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Abstract

The application of tomographic imaging techniques developed for medical applications to the data provided by the scanning
thermal microscope will give access to true three-dimensional information on the thermal properties of materials on a
micrometer length scale. In principle, the technique involves calculating and inverting a sensitivity matrix for a uniform
isotropic material, collecting ordered data at several modulation frequencies, and multiplying the inverse of the matrix with the
data vector. In practice, inversion of the matrix is impractical, and a novel iterative technique is used. Examples from both

simulated and real data are given. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The scanning thermal microscope (SThM) can
sense the thermal properties of materials on a sub-
micrometer length scale [1] by applying a constant
power input to the material, and measuring the result-
ing temperature change. The resulting two-dimen-
sional image is a weighted projection of the
properties of the bulk material onto the surface plane
across which the probe is scanned. If a sinusoidal
modulation is applied to the heat input, an evanescent
thermal wave is generated which decays exponentially
with a thermal diffusion length that depends on the
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thermal properties of the material, and on the modula-
tion frequency. In principle, therefore, it is possible to
access the thermal properties at different depths within
the material by varying the modulation frequency. In
practice, generating quantitative data related to depth
is non-trivial [2].

An analogous problem has been solved for elec-
trical impedance tomography (EIT), a method of
generating three-dimensional images of the electrical
impedance of a material. The particular case that has
been solved is for 3D imaging of the human chest [3].
The problem is to reconstruct some property of the
interior of a material when measurements are confined
to the surface. The starting point is to consider the
material to be composed of volume elements (voxels),
each of which is assumed to be uniform and isotropic.
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Measurements can be made at points on the surface—
in general, a measurement consists of injecting energy
(electrical current, heat) and measuring the resulting
change (voltage, temperature). At least one indepen-
dent measurement has to be made for each voxel. A
sensitivity matrix is constructed by calculating the
change in the measured property, for every measure-
ment site, of an incremental change in the properties of
each voxel. We then have, for the temperature case:

[surface temperature distribution]
= [sensitivity matrix]
X [distribution of thermal properties]

where [ | indicates a matrix. The SThM injects heat,
and measures the resultant temperature change, with
the same probe, so for a volume consisting of / layers
and m x n surface points (i.e. [ X m X n voxels), only
m X n independent measurements can be made. How-
ever, we can make measurements at an arbitrary
number of modulation frequencies, so a minimum
of [ modulation frequencies will give sufficient inde-
pendent measurements.

It is clear that pre-multiplication of the above equa-
tion by the inverse of the sensitivity matrix will give

[sensitivity matrix] "
x [surface temperature distribution]

= [distribution of thermal properties]

so we can now determine the distribution of thermal
properties. We will now show the following:

1. How the sensitivity matrix is calculated in 1D and
3D (the 1D is relevant for materials consisting of
uniform layers).

2. How the computational problem of finding an

inverse for the sensitivity matrix is solved.

Results from simulated 1D and 3D data.

4. Results from real data.

W

2. Background theory
2.1. Thermal diffusion

The rate at which heat is transferred across a surface
per unit area per unit time is the heat flux f. For an
isotropic solid, the flux is related to the rate of change

of temperature T along the normal to an isothermal by
the heat conduction equation

Jo = —kg—: ey
where £ is the thermal conductivity, and 0/0n denotes
the spatial differential, normal to the isothermal surface.
Consider an element of volume through which heat
is flowing but which does not contain any internal
sources of heat. For the non-steady case, the possibi-
lity of heat storage within the element must be con-
sidered and the rate of heat gain in the element from
flow across its faces must be equal to the rate of heat
storage. This is governed by the rate of temperature
change with time and the material properties, density
and specific heat. For a homogenous isotropic solid
whose thermal conductivity is independent of the
temperature, this leads to the diffusion equation

O’T N T 0T 10T

ox Oy dz oot
where oo = k/pc is the diffusivity of the material, p the
density, and c the specific heat.

If we consider a semi-infinite sample (7' — 0 as
7z — 00) heated with sinusoidally modulated energy
which is absorbed evenly across the entire sample
surface (z = 0), Eq. (2) can be considered to be one-
dimensional, and has the general solution
T(z,t) = [e"*(A cos(uz) + Bsin(uz))

+ e **(Ccos(uz)

+ Dsin(pz))] cos(wt)

+ " (~Asin(kz) + Boos(2))

+ e **(Csin(uz)

— Dcos(uz))] sin(wt) 3)
1/2

@)

where u = (w/20a)
applied heat).

