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Abstract

Sensitivity/uncertainty analyses are necessary to determine where to allocate resources for improved predictions in support

of our nation’s nuclear safety mission. Yet, sensitivity/uncertainty analyses are not commonly performed on complex

combustion models because the calculations are time consuming, CPU intensive, nontrivial exercises that can lead to

deceptive results. To illustrate these ideas, a variety of sensitivity/uncertainty analyses were used to determine the uncertainty

associated with thermal decomposition of polyurethane foam exposed to high radiative flux boundary conditions. The

polyurethane used in this study is a rigid closed-cell foam used as an encapsulant. The response variable was chosen as the

steady-state decomposition front velocity. Four different analyses are presented, including (1) an analytical mean value (MV)

analysis, (2) a linear surrogate response surface (LIN) using a constrained latin hypercube sampling (LHS) technique, (3) a

quadratic surrogate response surface (QUAD) using LHS, and (4) a direct LHS (DLHS) analysis using the full grid and time

step resolved finite element model. To minimize the numerical noise, 50 mm elements and approximately 1 ms time steps were

required to obtain stable uncertainty results. The complex, finite element foam decomposition model used in this study has 25

input parameters that include chemistry, polymer structure, and thermophysical properties. The surrogate response models

(LIN and QUAD) are shown to give acceptable values of the mean and standard deviation when compared to the fully

converged DLHS model. # 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fig. 1A shows a comparison between an X-ray and

a 2D finite element simulation of an 8.8 cm diameter

right circular cylinder of polyurethane foam encapsu-

lating a solid 3.8 cm diameter by 6.4 cm long right

circular cylinder of 304 stainless steel. The top of the

foam has been exposed to a radiation heat source. The

X-ray and model show exceptional agreement when

comparing the shape of the decomposition front after a

10 min exposure to an incident flux of 25 W/cm2. The

2D serial simulation required 11 days and 16 h of CPU

time on a 400 MHz SUN-Ultra 2 using 11,209 elements.

Even with massively parallel computers, an uncertainty

analysis for this CPU-intensive model is difficult. A

simple representation of the complex model is need

ed for efficient sensitivity analysis. Fig. 1B shows a

single row of elements with a radiation boundary

condition. This simple 1D model will be used in lieu

of the complex 2D model to do sensitivity/uncertainty

analysis. Gartling et al. [1], Chu et al. [2], and Hobbs

et al. [3] give details about the finite element model,

decomposition experiments, and decomposition model,

respectively.

2. Numerical issues

The response variable for the 1D analysis was

chosen as the steady-state decomposition front velocity,
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calculated as the derivative of the decomposition front

location versus the elapsed time for element death.

Fig. 2A shows the front location calculated using

25 mm elements exposed to a 1000 8C radiative tem-

perature. The decomposition front is assumed to be

located at the centroid of the element that is exposed to

the radiation boundary. Elements are removed from

the computational domain when the condensed mass

fraction drops below 1%.

Fig. 2B shows decomposition front velocities cal-

culated using various element sizes. The average time

steps, decomposition front velocities, and CPU times

for the solutions shown in Fig. 2 are given in Table 1.

The larger time steps (large Dtave) are based on the

Gartling et al. [1] auto time stepping scheme with an

integration convergence tolerance of 10�4. The solu-

tions obtained with smaller time steps (small Dtave) are

based on the same convergence tolerance but are

constrained to satisfy the following derivative smooth-

ness criterion:

Dt � 0:003
Dx

V
(1)

where Dt, Dx, and V represent the time step, element

size, and the decomposition front velocity, respec-

tively. In Fig. 2B, the small time step solutions are

smooth (solid lines, 0.5 and 1 mm) compared to the

noisy solutions obtained with larger time steps. The

small time step curves for 25 and 50 mm element

solutions overlay each other, so the less costly

50 mm element using fixed time step results are effec-

tively converged. The noisy velocities in Fig. 2B

resulted from taking excessively large time steps for

the instantaneous derivative calculation. Rather than

imposing the time step constraint in Eq. (1), the

integration convergence tolerance could have been

decreased with the same expense of increased CPU

cost.

The numerical noise is related to the discrete

removal of elements from the computational domain.

Fig. 3 shows the temperature gradient in element no.

