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Abstract

The extension of the formal kinetics of solid—gas reactions to solid—liquid dissolution is investigated theoretically. The
work is based on modelling the dissolution of a solid in a closed system by a stoichiometrically simple chemical reaction
Agolia 2 Aliquia proceeding up to either an equilibrium state if the solid phase is initially in excess or exhaustion in the reverse
situation. The initial amount of solid compared to the capacity of the liquid phase appears as a major factor of complexity.
First, the rate equation is formulated in terms of the intensive variables without any assumption about the mechanism and the
rate-limiting step. The resulting equations are compared to those derived from Nersnt boundary-layer theory of dissolution.
Only when the solid phase is initially in deficit does the kinetic approach turn to be in the wrong if the rate of dissolution is
assumed to depend on the maximum of the concentration gap. At this stage, the dissolution mechanism has to be taken into
consideration and the rate equation adjusted accordingly. Finally, algebraic expressions for the fractional dissolution curves
can be obtained. Except for particular solid liquid ratios they are not superimposable by an affinity relation. © 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction Indices 1 and 2 refer to the solid and the liquid phase,

respectively. Eq. (1) is also assumed reversible, which

A theoretical investigation of the dissolution of a
solid constituent, A, in a liquid phase is conducted in
the following conditions. The problem is simplified by
considering that the molecular integrity of the solid is
preserved in the dissolution process and that the latter
obeys a single and stoichiometrically simple equation
written as follows:
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means that the equilibrium saturation state of the
liquid phase can be physically realised provided
the initial amount of solid A, is sufficient. Indeed,
the objective being to build a reasoning, not to exhaus-
tively investigate all conceivable experimental situa-
tions, we have restricted the problem to the isothermal
dissolution in a closed system of finite volume noted
V,. The latter is also assumed to remain constant
despite the transfer of matter. The reason for this is
that taking its increase into account would greatly
complicate the equations. However, care should be
paid to the fact that this may become a poor approx-
imation in certain particular situations. It is also finally
assumed that the liquid phase is ““ideally’’ agitated and
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PII: S0040-6031(02)00039-4



92 P. Barret, P. Bracconi/Thermochimica Acta 388 (2002) 91-103

that the simple problem where the solute would
fill gradually a stagnant liquid by diffusion is not
pertinent.

In contrast, it is mathematical trivial to include in
the problem the assumption that the liquid is not
necessarily a pure solvent but may contain an initial
concentration of the solute, noted C?, intermediate in
value between 0 and the saturation concentration C;".
But the innovative contribution of the present work
is in the exhaustive investigation of the influence of
the initial amount of the solid phase on the kinetics.
Indeed, that amount expressed here as number of
moles n9, may be lower than, equal to or larger than
the amount effectively consumed by the reaction
(dissolution) and this proves to have important con-
sequences.

In contrast to other theoretical approaches, ranging
from that of Nernst [1] and other contemporaries [2,3]
at the beginning of the century to more recent ones
based on a more elaborate modelling of interfacial
mass transfer [4,5], the present works starts from a
purely kinetic point of view. We have tried to apply the
formal heterogeneous kinetic theory developed among
others by one of us for modelling solid—gas reactions
to the present topic. More precisely, the rate equation
is investigated starting from purely logical grounds
and the simplest possible assumptions about the pos-
sible dependence of the rate of reaction on the con-
centration of the liquid phase. The reasoning is pushed
as far as possible without making any assumption as to
the particular physical mechanism that may be kine-
tically limiting, but finally encounters a limitation in
the particular case of an initial deficit of solid A;. This
appears in the comparison with the other mentioned
theory based explicitly on the assumption of diffusion
control, and the kinetic theory then has to be adjusted
accordingly.