In Fig. 1, the temperature profile with depth is
plotted for a typical polymer at regular time intervals
during a single cycle of the modulated heat input (at
1 kHz). We can see that Eq. (3) can be interpreted as an
exponentially damped plane wave propagating in the z
direction with wavelength

i = 2y |2 @)
w

The damping of the thermal wave is frequency depen-
dent and can be described in terms of the thermal

o = 2xnf (fis the frequency of
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temperature (arbitrary units)

depth (um)

Fig. 1. 1D temperature profiles with depth during a cycle of a 1 kHz modulated heat input. Material properties: k = 0.142Wm~' K™,
o =0.11x107%m?s~!. In practice, a DC offset is applied so that the probe temperature is always above ambient, but this has been ignored for

clarity.

diffusion length u. This is defined as the distance at
which the amplitude has decayed to 1/e of the surface
value

200 A
n=y==5 &)
o 27

At 1 kHz, for the material in Fig. 1, 4; = 37 pm.

By varying the modulation frequency, we can effec-
tively select the penetration depth of the thermal wave
and thus interrogate the sample material to progres-
sively deeper levels. In Fig. 2, the exponential envel-
ope has been plotted for the same polymer over a
frequency range from 0.1 Hz to 1 MHz. In each case,
the temperature curve has been normalised to the
surface temperature.

Now consider the heterogeneous 1D case in which
a discrete perturbation in the material properties is

located at depth. For example, consider a material with
the same substrate polymer as in Figs. 1 and 2, but with
a perturbation located at depth 2—4 pm from the sur-
face. The perturbation corresponds to a fivefold
increase in thermal conductivity but with no change
in diffusivity. In Fig. 3, the temperature profiles for
this heterogeneous sample are plotted as in Fig. 1 (the
profiles for the equivalent homogenous material are
also plotted for comparison).

The buried perturbation clearly alters the temperature
profiles from the uniform case, and the depth of the
perturbation can be visually identified. In practice,
however, we are not able to explicitly measure these
thermal profiles as measurements can only be made at
the surface where the heatis applied. From Fig. 3, we can
see that there is a significant change in signal amplitude
atthis surface and we note that there is also change in the
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Fig. 2. 1D temperature profile envelope plotted for the same material as in Fig. 1 over a range of modulation frequencies (0.1 Hz to 1 MHz).
Each profile has been normalised to the surface temperature.

temperature (arbitrary units)
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Fig. 3. 1D temperature profiles for an inclusion buried at depth 2—4 pum within the substrate as described in Fig. 1 (also shown). The inclusion
corresponds to a fivefold increase in thermal conductivity compared to the substrate, but with no associated change in thermal diffusivity. The
DC offset has been ignored for clarity.
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phase between the applied heat flux and measured tem-
perature modulation compared to the homogenous case.

2.2. 1D solution with heat losses

In SThM, the 1D solution in Eq. (3) is of limited
practical use as the heat source does not satisfy the semi-
infinite criteria of heating the entire surface plane, i.e.
the source dimensions are not large compared to the
wavelength. Hammiche et al. [2] accounted for the
finite sized heat source by extending the simple 1D
solution to incorporate heat loss from the edges of the
1D sample. Only the zero-frequency case was consid-
ered and hence no depth information could be obtained.
We now generalise this result. The non-steady state 1D
differential equation with heat loss / can be written as

O*T 10T
02 oot
where h = ¢p/kA, ¢ is the heat loss coefficient, p the
perimeter of elemental heat source, k the thermal
conductivity and A the cross-sectional area of ele-
mental heat source which has the general solution
T(z,1) = [*(A cos(,2) + Bsin(ty3))

+ e M5 (C cos(u2)

+ Dsin(py2))] cos(wt)

+ [e"1%(—Assin(u,2) + B cos(uyz))

+ e 1%(Csin(py2)

— Dcos(j1,2))] sin(wr) ™)

%(h+r)7/12: %(h_r)a

r=/1 + (0]2)".