20 for a 650 8C radiation temperature using 0.6 mm

elements. The first 20 elements are also shown in Fig. 3

centered about the time of ‘‘element death’’. The noise

Fig. 1. (A) Complex, (B) simple model of foam decomposition.

Fig. 2. Decomposition front (A) location, (B) velocity.

Table 1

Time step and CPU time

Grid (mm) Large Dtave (auto) Small Dtave (Eq. (1))

25 Dtave ¼ 0.066 s, Vave ¼ 1.12 cm/min, CPU ¼ 13 min Dtave ¼ 0.00041 s, Vave ¼ 1.10 cm/min, CPU ¼ 5 h

50 Dtave ¼ 0.076 s, Vave ¼ 1.11 cm/min, CPU ¼ 6 min Dtave ¼ 0.00082 s, Vave ¼ 1.09 cm/min, CPU ¼ 1 h

500 Dtave ¼ 0.14 s, Vave ¼ 0.94 cm/min, CPU ¼ 70 s Dtave ¼ 0.0095 s, Vave ¼ 0.91 cm/min, CPU ¼ 110 s

1000 Dtave ¼ 0.202 s, Vave ¼ 0.77 cm/min, CPU ¼ 120 s Dtave ¼ 0.023 s, Vave ¼ 0.76 cm/min, CPU ¼ 130 s
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is associated with the death of neighboring elements

and is likely the source of the sensitivity to the

computational time step.

The remainder of this paper will focus on determi-

nation of the standard deviation of the decomposition

front velocity and ranking the importance of the 25

model input parameters using the analytical mean

value (MV), linear surrogate response surface

(LIN), quadratic surrogate response surface (QUAD),

and direct latin hypercube sampling (DLHS) models.

Fully grid and time step converged solutions using

50 mm elements and approximately 1 ms time steps

were used in the MV and DLHS analyses. Larger time

steps were used in the LIN and QUAD methods. All

methods give similar results since the response func-

tion is nearly linear, however, the LIN method was

computationally less expensive.

3. Model input parameters

The means, mi and standard deviations, si, of the

foam decomposition model’s 25 input parameters are

given in Table 2. The input parameters include: the

initial density and temperature of the foam (r0 and T0),

the temperature-dependent thermal conductivity and

specific heat of the foam (k and Cp), the coordination

number of the polymer lattice (s þ 1), the initial lattice

bridge population (L0), the reaction enthalpy of the

foam (hr), the emissivity of the foam (e), 16 activation

energies (Ei), and the average standard deviation of all

the activation energies (Es). The input parameters are

assumed to be independent random variables that are

normally distributed. Some of the mean input para-

meters, e.g. activation energies—were determined by

optimizing predicted mass loss to experimental ther-

mal gravimetric analysis (TGA) data. Other mean

input parameters, such as thermal conductivity and

specific heat, were measured at Purdue’s Thermophy-

sical Properties Research Laboratory. The standard

deviations for the input parameters were taken to be

approximately 10% of the mean value for all para-

meters except for the initial temperature and the

activation energies, which are assumed to be within

3 8C and 300 kcal/mol, respectively.

4. Mean value sensitivity/uncertainty analysis

In the MV method, the mean decomposition front

velocity, mV, and the standard deviation of the decom-

position front velocity, sV, can be determined from

a simple Taylor series expansion of the front velo-

city, VðzÞ, about the mean of the individual random

Fig. 3. Temperature gradient in element number 20 and time of

element death for elements 1–20.

Table 2

Means and standard deviations of input parametersa

Input parameter mi si

r0 (g/cc) 0.353 0.0252

T0 300 3

kb 1 0.1

Cp
b 1 0.1

s þ 1 2.8 0.2

L0 0.78 0.05

hr (cal/cm3) 15 1.5

e 0.8 0.05

E1 48.8 0.3

E2 50.5 0.3

E3 49.7 0.3

E4 50.2 0.3

E5 49.4 0.3

E6 49.1 0.3

E7 50.6 0.3

E8 49.5 0.3

E9 51.2 0.3

E10 49.4 0.3

E11 50.3 0.3

E12 49.7 0.3

E13 50.6 0.3

E14 50.7 0.3

E15 50.2 0.3

E16 49.7 0.3

Es 3.97 0.05

a The activation energies (E1–E16 and Es) are in kcal/mol.
b The temperature-dependent thermal conductivity and heat

capacity were multiplied by a dimensionless factor.

