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Abstract

In modern life, to make measurements comparable, stating the quality of a measurement in terms of the measurement
uncertainty is an absolute necessity. The ISO/BIPM ‘““Guide to the Expression of Uncertainty in Measurement’—usually
referred to as the GUM or the Guide—, which was published in 1993, introduces a method to unify the evaluation and the
statement of measurement uncertainties. This method has been accepted by almost all calibration services all over the world
and has become a quasi-standard in the field of metrology. This paper deals with the background of the GUM, the knowledge
of the respective measurement and other fundamental aspects which have been included in the EA-4/02 requirements
document published by the European co-operation for Accreditation. It shows how the basic concepts may be converted in a
straight forward procedure to evaluate the uncertainty in a measurement. It is an expanded version of a lecture with the same
title, held by the author at the workshop “GUM uncertainty budget in calorimetry—questions and ways to realistic
determinations of measurement uncertainty’’ at the 14th Ulm-Freiberg Kalorimetrietage in Freiberg (Saxony) March 21/23,

2001. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since their beginnings more than 300 years ago, the
calculating natural sciences and metrology, which is
based on these, have been accompanied by the ques-
tion as to how the accuracy of measurement results is
to be assessed. For a long time, systematic and random
measurement errors were regarded as the cause for the
more or less exact determination. This opinion may in
the final analysis be ascribed to the measuring means
of former times which were well-conceived from the
point of view of instrument technology but were not so
perfect in terms of modern process technology. In the
past few decades, the fast development of measuring

“Tel.: +49-531-592-2131; fax: +49-531-592-2130.
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technology, and particularly the use of measuring
transducers and electrical data acquisition, have led
to the measuring means being highly refined. This was
the reason for a new approach which abandons an
inherent inconsistency of former views.

According to the opinion formerly held, the sys-
tematic and random measurement errors, which in
principle cannot be completely determined, describe
deviations from the so-called “‘true value” of a quan-
tity. As the determination of the ““true value” of the
measurand' is the objective of any measurement, this
value is not known before the measurement. On the
other hand, since the measurement errors relate to the
“true value” it should really be known already before

!'For the definitions of metrological terms such as measurand,
measurement deviation, etc. see VIM [1], the international
dictionary for metrology, or DIN 1319-1 [2].
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the respective measurement. We have to do with a
circular argument.

The ISO/BIPM ““Guide to the Expression of Uncer-
tainty in Measurement” [3], published in the early
1990s and briefly referred to as GUM (or Guide), is
based on a different operational approach relying on a
description of the more or less complete knowledge of
the respective measurement and its conditions [4,5].
The wide acceptance of the GUM may be explained
besides the unifying of ideas by the fact that this Guide
is supported by seven renowned international institu-
tions dealing with the fundamentals of metrology:
BIPM International Bureau of Weights and Mea-
sures, http//:www.bipm.org.

IEC International Electrotechnical Commission,

http//:www.iec.ch.

International Federation of Clinical Chem-

istry, http//:www.ifcc.org.

ISO International Organization for Standardiza-
tion, http//:www.iso.ch.

IUPAC International Union of Pure and Applied
Chemistry, http//:www.iupac.org.

IUPAP International Union of Pure and Applied

Physics, http//:www.iupap.org.

International Organization of Legal Metro-

logy, http//:www.oiml.org.

IFCC

OIML

The approach adheres to the view that the quantity
to be measured as a physical object exists before the
measurement. It is regarded as the cause for specific
effects in the form of indications of the measuring
apparatus. The value of the measurand, however, does
not pre-exist, it is established only by the measure-
ment—it actually is assigned by the measurement to
the quantity to be measured [6]. The assignment of the
measurement value to the object measured is made by
a comparison with a quantity whose value is known.
Two aspects are affected by the question of accuracy:
“How well is the physical equality of the measurand
with the reference quantity estimated?”” and ‘““With
what accuracy is the value of the reference quantity
known with regard to the generally accepted system
of units?”’. The inadequate knowledge of these two
items leads to an uncertainty in the assignment. Thus
more or less large ranges of values are obtained,
which are compatible with the more or less exact
knowledge of the conditions and influences. Each of

its values can rightly be considered as the result of the
measurement.

In its Section 2 this paper briefly describes some
reasons why the determination of the measurement
uncertainty is so important in modern business. In
Section 3 the operational and metrological aspects of a
measurement are presented by the example of the
calibration of a mercury-in-glass thermometer. Sec-
tion 4 deals with the naive approach to the measure-
ment uncertainty, the so-called uncertainty intervals.
Section 5 is an introduction to the GUM approach the
centre of which is formed by the standard measure-
ment uncertainty. Section 6 summarises the method of
the GUM. Section 7 explains the so-called industrial
view which via the term of expanded measurement
uncertainty reverts to the uncertainty intervals but in a
new and extended way. Finally, following the Eur-
opean calibration guideline EA-4/02 and its supple-
ments [7,8,9], Section 8 gives instructions as to how an
uncertainty analysis on the basis of the GUM should
suitably be carried out.