For the 1D model, the diffusion length was related
only to the diffusivity of the sample and the modula-
tion frequency, Eq. (5). Introduction of the heat loss
term indicates that the diffusion length is also related
to the geometry of the probe

hT (©6)

where p; =

2
r+h
(as rand & both contain the perimeter length) ~ (8)

A=

2.3. 3D solution with heat losses

An analytical solution for a heterogeneous 3D
sample is generally not possible, so a finite element

model approach using a customised solver has been
used. The sample will be effectively semi-infinite on
the scale of probe size and solution space, which is in
the order of micrometer. To solve the forward pro-
blem, the FEM must model the semi-infinite domain
with sufficient accuracy such that the finite boundary
of the model does not introduce significant errors.
Infinite elements [4] are the simplest and most elegant
solution, and surround the finite elements on all but
one surface, this being the measurement plane. It is
assumed that this measurement surface is thermally
insulated and heat can only pass into the medium at the
probe contact. In this work, the core finite elements are
isotropic eight node bricks and the infinite elements
also have eight nodes and only one infinite surface.

To simulate a variety of probe sizes, distributed
loads have been used in the form of square arrays
containing a number of load points. The amplitude of
the applied heat flux at each node is determined by
assuming that the probe is made up of smaller probes
which cover only a single element and the same heat
flux is applied through each of the four corner nodes.
As these smaller probes intersect at common nodes,
the overall applied heat flux is found by summing
the contributions of these smaller probes. A 4 x 4 um
probe is simulated using an array of 25 nodes.

To investigate the thermal diffusion length limit, we
need to perform an analysis at a modulation frequency
such that 4y = Ar—o. If we plot the normalised tem-
perature of the nodes beneath the centre of the probe
array at various time intervals in the modulation cycle,
we can examine the temperature profile with depth and
determine the thermal diffusion lengths. Fig. 4 shows
the temperature profiles for probes varying in size
from I pm X 1 pm to 12 pm x 12 pm.

In each case, the applied modulation frequency was
0.1 Hz, but checks were performed to ensure that the
limit had been reached. The plots clearly show that
increasing the probe size results in a deeper penetra-
tion of the thermal wave and thus a sensitivity
increased correspondingly at these deeper planes.
The two plots for the 1 pum x 1 um probe (Fig. 4a
and b), suggests that in 3D, the diffusion length is
independent of the thermal properties of the material.
This is in contrast to 1D models as indicated in
Eq. (4).

We need to characterise the situation that involves
both temperature modulation and three-dimensional
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probe=1x1um, k=0.142, ¢=0.11e-6
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Fig. 4. Temperature profiles for various sized probes and two homogenous materials at 0.1 Hz (matl: k=0.142Wm™'K!,
o=0.11x10"°m?s™'; mat2: k =0.0238Wm ' K~!, « =18.4 x 10°°m?s™"): (a) 1um x 1 pum probe, matl; (b) 1um x 1um probe,
mat2; (c) 4um x 4 pm probe, matl; (d) 6 um x 6 pm probe, matl; (e) 8 pm x 8 um probe, matl; (f) 12 um x 12 um probe, matl.

heat flow. For this purpose, we define an effective
diffusion length 4., and it proves possible to express
this in terms of two other characteristic lengths, one of
which is 4; as defined in Eq. (4). The other is a “‘zero-
frequency diffusion length”, 4y: consider the limiting
case of Eq. (8) as the frequency is reduced to zero.
The diffusion length for the lossy system then
becomes

o — h™1/? )

Thus even with no modulation, the temperature in the
medium falls rapidly with distance from the source,
with 1o being governed by the size of the probe.
Furthermore, as we have seen from the finite element
analyses, Ao is almost independent of the thermal
properties of the medium!

The three-dimensional finite element analysis leads
to the following simple relation:

2 (2t + 40" P+ g =2 (10)

Of course, /g is generally less than Ay, and if 1y < 4
then we can use the binomial approximation to derive
the extremely simple approximation

TN 4

do 2 0l1-05 <“’> (11)
A1

This implies that we can consider the effect of fre-

quency as lying within one of the four “domains”.

1. Low frequency (large 4;, small Ag): no significant
effect of frequency upon 4., which tends towards
Ao- Depending on the sample material, if we want
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frequency discrimination it may be necessary to
use a probe of large diameter. There will, there-
fore, be a trade off between the increased scan
depth and a reduced planar spatial resolution due
to the required larger probe size. For this linear
problem, a large probe can be synthesised from a
number of measurements by a smaller probe:

2. Moderate frequency: A, is given by the simple

binomial approximation.

