one temperature step. The insert shows programmed
and measured temperature, Tprogrammed @0d Tieasurea- Heating rate is calculated as time derivative of temperature. PerkinElmer Instruments

Pyris-1 DSC, polystyrene mg = 27 mg.

disk (2 mm, 56 mg) were measured with the following
temperature—time profile consisting of two heating
and two cooling steps with 1 and 2 K heights, see
Fig. 4.

Both the samples were measured directly in the
DSC furnace without a pan. Just after the step mea-
surement, without changing the sample, six standard

TMDSC measurements were performed with periods
of 4 min, 2 min, 1 min, 30s, 15s and 7.5s and
with programmed heating rate amplitude A,(w) =
2 K/min. At the longest period (4 min) of the TMDSC
measurements, the peak-to-peak temperature ampli-
tude was about 2 K — the same as in the large cooling
and heating steps. After sample runs, a baseline run

80+ l .
| 270 [
P %60 16
78+ — |
£ 25 programmed 3
76 ] o 2552 14
- D 1]
26.0 _ s el c F
E qpmgrammed é q="75Kmin 250 g 13
g —_—
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s L
72 = 25'0_ u0 O |
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Fig. 3. Heating rate ¢programmed(t) and Gmeasurea(?) and heat flow rate HF(#) versus time for one temperature step. The insert shows programmed
and measured temperature, Tprogrammed aNd Tineasured- Heating rate is calculated as time derivative of temperature. TA Instruments DSC 2920,

aluminum mg = 77 mg.
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48.5+
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Fig. 4. Temperature—time program of step measurement. The total
measuring time of a single step fpmax = 4min. PerkinElmer
Instruments Pyris-1 DSC.

was performed with an empty instrument. Heat flow
rate HF(7) of the baseline run was subtracted from that
of the sample runs. Further, we analyzed each step in
step measurement separately and each TMDSC mea-
surement to calculate C.(w). The results (specific
values) are shown in Fig. 5.

For quite different samples, TMDSC and step
response analysis give practically the same results.
The values of C.g(w) from TMDSC lie in between the
C.r(w) values from heating and cooling steps. This is
reasonable since the modulated temperature profile in
TMDSC measurements has both heating and cooling
parts and results in the average spectrum of Ceg(w).
Some discrepancy between ‘“‘heating” and ‘“‘cooling”
results (especially remarkable for phase angle at high
frequencies) can be assigned to the slightly different
behavior of the instrument in heating and cooling
mode. Slight non-linearity of the instrument due to
limiting cooling capabilities also results in the small
difference between the C.i{(w) values for the two
cooling steps. On the contrary, the Ceg(w) values
for the two heating steps coincide better — the
instrument behaves linearly within 0.6% even at high
frequencies.

One should keep in mind that the presented Ceg(w)
function is not the true heat capacity spectrum of the
material. Aluminum as well as polystyrene at 50°C
should have frequency independent real valued heat
capacity ¢, in measured frequency range 0.01-
lrads~!', which means that modulus Abs(c,(w))

PS, 56mg cooling steps
/ Al, 16mg
14 /

*
'9; heating steps
£ 3
z ,
= step analysis
[S)
g O TMDSC
<

0.1 T 1

0.1 1

(a) o in rads™

2.5

heating steps
204 step analysis
e} TMDSC
2 cooling steps
T 15
£
€)
5
< 104
> PS, 56mg
<
Al, 16mg
0.5
0.0 — . —————
0.1 1

(b) win rads”

Fig. 5. Modulus Abs(Cei(w)) (a) and phase angle Arg(Ce(®)) (b)
of effective specific heat capacity C.i(w) of the PS and Al samples
versus angular frequency o calculated by Eq. (2) for two heating
and two cooling steps, solid curves. Open circles represent the
results of TMDSC measurements. PerkinElmer Instruments Pyris-1
DSC.

should be constant and phase angle Arg(c,(w)) should
be zero. Calculated C.i{w) corresponds to some
effective heat capacity spectrum, which reflects how
the transfer function of the instrument-sample system
falsifies the true spectrum. Ce{(w) of the small alu-
minum disk is mainly influenced by instrumental
delay and partly by thermal lag between the disk
and DSC furnace. Ce{w) of polystyrene disk is
influenced by instrumental delay as well, but thermal
lag between the disk and DSC furnace makes larger
contribution than in case of aluminum disk because of
larger mass of polystyrene disk than that of aluminum
disk. Poor thermal conductivity of polystyrene shifts
the phase angle Arg(C.g(w)) and lowers the modulus
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Abs(Ce(w)) in addition. How to determine thermal
conductivity of the material from such measurements
is described in [7]. The important point of this section
is that the effective heat capacity spectra measured by
TMDSC or by these single steps are essentially the
same.