M.L. Hobbs, V.J. Romero / Thermochimica Acta 384 (2002) 393–401 395



variables or input parameters, zi, by neglecting higher

order terms as follows:

mV ¼ VðzÞjz¼m
(2)

s2
V ¼

Xn

i¼1

si

@VðzÞ
@zi

z¼m

���
� �2

(3)

Eq. (2) is a single sample approximation of the

mean decomposition front velocity calculated with the

finite element model with all input parameters equal to

the mean values, m. In Eq. (3), sV is the standard

deviation of the decomposition front velocity

(response variable) and si is the standard deviation

of the ith-input parameter (random variable). The

derivatives in Eq. (3) were obtained using a central

differencing technique with a finite difference step

size of 0.001 times the mean input parameter. For each

temperature, 51 function evaluations (two for each

random variable plus one evaluation using the mean

input values) were required to obtain the derivatives

for the 25 random variables.

The relative importance of each input variable to

the uncertainty in the decomposition front velocity

can be determined from the sensitivity coefficients, gi,

defined as

gi ¼
si

sV

� @VðzÞ
@zi

(4)

where

1 � gi � 1 (5)

and

Xn

i¼1

g2
i ¼ 1 (6)

The input variables that contribute the most to the

uncertainty in the decomposition front velocity also

have the largest absolute sensitivity values. The sign of

the sensitivity coefficients indicate that an increase in

the input parameter causes an increase in the response

function. A negative sensitivity coefficient indicates

that an increase in the input parameter causes a

decrease in the response function. The square of the

sensitivity coefficient multiplied by 100 gives an

importance factor, 100 � g2
i , that can be used to rank

the importance of the various input parameters.

Fig. 4 shows the mean decomposition front velocity

with a 1.96�s band and the standard deviation of the

front velocity, the importance of the most significant

input parameters, and various sensitivity coefficients

as a function of the radiative boundary temperature.

The most important input parameters are the emissiv-

ity of the foam followed by the foam heat capacity and

density. The lattice coordination number and the

activation energies associated with reactions 5, 6,

and 9 are also important factors in Fig. 4B. An

Fig. 4. (A) Velocities, (B) importance factors, (C) sensitivity coefficients.
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increase in emissivity will cause the decomposition

front velocity to increase, whereas an increase in

density or heat capacity will cause the decomposition

front velocity to decrease.

5. Sensitivity/uncertainty analysis using
surrogate response surfaces

Surrogate response surfaces can also be used for

sensitivity/uncertainty analysis by using latin hyper-

cube sampling (LHS) techniques. Similar to the MV

technique discussed in Section 2, surrogate response

surfaces should only be used when the response is

nearly linear. Highly nonlinear response functions

require advanced techniques as discussed by Robinson

[4]. One advantage of using surrogate response sur-

faces is that the derivative of the response variable is

not needed for the sensitivity/uncertainty analysis.

Another important feature of the surrogate LHS tech-

nique is that the method typically requires fewer

functional evaluations using the finite element model

than the traditional MV methods and gives similar

accuracy.

The objective of the surrogate LHS uncertainty

analysis, as discussed by Romero and Bankston

[5,6], is to adequately represent the system response

over the relevant parameter space with a simple ana-

lytical function that can be used efficiently in an LHS

simulation. For example, the simplest representation

of the decomposition front velocity as a function of the

25 input parameters is the following linear response

function:

VLIN ¼ a0 þ
X25

i¼1

aiðzi � miÞ (7)

where VLIN is the linear approximation of the decom-

position front velocity fit to results from the 1D finite

element model. This ‘‘level 1’’ response surface can be

used to evaluate the derivative in Eq. (3) to give:

s2
V ;LIN ¼

X25

i¼1

ðsi 	 aiÞ2
(8)

The a coefficients can easily be determined with 26

functional evaluations using the full finite element

model. One velocity evaluation is determined using

the mean of all the input parameters. The remaining 25

velocity evaluations are determined using the mean of

all the input parameters except for the ith parameter.