As the assessment of the accuracy of a measurement
or its result, respectively, is a rational description of
more or less exact knowledge, it is important for the
terms used for the description to be unambiguous and
as precise as possible. This is necessary because
inaccurate terms further increase the incompleteness
of the knowledge. In this sense, the GUM makes a
distinction between the uncertainty as a general
expression of a doubt about a statement, and the
uncertainty of measurement as a numerical value
quantifying the doubt about a measured value. So
the statement “I am unsure whether tomorrow it will
be as hot as today”’, expresses only the general doubt,
whereas the statement “I have determined the tem-
perature of 978 °C in the annealing furnace with a
measurement uncertainty of 1.5 °C”, expresses the
doubt about the measurement result reported in terms
of its value, so that it becomes accessible to certain
quantitative comparisons. The author will follow this
principle strictly hoping that the reader will not be
tired by some lengthy terms.

2. Measurement uncertainty—why?
In [10], the author has already described in a general

way what is to be understood by measurement uncer-
tainty within the meaning of the GUM, and what
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importance it has in the modern context of quality
assurance. Here, only some additional metrological
aspects will be depicted.

In 1992, Kaarls, the then president of the Western
European calibration co-operation (WECC) and later
vice-president of the European co-operation for
accreditation (EA) pointed out in his lecture at the
Eurolab workshop [11]:

*“...Within the modern economic structure it is

necessary to represent the result of a measure-

ment in relation to conventional true values in
order to gain international confidence in and
acceptance of

e measurement and test results,

e manufacturers’ specifications,

o the statement of values in standards, (norms as well
as laws and regulations).

being a prerequisite for

trade free from technical barriers,

international agreements and treaties,
subcontracting and delivery of parts by industries,
efficient use of raw materials,

improvement in health care, environment and
safety,

e technical and scientific developments,

e quality assurance, accreditation and certification of
products and systems”’.

The EA is the successor organisation of the EAL
(European co-operation for accreditation of labora-
tories) which was preceded by the WECC. It is the
umbrella organisation for the national European cali-
bration services, which was also joined by a number of
non-European services, and guarantees mutual metro-
logical recognition. Information about the EA and the
documents published by it can be obtained in the
Internet under http//:www.european-accreditation.com.
An overview of the tasks and publications of the
Deutscher Kalibrierdienst (DKD—German Calibra-
tion Service) which is a member of the EA and
makes German translations of almost all EA
documents available which can be accessed under
http//:www.dkd.ptb.de.

The representation of measurement results in rela-
tion to values recognised as conventionally true
requires a hierarchy of traceability as schematically
shown in Fig. 1. It should be kept in mind that

international laboratory BIPM
(meter convention)

physical experimental
primary standards

l

national
primary laboratory

v
maintenanceé
national reference standards
calibration service secondary

- l -

transfer
industrial industrial standards
calibration laboratory working

|
v

measuring instruments,
special customer standardg

industrial workshop

Fig. 1. Schematic representation of the traceability chain (trace-
ability hierarchy) with the definition, realisation/transfer and
application levels.

according to the VIM “conventional true values”
are understood to be “‘values recognised as correct”,
i.e. values which are consistent with the generally
accepted scientific knowledge and state no contra-
diction to these.

The measurement uncertainty as defined in an inter-
nationally recognised form, is the measure by which the
confidence in the result of the comparisons is expressed
at each level of the traceability chain. Confidence in the
traceability is based on a realistic statement of the
measurement uncertainty. With the publication of a
harmonized GUM, the uncertainty definition generally
accepted today was adopted; it roughly reads ((VIM
3.9),(GUM 2.2.3),(DIN 1319-1 3.6)):

Uncertainty of measurement is a parameter, asso-
ciated with the result of measurement, that (based
on the available knowledge about the measure-
ment) characterises the dispersion of the values
that could reasonably be attributed to the mea-
surand.

3. The measurement

As mentioned in the introduction, it is the aim and
objective of a measurement from the operational point
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Fig. 2. Schematic representation of the relation between the
measurand Y and the quantities relevant to the measurement X,
Xo,..., Xn.

of view to attribute a value to the measurand Y, and this
by comparing the measurand with a known quantity or
with a quantity formed by other quantities X1, X5, ...,
Xy which are easy to determine. For this, a model of
evaluation is needed which expresses this assignment
of a value to the measurand in mathematical terms:

Y =f(X1,Xa, ..., Xy) 3.1)

For illustration of the physical relations only, in most
cases a graphical representation as schematically
shown in Fig. 2 is used.

Taking the calibration of a mercury-in-glass ther-
mometer at 20 °C as an example the measuring task is
to determine the error or systematic deviation of the
indication. According to the VIM, it is the difference
between the temperature value the thermometer indi-
cates and the temperature value the thermometer
should indicate under the conditions given. The mea-
surement principle underlying this calibration consists
in the determination of the temperature indication of
the object to be calibrated in a medium whose tem-
perature has a known, uniform value. The method of
measurement is a comparison of two temperatures.
The measurement procedure uses the comparison of
the indications of two mercury-in-glass thermometers
(object to be calibrated and standard) in a stirred
water-bath as schematically shown in Fig. 3.