Nevertheless, it must be emphasised that the for-
mulation of the dissolution kinetics in terms of a
dimensionless conversion degree proves quite fruitful.
It allows one for instance to include the variation of the
surface area of the dissolving solid in a straightfor-
ward manner without any particular assumption on the
shape of the average solid particle, except that it
remains unchanged in the process. In particular, no
such unjustifiable assumption as that the rate of reduc-
tion of the radius of the solid particle should remain
constant is introduced. And the final result is that the

rate equation can be integrated in all cases to provide
an equality between a reduced time variable and a
more or less intricate function of the conversion
degree and of a parameter related to the initial excess
or deficit of solid A;.

2. Application of the formal theory of
heterogeneous Kinetics to solid-liquid
dissolution

The rate of a chemical reaction such as reaction (1)
is not just the rate of change of the concentration of
component A, in the solution or of the number of
moles of the reactant A,. It must be defined as the
derivative with respect to time of a suitable variable
measuring the progress of the reaction. The latter,
which is referred to by various names (fractional
reaction, conversion degree, etc.) derives from the
basic law of definite proportions.

2.1. Extensive and intensive variables expressing
the progress of reactions

Let us consider a general chemical equation invol-
ving several components (reactants and products) and
representing a reaction taking place in a closed sys-
tem. The number of moles of component i is noted n;
and its stoichiometric coefficient in the reaction v;.
The infinitesimal progress of such a reaction is related
to the infinitesimal change of the number of moles of
each component by:
an _dn__dn o
Vi V2 Vi
and the rate of reaction can be defined with respect to
the variable ¢ as:

d¢
T ar
However, ¢ is an extensive variable and is dependent
on how the coefficients v; are counted (they may be
multiplied by any arbitrary constant). This is the
reason why one wants to define an intensive variable,
o, to represent the conversion degree of the reactants
and measure the progress of the reaction. The defini-
tion of o stems logically from that of limiting reactant,
the exhaustion of which is the cause of the end of the

3
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reaction where the variable £ achieves its largest value
émax:

¢

== 4
o imdx ( )
The corresponding reaction rate is then:
do 1 dé
= — = ——— — 5
R TR ©)

However, in the particular case of the dissolution
reaction expressed by Eq. (1), the reactant A; may
or may not be fully consumed at the end of the
reaction. If the concentration of A, in solution reaches
the saturation value C;“‘, the reaction stops because
equilibrium is reached not because the limiting reac-
tant is exhausted. To take this distinction into account
in the following it is convenient to define the number
of moles of reactant A; remaining at equilibrium, n’}*,
as the difference between the initial number, n? and the
number just needed to saturate the solution, (n)**. If
the volume of the liquid phase is noted Vjq (and
assumed invariable as a first approximation) this
comes to:

m* =i — ()™ =} — (G5! — CY)Viiq (6)

Thus, in case n}* > 0, the maximum value reached by
the variable ¢ is no longer depending merely on the
initial amount of the limiting reactant but also on a
thermodynamic equilibrium parameter. This makes
an important difference, and the conversion degree
is then represented by a different symbol:

¢
=% (7
The corresponding reaction rate writes:
dp 1 d&
= — = — — 8
A T ®)

The next step is to define and investigate the properties
of the so-called rate equation. The rate of a single
reaction, as defined by either Eq. (5) or Eq. (8), is
expected from the theory to be a function of physical
variables, among which temperature and concentra-
tions of the various components play a major role, and
of the conversion degree. It takes the general form:

dé

T re(T, Ci; €) C))

In view of the aforementioned definitions of the con-
version degrees o and 1 (Egs. (5) and (8)) there is no
difficulty to redefine the rate equation with respect to
these variables when appropriate, i.e. in case of an
initial deficit or excess of solid A;, respectively:

% =r,(T,Ci;2) or % =1y (T, Ci;n) (10)
Each physical constant may in principle be imposed a
certain time dependence. Of course, the simplest
situation is that where they are kept constant during
the reaction.