5. Rate controlled measurements

If one needs to perform a series of similar step
measurements (e.g. during scanning of mean tempera-
ture), it is not necessary to record the heat flow rate
over the whole relaxation time. One can start another
step much earlier, see Fig. 6, and consider only a short
time interval 7; for the Laplace analysis.

Missing shoulder of the heat flow peak (the part
which goes out of the integral limits) is compensated
by the presence of shoulders from previous peaks in
the integration interval. In case when adjacent peaks
have similar shape, Laplace transformation of over-
lapping peaks (t; < tymin) Tesults in the same Cep(w)
spectrum and C.(0) as for a measurement without
overlapping (tI*’ > tymin). It is not necessary to keep the
time interval between adjacent steps tl’: constant. It can
slightly differ from step to step depending on the
sample response. One can set some criterion to start
the next temperature step, e.g. at the moment the heat

P min

HF in mW

2— J

14

0 j \
: — —

40 80 80 100 120 140 160 180

timeins

Fig. 6. Calculated example of a heat flow rate, thick curve,
consisting of a series of overlapping peaks, thin curves. The
minimum relaxation time of each peak (the time the heat flow rate
would return back to steady state value after single temperature
Step) Zp min is larger than the time interval between adjacent steps t;.

flow rate returns to steady state within a given limit, let
us say one-fifth of the peak height. Then, if a sample
relaxes fast one can save time and make the next
temperature step. For a slower sample response heat
flow rate should be measured over longer time before
the next temperature step. If the sample response
changes gradually, adjacent peaks of heat flow rate
will be similar. This way one can realize rate con-
trolled measurement like in StepScan-DSC™ and
generate Cep(®) spectrum much faster.

6. Discussion

Steady state not necessarily implies isothermal
conditions. Step measurements can be performed on
top of an underlying scanning of temperature as well.
In this case, the heat flow rate at steady state can be far
from zero value due to the underlying heating (or
cooling). During the time the heat flow rate returns
back to the steady state value, this value should not
appreciably change. Otherwise, the stationarity con-
dition is not fulfilled. One can also perform step
measurements during irreversible processes, e.g. iso-
thermal crystallization. Heat flow rate value in steady
state can differ from initial value (the value before the
temperature step). How to calculate correctly heat
capacity spectrum in this case will be discussed else-
where [16].

The presented formalism is only correct when the
response of the system (apparatus + sample) is linear
and stationary [17,18]. To decrease non-linearity, one
should decrease the height of the temperature step. To
decrease non-stationarity (instrumental drift, evolu-
tion of sample properties), one should shorten the
length of recorded heat flow relaxation curve if pos-
sible. Note that the same restriction on linear and
stationary response is valid for TMDSC measure-
ments. From general point of view, there is no pre-
ference of one method to another. If we consider real
instruments with limiting cooling capabilities, then
TMDSC method will face problems to realize large
heating rate amplitude, while step analysis with heat-
ing steps will be on the safety side. In this situation,
TMDSC measurements would have much stronger
limitations to keep linear response than step analysis
with heating steps. One can conclude this by analyzing
results in Figs. 5 and 6.
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TMDSC with a lot of repeated periods can be
preferable because it gives lower statistical scatter
in dynamic heat capacity data than step analysis.
On the other hand, step analysis allows generation
of continuum heat capacity spectrum, much faster and
very easily.

We used in our method steps in temperature to
generate as good as possible a heating rate spectrum
with the same amplitude for all frequencies. This is an
important point since it allows obtaining the heat
capacity spectrum with comparable quality at different
frequencies. For comparison, steps in heating rate
generate heating rate amplitude, which linearly
decreases with frequency. The heat capacity spectrum
at high frequency has poor quality then. Pulses in
temperature, like in the method proposed by Agarwal
and Farris [11,12], can generate a very rich heating
rate spectrum with amplitudes of high frequency
components even exceeding that of low frequency
ones. But this can be done only at the expense of
large temperature changes, which are not desirable in
real measuring conditions. One has to keep tempera-
ture changes in some limiting range mainly because of
linear response requirements. Then under given limit
of temperature changes pulses in temperature will
have smaller heating rate amplitude at low frequencies
than temperature steps.

7. Conclusion

We proposed a method of step response analysis,
which gives practically the same results for frequency
dependent complex heat capacity as TMDSC with two
advantages: (i) obtaining a continuous heat capacity
spectrum and (ii) remarkably shorter measuring time.
The measurement consists of a sharp step in tempera-
ture followed by an isothermal segment. Measured
heat flow rate is evaluated in frequency domain. The
method can be applied to any case where the heat
capacity spectrum is of interest.

For generation of a heat capacity spectrum with
comparable quality at different frequencies, a step in
temperature is more preferable than a step in heating
rate or pulse in temperature.
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