A way frequently used to establish the model of
evaluation starts from the cause-effect relations rea-
lised in the measurement procedure. The temperature
of the water-bath is so adjusted that the desired
indication results on the object to be calibrated. The
correct temperature is then inferred from the indica-
tion on the standard thermometer. Fig. 4 graphically
shows the relations. The water-bath acts as the cause
SRC which produces the indication both in the mea-
suring branch (index X) and in the reference branch
(index S). The statement includes also the relevant

e, e
1510 5[[0
£l 410
fiNDx 4iNDs
N 3li0 3lg y4
\ 2|0 20/
B s

— i i~

Fig. 3. Schematic representation of the measurement set-up used
for the calibration of a mercury-in-glass thermometer.

quantities effective in the various points (temperatures
and temperature deviations).
From the graph, the equations

Atx = tinpx — tx — OtiND X,
tx = ts — OIBATH,
s = finps — Ofinps — Afinps — fsp (3.2)

cause-effect-propagation
-

SRC

uncertainty analysis

cause-effect-propagation

Fig. 4. Cause-effect propagation in the calibration of a mercury-in-
glass thermometer (index X) by comparison with a standard
thermometer (index S): fivp x: temperature indicated by sample,
dtinp x: deviation due to the finite resolution of the indication of
the sample, tx: temperature in the bath at the location of the
sample, drgary: difference between the temperature at the location
of the sample and the temperature at the location of the working
standard, fivp s: temperature indicated by the working standard,
dtinp s: deviation due to the finite resolution of the indication of the
working standard, Afinp s: error of indication of the working
standard at the time of its calibration, dtgp: deviation of the error of
indication of the working standard from the value at the time of its
calibration (drift), ¢s: temperature in the bath at the location of the
working standard.
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can be read immediately that form the model of
evaluation. After insertion of the second and third
equations into the first equation, the model assumes
the form of Eq. (3.1).

4. The naive view—uncertainty intervals

The naive approach to the measurement uncertainty
regards the whole range of compatible values as an
uncertainty interval without weighting them:

Ix = [x_;x.] 4.1)

(x4 and x_ are the upper and lower limits of the
uncertainty interval). Fig. 5 illustrates this approach.

In this approach, the arithmetic mean of the two
limits

X=3(x; +x) 4.2)

is considered to be the measurement value, and the
half-width of the uncertainty interval

Aa=1(xy —x) 4.3)

is regarded as the measure of the uncertainty.

This approach to measurement uncertainty is
useful for measurements in which only one influence
quantity or two occur. As the uncertainty in the value
of the measurand is due to the uncertainty in the
values of the influence quantities, the limits to the
result quantity are to be calculated from the limits to
the input quantities using Eq. (3.1). The formulae for
the arithmetic operations of addition, subtraction,
multiplication and division first appear to be rather

simple:
le —‘—Ix2 (e 4+ x2) 3 (1 +x2),]
= [(x1 —x2) 5 (x1 —x2) ]
X1 X 1X2 [()Cl X )Cz)_; (x1 X x2)+] (44)

IXZ X2 77 X2 +
If one enters into the details of the calculations,
however, equations are obtained which contain con-

fusing exchanges of values and require a lot of case
analyses:

4 = max(X; Xy, X143 X2, X|_Xoy, X4 X2 )

(X1 X1y X1— X1

min N

X2— Xo— Xp4 X2y

X1 Xl— X1+ X1—- X1+

- =max{—,—,—,—

X2) Xo- Xoo Xoy Xoy
Even if only a small number of influence quantities
are involved, the calculations get rather complex and,
e.g. for trigonometric functions they cannot be carried
out without additional decision rules and distinction of
cases. The naive approach to the measurement uncer-
tainty can therefore wisely be used only for certain

coarse classifications. It is not suitable as a basis for an
versatile measure of quality.

non-consistent consistent non-consistent
values values values
I I -
| | |
X
best
estimate
X x,
lower upper
limit limit

Fig. 5. Characteristics of an uncertainty interval.
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In one point, the naive approach reveals, however,
the basic nature of incomplete knowledge: the evi-
dence of conformity of a value with a specification.
When the uncertainty interval is taken into account as
it should, the position of the measured attribute with
respect to a specified limit cannot in any case be
unambiguously inferred from a measurement result.
Fig. 6 schematically shows the situation for various
measurement values at an uncertainty interval of equal
width. If the whole uncertainty interval is situated on
the left of the boundary value, the value of the attribute
will certainly also lie on this side. If, the other way
round, the whole uncertainty interval lies on the right
side, the value of the attribute will certainly also lie
there.

But if the uncertainty interval is so situated that it
encompasses the boundary value, a well-defined state-
ment cannot be made. There is rather a risk that the
measurement value and the criterion lie on different
sides of the boundary value. The knowledge of the
measurement result in this case does not allow a safe
conclusion to be drawn; the measurement value lies in
the so-called indifference or uncertainty range.

specification

lower
specification limit

limit
value lies

on the right

T
.
®

indifferent
R o]
: Pl i on the left
—a—i P
o
left indifference  right
range

Fig. 6. Schematic representation of the statements which can be
made on the basis of the knowledge of the measurement value x
and the uncertainty interval as regards the position of a attribute
with reference to a limiting value.