The ith parameter is taken at the mean value plus some

fraction of the standard deviation of the input para-

meter, tsi. Unfortunately, an established technique for

selecting t does not exist. In this work, a t value of two

was used as recommended by Romero [7]. Guan and

Melcher [8], recently showed that different values of t
for nonlinear response surfaces could give signifi-

cantly different sensitivity results. However, since

the response surface in the current paper is sufficiently

linear, a value of two is adequate.

The a coefficients can be determined as follows:

a0 ¼ V0 ¼ VðzÞjz¼m (9)

and

ai ¼
ðVþts

i � V0Þ
ðtsiÞ

; for i ¼ 1; 25 (10)

where V0 is the decomposition front velocity calcu-

lated with the 1D finite element model using the mean

value of each input parameter; Vþts
i is the decom-

position front velocity calculated with the input para-

meter i equal to the mean plus t standard deviations

with all other input parameters evaluated at the mean.

By leveraging the 25 ‘‘level 1’’ response surface

samples with an additional 25 functional evaluations

(for a total of 51 evaluations), a ‘‘level 2’’ simple

quadratic (with no cross terms) response surface can

be formed to approximate the multivariate decompo-

sition front velocity as follows:

VQUAD ¼ b0 þ
X25

i¼1

biðzi � miÞ þ
X25

i¼1

ciðzi � miÞ2
(11)

VQUAD is the simple quadratic approximation of the

decomposition front velocity fit to multivariate results

from the 1D finite element model. The b’s and c’s can

be calculated as follows:

b0 ¼ V0 (12)

bi ¼ 0:5
ðVþts

i � V�ts
i Þ

ðtsiÞ
(13)

ci ¼ 0:5
ðVþts

i þ V�ts
i � 2V0Þ

ðtsiÞ
(14)
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where, V�ts
i is the decomposition front velocity cal-

culated with the 1D finite element model with the

input parameter i equal to the mean minus t standard

deviations with all other input parameters evaluated at

the mean. More complex response surface expressions

for V can also be determined, however, the linear

approximation given in Eq. (7) and the simple quad-

ratic approximation given in Eq. (11) were sufficient

for this study.

With the simple analytical expression for the

decomposition front velocity, a Monte Carlo evalua-

tion can be performed without the expense of running

the CPU-intensive model for each functional evalua-

tion. Thus, the term ‘‘surrogate’’ means that the full

finite element model is not used in the Monte Carlo

simulation; instead, an approximate response surface

model is used for the evaluations of decomposition

front velocity. Rather than using simple random sam-

pling as in traditional Monte Carlo techniques, a more

efficient, constrained sampling technique was used in

the present work: latin hypercube sampling, (LHS).

The LHS technique developed by McKay et al. [9]

selects n different values for each of the 25 variables,

zi. In this paper, the number of samples, n, was

selected to be 300, which was determined to be

sufficient, since a sample size of 300, 3000, 30,000,

and 300,000 gave essentially the same results. The

range of each input parameter is divided into n non-

overlapping intervals based on equal probability. One

random value from each interval is selected according

to the probability density function in the interval. The

n values thus obtained for z1 are paired in a random

manner with the n values obtained for z2. These n pairs

are then combined in a random manner with the n

values of z3 to form n triplets, and so on, until n sets of

the 25 input variables are formed. The decomposition

front velocity is then calculated n times with the n

different sets of input parameters. The mean and

standard deviation of decomposition front velocity

are then calculated from the n set of responses. More

information on the LHS technique can be found in

[10].

In this paper, the acronym LIN will represent the

LHS analysis using the linear approximation of the

decomposition front velocity, and QUAD will repre-

sent the LHS analysis using the quadratic approxima-

tion for the decomposition front velocity. To compare

the LIN and QUAD results to the MV results discussed

in the previous section, a direct LHS (DLHS) analysis

was also performed. The DLHS analysis was per-

formed by using the same latin hypercube sample

used in the LIN and QUAD analysis; however, a full

finite element analysis was used for each velocity

evaluation rather than using the approximate equa-

tions to determine the decomposition front velocity.

The DLHS technique should give the best approxima-

tion of the mean and standard deviation of the decom-

position front velocity since no approximations are

made regarding the linearity of the response surface.