High frequency: the exact equation is needed.

4. Very high frequency (very small 4, very large A¢):
here, another binomial approximation applied to
the exact equation gives

i \?
Jo 1= (2L (12)

220

w

tending towards A; if either the modulation
frequency, or the probe size (and 1), is very large.

2.4. Sensitivity matrix

For a given change in thermal properties Ak =
kp — k; (where subscripts p and r refer to the perturbed
and reference cases, respectively), there will be an
associated change in the measured surface tempera-
ture amplitude AT = T}, — T;. There will also be an
associated change in the phase between the applied
heat flux and the temperature, but we shall only
consider the variation in amplitude due to the prac-
tical difficulties of making accurate phase measure-
ments.

The ratio of these quantities is defined as the
sensitivity:

_Ar
Ak

The sensitivity will vary with the depth of the material
perturbation and with modulation frequency. If we
assume that there is a linear sensitivity relationship,
then the sensitivity relationship for each measurement
frequency f can be represented by a set of linear
equations

ATf = Sf,,'Aki (14)

N

13)

which can be written in matrix notation as

t = Sk (15)

Here t is the vector of the change in surface tempera-
ture at each measurement frequency, k the change in
thermal properties in each of the discrete elements and
S the sensitivity matrix. Perturbing each element in
turn and finding the corresponding sensitivity coeffi-
cient for each of the measurement frequencies forms
the sensitivity matrix. As we perturb the deeper
regions in the material, the temperature change will
gradually reduce until it is at such a level that it cannot
be measured above the unavoidable measurement
noise.

2.5. Matrix inversion: solving the inverse problem

To recover the spatially distributed material proper-
ties Ak; from the measured surface measurements A7},
we have to solve

k=St (16)

In general, a large change in k will usually result in
only a small change in t and these measurements are
said to be ill-posed, i.e. many of the elements of the
sensitivity matrix are very close to zero. The sensi-
tivity matrix is, therefore, highly ill-conditioned and
the true matrix inverse does not exist. In EIT, truncated
singular value decomposition (SVD) was used in order
to assess the degree of matrix condition, perform the
regularisation, and find its pseudo-inverse [3]. As a
rule of thumb, the level at which the singular values
are truncated is at a level which corresponds to the
measurement signal to noise ratio. Solution techniques
must take the following factors into account:

1. The matrix S may not be square: in the EIT case
the solution grid is finer than the measurement
grid (‘“‘super-resolution’) and the set of equations
is then underdetermined.

2. Even when S is square the matrix is very
ill-conditioned: the reconstruction process is
ill-posed.

This is a standard approach which works well in
applications (such as EIT) for which the singular value
spectrum has a pronounced knee so that choosing a
suitable cut-off can be done. However, the primary
disadvantage of the pseudo-inverse technique is that
its computation does not scale well: the cost of a
straightforward implementation of the technique is
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proportional to the cube of the number of unknowns,
and for the thermal problem this leads to estimates of
6 Tbytes of storage and 2000 years to invert the
matrix!

It is not logically necessary to produce a full SVD of
S. Once the cut-off value has been chosen, and experi-
ments made to determine how many singular values
(say M) are likely to fall above this cut-off, then only
the largest M singular vector/value triplets are needed.
Standard algorithms exist for this; but these still
require the full sensitivity matrix S. However, S is
highly structured. An iterative technique was devel-
oped for computing the M largest singular triplets
which needed only values of Sv (and S'v) for a vector
v; these matrix—vector products can be computed
without forming S. Since the partial SVD decomposi-
tion can be carried out offline (it depends only upon S,
not upon the sample measurements t) the time taken
for a given Kk is also low.

2.6. The best linear estimate technique

The SVD reconstruction technique itself is less
effective than for the EIT problem, because the
SVD spectrum has no sharp knee. An algorithm based
on the best linear estimate (BLE) method has, there-
fore, been used to solve the inverse problem. The
BLE or stochastic inverse algorithm addresses the ill-
conditioning by explicitly considering the inaccura-
cies in the measurement of the vector t, treating these
inaccuracies as noise. It addresses the equation

Sk=t+n a7

where n represents the noise and is supposed random;
and seeks the “best” (in a stochastic least-squares
sense) linear reconstruction of k. This yields the
defining equation

(SWS' + mI)k =t (18)

where W is a matrix which itself depends upon k, and
m is related to the estimated noise level and I is the
identity matrix.