Fig. 7 shows the effects these considerations have
on conformity statements for which compliance with a
specification is to be checked. Clear conformance or
non-conformance will be given only if the measurement

upper
specification limit

specification range

increasing Y E
uncertainty of
measurement

lower limit of upper limit of

conformance conformance

—_— B ~—
range of non- range of range of non-
conrormance conformance conrtormance
i —
uncertainty uncertainty
area area

result of measurement

Fig. 7. Ranges of conformance and non-conformance for a measured criterion with a specification and ranges of the uncertainty.
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value lies in the corresponding regions. Values in the
uncertainty range, however, must be either assessed
more specifically or determined more precisely. On
this basis, the standard DIN EN ISO 14253—1 develops
rules assisting manufacturers and buyers in proving
conformance or non-conformance, respectively [12].
They require that for reasons of unambiguous state-
ments the partner wanting to prove conformance
or non-conformance should take into account the
uncertainty interval. The consequences of these
rules were discussed in more detail within the scope
of the accompanying program of MICROTECH 1996
[13].

The limits of the naive approach appear where
precise measurements with many influence quantities
are concerned. In these cases Eq. (4.4) furnish for the
measurand an uncertainty interval whose half-width
usually equals the sum of the half-widths of the
uncertainty intervals of the individual influence quan-
tities. The increase in precision, which is reflected by
the increased number of influence quantities, does not
result in a substantial reduction of the uncertainty
interval. The refined analysis does not lead to a
substantial curtailment of the uncertainty range. This
conclusion is in contradiction to the general view that
a more detailed analysis of a measurement should also
furnish a result with a smaller uncertainty.

5. The GUM view: standard uncertainty of
measurement

Quite another approach to the problem of measure-
ment uncertainty is taken in the GUM. The statement
of the unweighted uncertainty interval is too coarse. It
does not take into account that not every value com-
patible with the conditions of measurement has the
same chance of realisation. It is frequently known
from specific experience or fundamental considera-
tions that values close to the centre of the uncertainty
interval are more likely than values close to the
boundaries. There are also cases in which this is the
other way around. The GUM is based on a description
of the more or less complete knowledge of the possible
values of relevant quantities by distributions or more
exactly probability distributions. From this exact con-
clusions are drawn using the knowledge of the phy-
sical relations realised or to be realised in the

measurement and which are mostly quite exactly
known. It thus follows the Bayesian approach to
non-complete knowledge and the inference that can
be made from this. The logical basis of this approach
has been presented, i.e. by Spencer [14], Cox [15] and
Tribus [16]. It has its origins in the investigations of
the Swiss mathematician Jakob Bernoulli (1654-
1705) that were the starting point of the development
of theory of probabilities already 50 years before the
famous paper of referent Thomas Bayes (1702-1761).
Bernoulli wrote the book “Ars conjectandi’” (The art
of conjecture) which was published after his death in
1713. Bayes again dealt in greater detail with this
problem in his “Essay towards Solving a Problem in
the Doctrine of Chance”. The appraisal of more or less
complete knowledge by probability distributions is the
object of the Bayesian statistics (see [16]).

Starting from the principle of maximum entropy
which is well-known in the theory of probabilities and
in statistics [18], Weise and Woger [17] showed that
the more or less complete knowledge of a quantity X
can always be described by a probability distribution
of the values compatible with the knowledge. The best
estimate derived from the distribution is the expecta-
tion of the distribution, and the measurement uncer-
tainty associated with it is its standard deviation. It is
obtained as the positive square root from the variance:

x = E[X] (5.1
u(x) = /Var[X] (5.2)

The measurement uncertainty thus determined is
called standard measurement uncertainty because
on the one hand it is the standard deviation of the
distribution and on the other hand it is such a funda-
mental description of the mean width of the distribu-
tion that it appears in many formulae.

The distributions which are needed to represent the
knowledge of the input data in the evaluation are
relatively simple. Mostly one of the following five
cases is given:

1. It is known only that the value of the quantity X
lies somewhere between a lower limit ¢_ and an
upper limit a,. As this knowledge does not give
preference to a value between the limits, a
rectangular distribution of the half-width

Aa=a; —a_ (5.3a)
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with the expectation

EX]=1(ay +a-) (5.3b)
and the variance

Var[X] = 1 (Aa)’. (5.3¢)

is obtained.
2. It is known that the quantity X is the sum or the
difference of two quantities X; and X,

X=X +X (5.4)

for which it is also known that their values are
rectangular distributed with equal half-width

Aa; = Aay = Ad, (5.5)

and that there is no correlation in the knowledge
about their variability. The convolution of the two
rectangular distributions yields a triangular dis-
tribution of half-width (sum of the half-widths of
the two rectangular distributions) (Fig. 8)

Aa = Aa; + Aa, = 2Ad (5.6)
with the expectation
E[X] = E[X)] £ E[X,] (5.7a)
and the variance

2
Var[X] = Var[X,] + Var[X,] = (Ag) (5.7b)

3. It is known that the quantity X is the sum or the
difference of two quantities X; and X,

X=X +X, (5.8)

2.5

2.0

& 1.5
3

1.0

0.5

-0 -075 -050 -025 0.0 025 050 075 1.0

AIQA) —»

Fig. 8. Rectangular distribution of half-width Aa for the deviations
from the expectation value of the quantity X.