Table 3 gives the mean and standard deviation of the

decomposition front velocity calculated using the 51-

run MV technique, the 26-run level 1 LIN, the 51-run

level 2 QUAD, and DLHS using 25, 50, and 300

samples. The mean and standard deviation in

Table 3 were determined using either large or small

time steps given previously in Table 2. To evaluate

each of the different sensitivity/uncertainty models,

the bias corrected mean, mv, in Table 3 should be

compared with the mean velocity, mV, calculated with

the DLHS method using 300 samples. Table 3 shows

that all of the techniques give good estimates of the

mean even with the larger unstable time steps. The

MV technique gives a good estimate of the standard

deviation when small time steps are used; however, the

MV estimates of the standard deviation are not good

when larger time steps are used. The problem with the

MV method using larger time steps is related to the

noisy derivative calculation discussed in the numerical

issues section. The LIN and QUAD methods give good

estimates even when the time step is large. These

results were expected since the LIN and QUAD

methods are not as sensitive to numerical noise as

the MV method.

The mean decomposition front velocities in Table 3

were corrected for discretization errors by using the

grid and time step independent MV velocity,

1.093 cm/min. The discretization bias corrected velo-

cities are also given in Table 3. A similar discretization

bias correction was not necessary for the standard

deviations of the decomposition front velocities indi-

cating that the shape of the velocity distribution is

independent of discretization errors. However, predic-

tions of the standard deviation using the MV technique

are sensitive to numerical noise.

The sensitivity of the standard deviation to numerical

noise can be seen more readily in Fig. 5 where the mean
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and standard deviation of the decomposition front

velocity is plotted as a function of the radiation bound-

ary temperature. In Fig. 5, results are from the MV, LIN,

QUAD, and DLHS analysis obtained using 500 mm

elements and large time steps are plotted. All techni-

ques give adequate estimates of the mean decomposi-

tion front velocity, although the QUAD velocity

oscillates around the DLHS velocity. The oscillating

velocity may be a result of neglecting cross terms in the

surrogate surface approximation. The standard devia-

tions calculated with the various methods are shown in

Fig. 5B and C. In Fig. 5B, the MV prediction of the

standard deviation oscillates wildly due to the noisy

derivative problem discussed previously. As shown in

more detail in Fig. 5C, the LIN and QUAD methods

give good approximations to the DLHS method with the

QUAD method being almost exact.

The MV method should not be used for uncertainty

analysis unless the response surface is nearly linear,

the solutions are extremely stable, and the functional

evaluations are inexpensive. The least expensive

uncertainty analysis in terms of CPU requirements

is the LIN method. This method gives acceptable

means and standard deviations. For more than about

25 uncertain variables, DLHS becomes competitive in

terms of sampling efficiency. For example, both the

50-run and 25-run DLHS analysis shown in Table 3

gave means and standard deviations within a few

percent of the converged 300-run results, which is

competitive with the 51-run QUAD results.

In LHS uncertainty/sensitivity analysis techniques,

the most important factors are the parameters that

Table 3

Moments of decomposition front velocity for 1000 8C radiation boundary conditiona

Element size

(mm), time step

Moment

(cm/min)

Method and number of functional evaluations

MV 51 LIN 26 QUAD 51 DLHS 25 DLHS 50 DLHS 300

1000, large time step mV 0.772 0.772 0.804 0.794 0.773 0.781

Bias corrected, mv 1.093 1.093 1.125 1.115 1.094 1.102

sV 0.550 0.091 0.107 0.115 0.103 0.106

500, large time step mV 0.939 0.939 0.907 0.977 0.960 0.945

Bias corrected, mv 1.093 1.093 1.061 1.131 1.114 1.099

sV 0.488 0.115 0.121 0.134 0.130 0.126

500, small time step mV 0.911 0.911 0.918 0.950 0.934 0.919

Bias corrected, mv 1.093 1.093 1.100 1.132 1.116 1.101

sV 0.116 0.110 0.117 0.129 0.125 0.120

50, small time step mV 1.093 1.093 1.104 1.124 1.095 1.101

sV 0.141 0.134 0.142 0.157 0.140 0.148

a Bias correction is 0.321, 0.154, and 0.182 cm/min for the 1000 large time step, 500 large time step, and 500 small time step cases,

respectively. Bias correction is based on the 50 small time step linear models.