W represents the expected value of k* taken over all
noise instantiations. Estimating W requires a “world
model”’: prior knowledge of the class of solutions
sought. This is the major advantage of the BLE
approach: the technique can be tailored to the specific
application. Given a world model and an estimate of

the noise in the measured response, an iterative search
technique is used to produce a solution to the original
problem which is a best fit in a linear sense to this
model.

Computationally we considered three cases: (1)
small occlusions in the sample; (2) layered samples
based on a large grid; and (3) a 1D layered system
where the layers are seen as single entries in the
solution vector. This system stems from the physical
model in which the measurement probe is effectively
infinite in size. Cases 1 and 2 generate very large
computational problems and differ in the world model
appropriate to the solution. Case 3 has the same world
model as Case 2, but is computationally very much
simpler.

The sensitivity matrix is large for the 3D formula-
tion. The size is (ne X ny X ng) X (R X 1y X nf),
where n, is the grid size in the x direction, n, the grid
size in y direction, n, the grid size in depth, and n, the
number of modulation frequencies. For a 32 x 32 x 8
grid with eight frequencies, the matrix size is
226 2~ 67 x 10% elements. The structure of the matrix
was exploited in order to reduce the time taken to solve
the problem. The problem was formulated using the
SVD decomposition of the sensitivity matrix. The full
SVD decomposition is not available due to its expense
in both time and memory but about 500 of the largest
SVD values were generated. The matrix has a double
block Toeplitz structure with only (n, x ny X ng X ny)
distinct elements. By exploiting the structure of Toe-
plitz matrices the matrix—vector multiplications can be
performed at FFT speed.

3. Experimental
3.1. Comparison of SVD and BLE with model data

The SVD and BLE methods were compared for a
solution space (8 x 8 x 8 cubic voxels of side 1 um)
which was sufficiently small that SVD inversion of the
sensitivity matrix was feasible. Data vectors for eight
modulation frequencies were calculated for a uniform
isotropic medium (k = 0.142Wm~'K™!, a = 0.11x
10-°m?s~!) containing two 2 um sided cubic inclu-
sions which represent a 100% change in thermal
conductivity. These were positioned at different
depths. To avoid inverse-crimes [5], a slightly larger
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Fig. 5. 3D reconstruction of computer simulated data sets. The ideal image represents the FEM model thermal distribution from which the
simulated data sets are generated. Results for two different probe sizes (i.e. contact area) are given for the SVD and BLE reconstruction

methods.

model was used to compute the simulated data sets
compared to that used to generate the sensitivity
matrix. Fig. 5 shows a comparison between the two
reconstruction methods. The problem with the small
lum X 1 pm probe is demonstrated when multiple
inclusions are reconstructed as the signal from the
superficial inclusion dominates signals from deeper
planes. However, as the probe size is increased to
12pum X 12 um, the true extent of the superficial

inclusion is found and the deeper inclusion can be
detected. The improvement in image sharpness with
the BLE reconstruction is self-evident.

3.2. BLE reconstruction with 1D (layered) samples
In scanning thermal microscopy, a modulated heat

input is applied to the sample at frequency @ and the
third harmonic temperature response is measured at
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Fig. 6. Scanning thermal microscopy. The probe is scanned with constant force, variations in heat flow out of the probe are measured by
monitoring the Wheatstone bridge voltage which is then used to create contrast in the thermal image.

the surface (see 3w method [6] in Appendix A). The modulation frequencies, the penetration depth of ther-
probe is scanned across the sample in a raster fashion, mal wave progressively shortens. In this way, it is
so that a 2D image can be formed as shown in Fig. 6. possible to obtain 3D information regarding the sub-
By applying the heat over a range of increasing surface features in a non-destructive way.