20 F A
15 F

1.0 -0.75 -0.50 -0.25 0.0 0.25 050 0.75 1.0
Adl(2M) —>

Fig. 9. Triangular distribution of the half-width Aa for the
deviations from the expectation value of the quantity X.

and it is also known that their values are
rectangular distributed but with different half-
widths, and that there is no correlation in the
knowledge about their variability. In this case, the
convolution of the two rectangular distributions
yields a trapezoidal distribution with half-width

Aa = Aa; + Aay (5.9

equal to the sum of the half-widths of the two
rectangular distributions and a form parameter

o |Aa1 — Aa2|

B B Aa; + Aay

(5.10)

which equals the ratio of the difference between
the half-widths of the two rectangular distributions
and the sum of the half-widths. It also has the
expectation value (Fig. 9):

E[X] = E[Xi] £ E[X] (5.11a)

but the variance:

Var[X] = Var[X,] + Var[X;] = (Ag)z (14 4.
(5.11b)

The rectangular and the triangular distribution are
special cases of trapezoidal distributions with the
form parameter f=1 and f=0, respectively
(Fig. 10).

. It is known that the quantity X dependent on the

sine of the phase @:

X = Aa - sin(®), (5.12)
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Fig. 10. Trapezoidal distributions of half-width Aa for the
deviations from the expectation value of the quantity X for
different form parameters f.

whose value is not known at all. It thus is known
only that the values are rectangular distributed in
the interval —m...+n. As a result, a U-shaped
distribution (Fig. 11) of half-width Aa with the
expectation:

EX]=0 (5.13a)
and the variance:
Var[X] = 1 (Ad?) (5.13b)

is obtained.

5. For the quantity X the best estimate p and the
standard deviation ¢ attributed to it are known. A
bell-type normal distribution with the expectation:

EX|=u (5.14a)

0.0- kel kel A, Ak,
-1.0 -0.75 .0.50 0,25 0.0 025 050 075 1.0

Av(2Aa) —>

Fig. 11. U-shaped distribution of half-width Aa for the deviations
from the expectation value of the quantity X.

1,0
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/ \
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Axl(20)

Cux))p —»

—

Fig. 12. Bell-shaped normal distribution of the standard deviation
o for the deviations from the expectation value of the quantity X.

and the variance:

Var[X] = ¢° (5.14b)

results.

The latter case is encountered especially in the
evaluation of repeated observations of a quan-
tity—such as the indication of a measuring
instrument—by statistical methods. In this case
the best estimate is identified with the arithmetic
mean and the associated standard measurement
uncertainty with the experimental standard devia-
tion of a single observation (type A method of
evaluation).

6. The method of the GUM

This section gives an overview only how a straight
forward method of evaluating measurement uncertain-
ties is derived from the concept of the GUM and stated
in the last section. It largely follows the description
[19] and is given here for reasons of completness only.

The data relevant to the measurement and the
measurement value to be assigned to the measurand
are linked by the model of evaluation Eq. (3.1).
According to the GUM approach, the expectation
values of the distributions

X1 :E[Xl],xZZE[XQ],...7XN=E[XN] (61)

are the best estimates of the input quantities for the
evaluation from which the searched value y of the result
quantity of the evaluation is obtained by insertion into
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the model of evaluation:

y:f(x17-x27"-7xN)- (62)

The standard uncertainties of measurement to be
attributed to the input values are obtained as square
roots from the variances of the distributions:

u(x)) = /Var[X],u(x;) = /Var[Xa],...,
M(XN) = Var[XN] (63)
The standard measurement uncertainty which is to be

attributed to the measurement result is obtained in two
steps: first the uncertainty contributions

ur(y) = ciu(xi),ux(y) = cou(x2), ...,
un(y) = eyu(xy) (6.4)
stemming from the individual influence quantities,

are to be calculated with the aid of the sensitivity
coefficient

_ o
09X,

_o
T 0X,

_a
Xy X=x

(6.5)

C1 (6 .y CN

) PR
X=x X=x

to be derived from the model of evaluation. Subse-
quently, the searched standard measurement uncer-
tainty is obtained as square root from the quadratic
sum of all uncertainty contributions

w(y) = | > wiy)r(xi,5)u(y) (6.6)
i=1

in which the correlation coefficients of the input
quantities occur. They are defined as the ratio:

r(xi, xg) = CovlXi, X 6.7
() V/Var[X;] x /Var[X]] 7

with Cov[X;, X] being the covariance of the input
quantities X; and X determined from the distributions.
The correlation coefficients are the measure in which
potential dependencies of the knowledge of the input
quantities for the evaluation are expressed. Their value
lies in the range:

—1 < r(x,x) <1 (6.8)

In the most frequent case that the knowledge of the
input quantities can be considered non-correlated, the

correlation coefficients have the values:

|0, when i#j
r(-xia'xj> - { 1, when l:] (69)

Eq. (6.6) then changes into the well-known equation:

u(y) = \J30) +B0) + .+ ) (6.10)

which is used in most cases, i.e. the standard measure-
ment uncertainty attributed to the measurement result
is obtained as square root from the sum of the squares
of the uncertainty contributions.