Fig. 5. (A) Mean velocity (mV, cm/min), (B) standard deviation of

velocity (sV, cm/min) and (C) standard deviation of velocity (sV,

cm/min) at a different scale than in B.
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cause the greatest deviations from the MV response

variable. The importance of each factor, g2
i , can be

obtained by

g2
i ¼ V0 � V
ts

i

V0

(15)

where V0 is the decomposition front velocity calcu-

lated with the mean value of each input parameter and

V
ts
i decomposition front velocity calculated with the

input parameter i equal to the mean 
t standard

deviations with all other input parameters evaluated

at the mean.

Table 4 shows the top three important factors as

determined using the MV method, LIN method, and

the QUAD method with 500 mm elements and the auto

time step option. All of the analyses in Table 4 were

performed using the input parameter mean and stan-

dard deviations given in Table 2. For comparison, the

top three important factors using the DLHS method

with 50 mm elements and the constrained time step

option is also given. The LIN method—requiring 26

functional evaluations—gives the same results as the

more expensive QUAD method that required 51 func-

tional evaluations. The MV method using the large

auto time step option—requiring 51 functional eva-

luations to determine the derivative of the response

function—did not give the correct importance factors.

6. Summary and conclusions

Aristotle [11] noted that ‘‘. . . it is the mark of an

educated mind to rest satisfied with the degree of

precision which the nature of the subject admits and

not to seek exactness where only an approximation

is possible.’’ Precise, accurate input parameters will

not make a model match experimental data when

the model lacks important physical phenomena. For

example, the foam decomposition model addressed in

this paper does not consider mass transport limita-

tions, species diffusion, bubble mechanics, fluid flow,

gravitational effects, or mechanical response such as

thermal expansion. Not including these physical phe-

nomena may be acceptable for certain experimental

conditions, such as when samples are small or when

the heating rates are high. Under these conditions,

diffusion lengths are small and mass transport limita-

tions are negligible. For conditions that favor thicker

decomposition fronts, such as confinement and/or low

heating rates, the foam decomposition model should

be improved with additional physics. At the same

time, however, the importance of the driving contribu-

tions to uncertainty in any endeavor should be ascer-

tained. For the base model analyzed here, the standard

deviation of the response due to uncertainties in the 25

input parameters is of the order of 10% of the nominal

computed results. Since nominal error in the model

due to using 500 mm versus 50 mm elements is also on

the order of 10% (2–16%), the error from using

500 mm elements is significant and some form of

discretization bias correction should be used.

Sensitivity/uncertainty analyses on complex engi-

neering models can be frustrating and time consum-

ing. For example, the MV sensitivity/uncertainty

analysis was repeated numerous times when the ele-

ments and/or time steps were found to be too large to

compute accurate finite difference derivatives, result-

ing in thousands of additional functional evaluations

to establish converged results. A lot of frustration

could have been avoided if a thorough study of the

problem numerics were initiated before beginning the

sensitivity/uncertainty analysis. Another source of

frustration is lack of information regarding the uncer-

tainty associated with the various input parameters.

Variability in input parameters should be obtained and

verified experimentally.

Three sensitivity analyses (MV, LIN, and QUAD)

were compared to a direct LHS (DLHS) simulation.

The analytical MV technique required the derivative

of the decomposition front velocity for each input

parameter resulting in 51 functional evaluations. The

MV uncertainty results were also shown to be extre-

mely sensitive to numerical noise. The LIN method

required only 26 functional evaluations, was found

to be relatively insensitive to numerical noise, and

gave acceptable predictions of the mean and standard

Table 4

Important factors for 1000 8C boundary condition

Method, element size

(mm), time step

Importance ranking

1 2 3

MV, 500, large hr s þ 1 e
LIN, 500, large Cp r0 e
QUAD, 500, large Cp r0 e
DLHS,a 50, small Cp r0 e

a Grid and time step converged results.
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deviation. The QUAD method required 51 functional

evaluations, was found to be nearly insensitive to

numerical noise, and overall gave the closest values

of mean and standard deviation to the converged

DLHS results. However, the mean velocities predicted

with the QUAD method were subject to oscillation,

which may have been a result of neglecting cross

terms in the surrogate surface approximation. Various

sample sizes were used for the DLHS. If the number of

random variables is substantially more than 25 vari-

ables, a DLHS analysis is highly recommended.
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