Barrier packaging material #1 Barrier packaging material #2
(outer surface on the left) (outer surface on the left)

Fig. 7. ‘Edge-on’ transmitted light micrograph of the barrier (sausage and coffee) packaging film samples. The samples appear curved
although the original film is actually flat.
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Initial efforts have concentrated on the reconstruc-
tion of real samples with layered structures (effec-
tively 1D) as considerable difficulties were met in the
fabrication of 3D test samples with known morphol-
ogy. Several suitable samples have been produced by
the industrial partners within this consortium. These
include:

e Bulk PET (poly(ethyleneterephthlate)) (1 mm thick
sheet).

e Steel (3 mm thick).

o GLC sample: multilayered film consisting of 5 pm
thick PET; 40 nm aluminium; 5 pm adhesive;
25 um PET.

e 25 um PET on a steel substrate (500 pm).

e Barrier packaging film #1: The total thickness is
46 pm. The composition is not completely known
but it contains polyamide and polyethylene. The
thickness’ of the six different successive layers are:
3,05, 11, 6.5, 1 and 24 pum.

e Barrier packaging film #2: The total thickness is
117 pm. At the outer side is a 17 pm thick layer
with a melting point of 255 °C (PET). Then follows
a print layer, 3 pm thick. The third layer is an
adhesive, 2 um thick. Layer 4 is 7 pm thick alumi-
nium. Layer 5 is an adhesive with a thickness of
2 um and a melting point slightly below 70 °C.
Layer 6 is at the back of the film. It is PE-grade
with a thickness of 86 pm and it has a melting point
of 112 °C.

Cross-sectional images of the barrier packaging
films are shown in Fig. 7. Small pieces of both films
have been embedded in epoxy resin and then thin
slices perpendicular to the film have been cut by
means of a microtome. The slices are photographed
in transmitted light on a microscope to show the
different layers of the film. They are both examples
of ‘high-tech films” which are routinely dealt with by
the end user community.

Data has been collected from these samples using
AC SThM over the modulation frequency range 10 Hz
to 10kHz. Measurements were carried out using
purpose-built electronic instrumentation together with
an EG and G lock-in amplifier model 5302 with
1 MHz bandwidth and nth harmonic (including third
harmonic) detection capability. Positioning of the
probe on the surface sample with constant force feed-

back was carried out using a ThermoMicroscopes
Explorer AFM. A Wollaston wire resistive thermal
probe was used as a highly localised heat source, so as
to apply a modulated temperature program to the
surface of the sample at the contact point. Based on
calibration using the melting points of a number of
polymers, the amplitude modulation of the tempera-
ture is estimated at 10 K. Probe current is modulated at
frequency w. The voltage across the probe, at the third
harmonic frequency 3w, is monitored by the lock-in
amplifier. A Visual Basic program, using ThermoMicro-
scopes ‘SPMTools’ routines, was written to ramp up
the frequency automatically, and to log data through
the microscope controller. As these samples are
layered structures, it is appropriate to collect the data
at only a single point and use the 1D (lossy) recon-
struction. In Fig. 8, the raw temperature amplitude
data is plotted which shows that the different samples
give quite different frequency responses. It is these
differences which facilitate the subsurface imaging. It
is interesting to note that the PET on steel sample gives
an almost identical response to bulk PET. This sug-
gests that the 25 um PET layer is too thick for the steel
to be detected below and gives an indication as to the
maximum scanning depth for this probe size. It is also
of interest that overall, both the packaging films give a
lower temperature amplitude than the bulk steel sam-
ple.

Using these data sets, we can normalise them to a
reference. For example, we can normalise the GCL
sample (which is largely PET with a 40 nm layer of
aluminium and 5 pm adhesive layer) to the bulk PET
sample. The reconstructed image should then indicate
the percentage change in thermal conductivity of the
GCL sample referenced to PET. In order to validate
the reconstruction, we can generate simulated data
using typical thermal properties of constituent materi-
als. In Fig. 9, the real and simulated images have been
reconstructed using the BLE method with 128 inde-
pendent frequency measurements which results in a
128 element 1D image.

The reconstruction of the virtual sample clearly
identifies the high conductivity Al layer, but not the
adhesive layer immediately below the Al (the thermal
properties of this layer were not known). In the
reconstruction of the data from the real sample, the
high conductivity Al layer is again seen, with a back-
ing layer representing the adhesive. The changes at
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Fig. 8. Temperature amplitude variation with modulation frequency for the layered samples studied.

14-19 and >28 pm are artefacts of the reconstruction
method, which decrease as the number of elements in
the reconstruction increase. These results show that
imaging of layered materials is possible. There are,
however, a priori reasons to suggest that 1D recon-
struction techniques are non-optimal. The sensitivity
matrix formulation of the problem contains the impli-
cit assumption that a change in the thermal properties
of a single element does not affect the heat flow
through the material. This is a reasonable assumption
for a 3D reconstruction of a material with discrete
inclusions, but is clearly not a good assumption for a
1D reconstruction.