The values and standard uncertainties of measure-
ment for the input quantities are determined according
to the knowledge available by two different methods.
Evaluation method B directly uses procedures of the
theory of probabilities. It is applied when a statistical
evaluation cannot be made but profound metrological
knowledge allowing the distribution of the values of an
input quantity to be estimated is available. Knowledge
falling into this category are:

e data from previous measurements,

e experience or general knowledge of the behaviour
and the characteristics of measuring instruments or
materials,

e manufacturer’s specifications for measuring instru-
ments and standards,

e statements in calibration certificates and other cer-
tificates,

e statements of values in manuals

o ctc.

An appropriate realisation and use of the infor-
mation available naturally will be possible only if
sufficient experience and general knowledge of the
technical area in question is available. The expert
estimate is a skill which is acquired in the metrological
practice. A well-founded, realistic estimate of the
measuring situation can furnish values for the standard
measurement uncertainty which are not inferior to
those obtained by type A evaluation. This will be true
especially if type A evaluation can be carried out only
for a very small number of observations or on principle
cannot be used. The latter is the case, e.g. for (digi-
tally) indicating measuring instruments. Here, a resi-
dual ignorance of the conventional true value due to
the finite scale interval will persist even if repeated
observations do not reveal fluctuations.
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For the application a distinction is made between
the two following cases:

1. If only an individual value for the quantity X; is
known such as, e.g. an individual measurement
value, a value resulting from a former measure-
ment, a reference value from literature or a cor-
rection, this value is to be used as best estimate x;.
If the standard measurement uncertainty u(x;) is
also given, this is to be used. Otherwise, it is to be
determined from unambiguous knowledge of
potential deviations from the value x;. If data of
this kind are not available, a suitable value for the
standard measurement uncertainty must be em-
pirically estimated.

2. If for the quantity X; a distribution of the values
can be stated from theoretical or empirical
knowledge, the expectation value derived from it
is to be used as best estimate x; and the square root
of the variance as the standard uncertainty u(x;)
assigned to it. If for the potential values only upper
and lower limits a, and a_ can be estimated (e.g.
manufacturer’s specification for a measuring
instrument, a range of variability or vagueness of
temperature, a rounding or truncation error due to
data pre-processing), this knowledge corresponds
to the rectangular distribution stated in Section 5.

The type A method of evaluation uses statistical
procedures to obtain the best estimate and the stan-
dard measurement uncertainty. It will be used if one
or several input quantities are observed in the mea-
surement several times under unchanged conditions
and different values are determined. In this case, the
distribution of the values and the uncertainty about the
value of the quantity are obvious. If a number of inde-
pendent observations are carried out under unchanged
conditions for only one of the input quantities and if the
measurement procedure has a sufficient resolution, the
values observed generally show a scatter. This is due to
the fact that the conditions of the measurement as
regards the resolution are not kept sufficiently constant.
If Q is the input quantity repeatedly observed and if
n statistically independent observations (n>1) were
carried out, the best estimate is the arithmetic mean
of the observed values ¢; G =1, 2,...,n)

1 n
7=-S "¢ 6.11
g n;q, (6.11)

whereas the standard measurement uncertainty is
determined by one of the procedures that are discussed
below.

Strictly speaking, a frequency distribution is seen in
the observations. From this the properties of the
process leading to the scatter must be derived. This
in turn is an estimate of the parameters of the under-
lying probability distribution. These estimates are to
be distinguished from the estimates on which the
procedure of the GUM is based. The additional esti-
mates to be made for repeated observations are neces-
sary to draw conclusions from the values observed for
the background process. When this step is made and
the knowledge of the values observed is converted via
statistical evaluation into a best estimate and the
standard measurement uncertainty associated to it,
the procedure of the GUM is used again.

1. The variance of the distribution underlying the
observations is estimated from the empirical
variance s°(g) of the observed values g;. It is
given by

2 1 ¢ _\2
$(q) =— ;(q, 7) (6.12)
Its (positive) square root is the empirical standard
deviation of the individual observation. It char-
acterises the width of the distribution of the
observations. The estimate for the variance needed
in the uncertainty analysis is the empirical
variance of the mean value. The standard mea-
surement uncertainty is its (positive) square root.
It is referred to as empirical standard deviation of
the mean value:

u@%=&@ (6.13)

If the number n of the repeated observations is
small (n<10), the statistical reliability of the value
of the empirical standard deviation of the mean
value must be taken into account. If the number n of
the observations cannot be increased, other statis-
tical methods such as the method of the effective
degrees of freedom must be included in the
determination of the measurement uncertainty [7].
2. If for a measurement which is carried out
repeatedly under the same conditions and in a
statistically controlled way a combined variance
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sg of the individual observation is available, this
characterises the statistical influences of the
respective measurement procedure. Its value will
therefore generally better describe the required
variance than a value obtained from a small
number of observations. In this case, one will
continue to assign to the quantity Q the arithmetic
mean of the smaller number n of observations as
the best estimate but define the standard measure-
ment uncertainty by the equation:

P (6.14)

Here s; is the combined standard deviation from
series of measurements carried out previously
under the same conditions and »’ the total number
of combined observations.

7. The industrial view: expanded measurement
uncertainty

As briefly discussed in Section 4, it is a common
task of business to compare a measurement value with
boundary values given in specifications or by regula-
tions. When decisions on the conformity are made, it is
to be taken into account whether the value is reliable or
only just lies within the boundaries. According to the
GUM approach, the standard measurement uncer-
tainty is the universal parameter for characterising
the quality of a measurement or of the measurement
value but it is not suitable for proving the conformity.
This proof requires not only a quality characteristic
but also a range encompassing a large fraction of the
values which are compatible with the conditions of
measurement and can be regarded as a value of the
measurand. A range of this kind is necessary when
health or safety aspects are involved. For this reason,
in industry and trade, the expanded measurement
uncertainty which is derived from the standard mea-
surement uncertainty is used. It is defined as the
product

U = kp - u(y) (7.1)

with the coverage factor kp. The coverage factor is
chosen such that the uncertainty interval

Iy =[y—U;y+U] (7.2)

covers the desired high fraction of values. The covered
fraction is called coverage probability P. As with the
naive approach, a range of values is available which
can be used for comparisons. The determination of the
expanded measurement uncertainty is, however, car-
ried out via the determination of the standard mea-
surement uncertainty and thus relies on a procedure
of the theory of probabilities. On the one hand, this
allows the aspects of frequency statistics and evalua-
tion probability to be consistently reconciled with one
another, and on the other hand, any refinement of the
considerations leads to the measurement uncertainty
being reduced as the influences are split into non-
correlated components due to the statistical super-
position.

In their calibrations, the calibration services form-
ing the EA—among them the DKD—use the coverage
factor for the coverage probability P = 0.95. Though
when the GUM method is used the distribution of the
values of the measurand Y is not determined, the
coverage factor can be determined in more precise
measurements on the basis of the central limiting
value theorem. Generally, in the uncertainty analysis
for these measurand several essential influence quan-
tities with uncertainty contributions of the same order
of magnitude occur. In these cases the distribution
resulting for the measured is in good approximation
a bell-shaped normal distribution (Fig. 12). For this
the standard coverage factor kp9s=2 is obtained. An
expansion of the procedure to many cases in which
the stated condition does not apply—if, e.g. only one
or two dominant uncertainty contributions are made
out—is shown by the examples of EA-4/02, [9].

The complete measurement result consists of the
determined measurement result y and the expanded
measurement uncertainty calculated according to
Eq. (7.1). In some cases, it may be reasonable to
use the relative standard measurement uncertainty

U
ly|

related to the measurement value. In practice one will
find relative uncertainty statements related to quite
different things: measurement values, nominal values,
indicated values etc. To give an unambiguous state-
ment the value or quantity of reference to which the
uncertainty statement relates should always made
clear. This avoids also an incorrectness often found

(7.3)
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in practice: the use of the adjective ‘absolute’ to
characterise the normal uncertainty statement not
related to any value. Since the uncertainty evaluation
is based on subjective judgements this is nonsense
per se.

In the following, by the example of the thermometer
calibration from Section 3, the three forms are given
in which the complete measurement result can be
stated (measurement result and expanded measure-
ment uncertainty with the same unit, measurement
result and expanded measurement uncertainty with
different units or measurement result and relative
expanded measurement uncertainty). Together with
the complete result the conditions are to be stated
under which the measurement result has been
obtained.

At the indication of 20 °C, the error of indication of
the calibrated mercury-in-glass thermometer is

(=0.14 +0.1)°C, — 0.14°C £ 100 mK,
or —0.14°C(1£0.7)

The measurement uncertainty stated is the
expanded uncertainty (relative expanded uncertainty
for the third form) which is obtained from the standard
uncertainty by multiplication by the coverage factor
k=2. For a normal case it corresponds to a coverage
probability of 95%. The standard measurement uncer-
tainty has been determined in accordance with the
Guideline EA-4/02.

Two points must be observed when the values are
stated, [7]: On the one hand, the measurement uncer-
tainty is based on a probability statement. Therefore,
two significant digits should be stated at most.
Probabilities can generally be stated only with an
accuracy of 3-4%. Statistical statements such as,
e.g. the probability for the occurrence of one among
several events can be given with an accuracy of 1%
only in most favourable circumstances. To find
out, e.g. with the accuracy stated whether a given
dice behaves ideally, i.e. its sides with the different
numbers of spots face upwards with the same proba-
bility of 1/6, the dice would have to be thrown more
than 10,000 times.

If the uncertainty calculations yield more than two
significant digits, mathematical rounding has to be
made to the suitable number of digits. If the change
for the rounding exceeds 5%, however, rounding up

of the value should be used. In the sense of the
uncertainty analysis, the number of the stated digits
of the measurement result is to be limited to the
least significant digits of the standard measurement
uncertainty.