In Fig. 10, the image reconstruction of the barrier
packaging samples are shown. The data has been
normalised to reference data which was measured
on the underside (substrate side) of the sample. The
substrate is sufficiently deep to be considered infi-

nitely thick. In these two cases, a number of layers
have been identified within each material, but the
limitations of 1D reconstruction limit the accuracy
with which both the position and conductivity of each
layer can be estimated.

Attempts at obtaining a data set which is suitable for
3D reconstruction is still continuing. Problems have
been encountered which are primarily due to the
difficulties in fabricating suitable test samples with
known morphology. The requirements for a test sam-
ple are: (1) the surface should be independent of the
position of any inclusion (because current SThMs are
unable to distinguish between topological changes and
thermal changes) and (2) an object or objects of known
thermal properties must be placed within the material
at a known position. This has proved to be unexpect-
edly difficult (particularly the surface topography
condition), and requires further effort. The latest
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Fig. 9. 1D BLE reconstruction of a simulated and real sample corresponding to the GCL film (5 mm PET, 40 nm Al, 5 um adhesive, 25 pm
PET) referenced to bulk PET.
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Fig. 10. 1D BLE reconstruction of the barrier packaging samples referenced to the substrate side of each sample.

results can be found on the TASM web-site: http:// I, + I cos(®t)
www.shef.ac.uk/uni/academic/I-M/mpce/tasm. N

>

4. Summary

The SThM measures thermal properties in a plane, _ 8 (\/) R
which are non-linear projection of the three-dimen-
sional properties of the material onto the surface. The
resulting data is frequency dependent, which gives
access to the third dimension. Decoding this data to
produce an image of the thermal properties in three
dimensions is an extremely large computational pro- Fig. 11.
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blem. The use of iterative methods to solve the inverse
problem has been shown to be feasible, but still
requires testing with non-layered materials of known
morphology.

Appendix A. The 3w method applied to scanning
thermal microscopy
The heating current is (Fig. 11)
i=1Iy+ I, cos(wr)
and the heat flux Q is given by i’R:

Q = 3R + I, + 4Ll cos(wt) + I, cos(2wt))

(0]

Assuming the heat flux at these three frequencies is
constant, this will lead to a surface temperature fluctua-

expanding and grouping frequency terms gives
V = R[Iy(1 + aTy) + 31,07, cos(¢,,)
+ 1,(1 4 oTp) cos(wt) + IpaT,, cos(wt + ¢,,)
+ %waxTzw cos(wt + ¢,,,)
+ IooTae cos(2wt + ¢yy,)
+ 11,07, cos(2wt + ¢,,)
+ 11,0T>, cos(Bwt + ¢s,)]

The 2w component of the measured voltage v will,
therefore, be a complicated combination of the w and
2w temperature amplitudes with a corresponding
phase combination, given by

Vaw = K sin(Rwt + ¢, + 0)

where

K = \/(I()RO(TQ(U + %I(URO(T(U COS(¢2(» -

(rbw))z + (%I(UROCT(U Sin(¢2w - (rbw))za

0= sin’l (I(UROCTLU Sin(d)Zw — ¢w))

tion 7 at the probe T = Tj + T, cos(wt + ¢,,) + Tae
cos(wt + ¢,,,). Now R will vary due to this tempera-
ture fluctuation as

R=Ro[l +a(T —T,)]
where T, is the ambient temperature (and can be set to
zero), and o the temperature resistivity coefficient for

the probe. The voltage across the resistor is given
simply as v = iR, which in this case is

V = [Ip + I, cos(wt)][R(1 + aT)]

substituting for T

V = R[ly + 1, cos(wt)][1 + a(Ty + T, cos(wt + ¢,,)
+ T2 €082 + P2))],

V = Rl + lyaTy + IooT,, cos(wt + ¢,,)
+ IyoT, cos(2wt + ¢,,,) + I, cos(wt)
+ 1,aT cos(wt) + 1,aT,, cos(wt) cos(wt + ¢ )
+ 1,0T5,, cos(wt) cos(2wt + ¢,,,)]

The 3w signal which gives T, and ¢,,, directly,
measures how the resistance changes with thermal
power rather than just input current. Its value is
independent of R, and thus, independent of errors
based on inhomogeneous temperature distributions
in sample or probe. However, the signal is relatively
weak.
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