8. Uncertainty analysis—how?

The GUM method described in Section 6 leads to a
procedure which is based on the evaluation of the
knowledge of the influence quantities of a measure-
ment and the applications of Eq. (6.2) and Eq. (6.6).
The result is a basic structure for the uncertainty
analysis which is given in the standard DIN 1319-3
(Section 4.2, [2]) and reads more or less as follows:

1. setting-up of an model of evaluation relating the
measurand of interest—the output quantity of the
evaluation—to the other quantities involved in the
measurement—the input quantities of the evalua-
tion;

2. preparation of the given measurement values and
other available data from the particular knowledge
of the measurement and its conditions;

3. calculation of the measurement result and the
measurement uncertainty to be attributed to it
from the prepared data by means of the model of
evaluation;

4. statement of the complete measurement result for
the measurand, consisting of the measurement
value and the measurement uncertainty attributed.

The discussions about the collections of examples
of the EA [8,9], have shown that these points are to be
specified by a more detailed subdivision.

1. setting-up of an model of evaluation:

o title characterising the measurement;

o brief description of the measurement procedure
with reference to the measurement principle and
the sequence of the measurement;

o model of evaluation as a mathematical relation
with the aid of which the value of the measurand
is determined from the values of the other
quantities involved in the measurement. It can
consist of several equations describing sub-mod-
els. This form of representation is favourable for
ample models as it offers increased clearness.
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A model can consist of a calculation algorithm or
instructions for action in the form of a descriptive
text. What is essential is that the model of
evaluation describes the relation between the
output quantity and the input quantities for the
evaluation with which the values of the output
quantity can be unambiguously determined from
the values of the input quantities;

o list of the symbols and quantities used in the
model of evaluation with a brief definition or
explanation of their meaning.

. preparation of the given measurement values and

other data required for evaluation:
representation of the knowledge of the input

quantity of the evaluation such as

o statement of sources (calibration -certificate,
manufacturer’s certificate and the like) from
which the values have been taken;

o estimates of the ranges of variation of the poten-
tial deviations whose values are not exactly
known;

o table of observed values;

o statement of standard uncertainties of measure-
ment derived. Here, the list form has proved to be
suitable as it can be adjusted to different require-
ments and metrological situations. For each
quantity occurring in the model of evaluation a
separate section should be provided. For the type
A evaluations, not only the list of values observed
but also the characteristics of the statistical eva-
luation;

o arithmetic mean;

o experimental standard deviation of individual
observation; and

o experimental standard deviation of arithmetic
mean should be stated.

. calculation of the measurement result and of the

standard measurement uncertainty to be attributed
to it, from the prepared data:

This part which is to be considered the
uncertainty budget in the narrow sense is advan-
tageously realised in the tabular form. It is
recommended to extend the table given in EA-4/
02 (DKD-3) to the columns
o quantity,

o value,
o associated standard measurement uncertainty,
o effective degrees of freedom,

o form of distribution,

o sensitivity coefficient,

o uncertainty contribution.

4. statement of the complete measurement result:

statement of the conditions of measurement

essential to the definition of the measurand and of

the measurement result, together with the asso-

ciated expanded measurement uncertainty and the

coverage factor chosen for its determination, e.g.

in the form

measurement result + expanded measurement
uncertainty (k = coverage factor).

The expanded measurement uncertainty is
calculated here as the half-width of an interval
of values covering the (great) fraction of 95% of
the values which, under the conditions of the
measurement, can reasonably be attributed to the
measurand.

By their nature, these instructions apply only to a
detailed uncertainty analysis which certainly need not
be made for each routine measurement. They rather
apply to the general description of the measurement
procedure and should be contained in the quality
manual or an equivalent record transparently docu-
menting the measurement procedure. The calculation
steps to be made under (3) and (4) are a necessary
result of the GUM method. They can be easily trans-
lated into a computer program. This also applies to the
part of point (2) dealing with the determination of the
value, and of the standard uncertainty to be attributed
to it, of the individual input quantities for the evalua-
tion. As soon as the distribution of the values and of
their parameters is determined, the calculations are
established. The translation into professional support
by the computer is shown in Fig. 13 by the example of
the calibration of a mercury-in-glass thermometer
from Section 3, [19] (Fig. 13).

The translation into a computer program provides
human resources for other tasks, i.e. for those parts of
the uncertainty analysis for which suitable support by
the computer is not yet known: the setting-up of the
model of evaluation and the preparation of the data, in
particular the evaluation of the knowledge. The eva-
luation of the conditions of measurement is closely
linked with the respective measurement procedure.
As it generally plays an essential part in the prepara-
tion of the data, it can be made only on the site by the
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Fig. 13. Screen views “Model equation” and ‘“Measurement uncertainty budget” of the GUM workbench program package for the calibration

of a mercury-in-glass thermometer, example discussed in Section 3.

expert with his metrological experience. Apart from
the well-known checklists, general support is scarcely
possible here. This is not so for the setting-up of the
model of evaluation. Each measurement is based on a
specific realisation and thus an individual model of
evaluation but there are typical partial tasks in almost
all measurement procedures. In most cases they differ
only by the quantities involved and are to be imple-
mented in the individual models in a similar way. This
may be demonstrated by the example of the calibration
of a mercury-in-glass thermometer from Section 3. It
is a special example of a class of problems: the
calibration of an indicating instrument by use of
another indicating instrument that has be calibrated
before and serves as working standard in the actual
calibration. Calibration examples of this type realising
the same cause-effect structure may easily be found in

many other fields of metrology such as dimensional,
electrical or optical metrology.
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