The final objective of heterogeneous kinetics is to
interpret experimental data in order to formulate the
rate equation and show how to use it in order to
understand, as far as possible, the underlying reaction
mechanism. It is well known [6-8] that this task is
greatly simplified whenever the conversion variables
&, a or i1 can be separated from the physical variables
in the rate equation which then takes the form:

d d
L KT )30 o D= kT.C) L)
or %zk(ﬂ Ci) x fy(n) (1D

Then, that particular property of the rate equation can
be inferred and demonstrated directly from experi-
ment if different fractional reaction curves, «(t) or #(?),
obtained for different fixed values of one physical
variable prove to be affine with respect to the variable z.
If so, one such curve can be superimposed on another
one by multiplying its time scale by an appropriate
constant number, noted b. For instance, if temperature
proves the only physical variable that is changed from
one curve to the other, taking the values 7', and 7>, res-
pectively, the condition of affinity would be expressed
by the equality:

O((Tl,t) = OC(Tz,bt) (12)

This is made obvious by integration of Eq. (11), which
shows that the conversion degree can be put in the
form:

a or n=Pk(T,C;) x (1 —1°)] (13)

For a set of finite values of k(7, C;), Eq. (13) represents
indeed the general equation of a set of curves that can be
superimposed on any one of them by application of the
affinity transformation [o, (r — )] — [o, b(¢ — °)].
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In contrast to that somewhat ideal situation, if
experimental dissolution curves turn to be non-affine,
it can be stated that the conversion degree and the
physical variables cannot be separated in the rate
equation. It is going to be shown in the following
that, somewhat unexpectedly, this constitutes the gen-
eral rule with dissolution and that this rule is only
broken in very particular experimental situation the
simplest one being when n{ = (n{)**.

2.2. Expression of experimental dissolution
kinetics in terms of conversion degree

In a closed system, it is in principle a simple task
to follow the progress of the dissolution of a solid A
by monitoring the concentration C, of the liquid
phase. If the volume of the latter is assumed con-
stant, it is particularly easy to express the conversion
variable ¢ and hence o or # as functions of the initial
and final compositions of the system. In the initial state,
the concentration of the solute may not necessarily
be zero and its value, noted Cg, can be readily incor-
porated in the equation. It can be regarded as another
parameter of action on the rate of dissolution.

at any given time ¢, one starts with the integration of
Eq. (2) according to:

€:ﬁ+z

Vi

(14)

where Z is the integration constant. Since, by defini-
tion, at initial time, {2, the value of & is just 0 and
ny = nY, it appears that Z = —n?/v;. The expression
for &, « and # are derived in Table 1 for the case of
Eq. (1) where vi = —1 and v, = 1. In the particular
situation where one would start with the exact amount
of solid required to reach saturation, n{ = (n9)*™ =
(C5* — C9)Viig, the conversion degree would have the
following expression:

C,— (Y
aorn:ﬁ (15)

In case of an initial excess of solid A, the conversion
degree n would be given by the same Eq. (15) with 7 as
the conversion degree, whereas in case of an initial
deficit of A; (such that the reaction reaches an end
because the limiting reactant is exhausted), one would
get:

Cy—CY

In order to write down the relations between the 0=—" (16)
composition of the system and the conversion degree G =G
Table 1
The expression for &, « and n
Component A Ay
Time 0 t [ 0 t [
”(1) = ("?)Sal = Vliq(CZq - Cg)
Ny or2 ny ny 0 nd n, ny™ = 3!
¢ _ 00 nd —ny nd 0 . ny —n ny? —nd
Z in Eq. (14) ny —n
o=/ (n] —m)/n} (n2 —n3) /(5™ —ng) = (C — 3)/(C3™ — C9)
> ()™ (n) = (n))™ +n}")
M or 2 nd n s nd n n5!
¢ 0 nd —n nd — s 0 ny —nd ny?
Z in Eq. (14) nd —nf
n=¢/¢ (n) —m)/(n] —n}) (n2 —n3)/(n5! —nd) = (C2 = ) /(G5 - ©F)
n(l) < (n(ll)Sal (nrznax < n;‘I)
Mior2 ”(1) ni 0 n(z) 1 nrQnax
¢ 0 n? —n n? 0 ny — ng ny* — ng
Z in Eq. (14) nd —n
o=/ (n) —mi)/n} (n2 —n3) /(5™ —ng) = (C — C3)/(C3™ — C9)
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These equations can be written in terms of ‘““‘concen-
tration gaps” defined as the differences between either
the instantaneous or final values of the solute con-
centration on the one hand and its initial value on the
other hand. Symbolising these concentration gaps by
the capital letter E, one can write:

Ef™ =Cy™ —C) and Ej'=C3—C) A7)
E™ =Cr —C, and EMN=C1—C (18)
Thus Egs. (15) and (16) can be transformed into:

E™ =Ef™ (1 —a) and E*=E;(1—1n) (19)

The instantaneous value of a concentration gap is
merely the product of a linear function of the conver-
sion degree by its initial value Ef®* or Epl. It seems
legitimate to consider that, apart from temperature, the
latter constitutes the physical factor controlling the
rate of reaction, and it is the role of the rate equation to
clarify its influence in mathematical terms.

Noting that do = dn = dC;, the dissolution rate can
finally be obtained as:

. EMT At EMT dr
d 1 dE9 1 dC
o xS xS (20)

dr E'" At EYT dr

conversion degree

2.3. Utilisation of the rate equation to interpret
experimental dissolution kinetics

As can be seen from Eqgs. (11), (19) and (20) the rate
equation (and its integral form as a consequence)
derived from the formal kinetic analysis appear essen-
tially as functions of the limit values of the variable
used to express the composition of the system, £ or
Ey', and of time. The experimental investigation is
most usually carried out in such a way as to generate
fractional dissolution curves a(f) or #(f) at constant
temperature for different values of Ef™ or Ej'.

As already mentioned, a favourable situation arises
if the curves so obtained turn to be related by an
affinity relation of the form [«, ] = [o, bt]. Accord-
ingly, the first logical step of any data analysis should
be to test that possibility. Let us consider two curves
related by such an affinity relation and indexed R and
S, respectively in Fig. 1. They are supposedly obtained
at the same temperature for distinct values of con-
centration gap, Ej'z* and Eg's*.

Since, by definition, the variables ¢ and o (or n) are
separated in the rate equation, it is obvious from the
integration of the latter, that, for any particular value
o of the conversion factor, the equality kgig = ksts
should be verified, where ks/kg = b is the affinity ratio
(see Fig. 1). One may assume that the dependence of

t
R

time

Fig. 1. Schematic representation of two fractional reaction curves related by an affinity relation. The ratio of the time values 7 and fs defines

the affinity constant b.
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the rate constants kx and kg on the concentration gaps
may be expressed by a power law, where the exponent
g would be some equivalent of the order of the reaction
in homogeneous chemical kinetics. Accordingly, one
would write:

kg = kT(ngZ")", ks = kT(EgE")q 21

and the exponent ¢ would be readily be computed
according to:

Intg — Intp

= < _ 22
In EJ% — In E§%* 22

q
Its value should, by definition, remain constant along
the curves and independent of the particular pair of
curves selected in the isothermal set.

These preceding properties of the fractional disso-
lution curves stem from the assumption that the rate of
reaction is proportional to a power function of the
instantaneous concentration gap, i.e. the rate equation
takes the well-known practical form:

d

d—‘: = kr[EP™ (1 — 0)]7 x £, (@) (23)
or

d s

T = kelE§ (1= )" < £, () (24)

However, the dependence of the reaction rate and the
maximum concentration gap can take other forms
and only experiment or the independent knowledge
of the reaction mechanism can decide of the proper
rate law.

As for the influence of temperature, the major
physical parameter, the usual practice is to verify if
a set of curves obtained at various temperatures verify
the apparent Arrhenius exponential law. In which case,
referring again to Fig. 1 but with the assumption that
the curves represent fractional conversion at tempera-
tures T and Tk, then b = k(Ts)/k(Tr) and

lnts—lntR:g{TiS—TiR] 25)
The apparent activation energy value is usually com-
puted from the slope of the graph obtained by plotting
In(¢) or In(r) versus 1/T and should remain constant if
the value of o is varied.

In contrast, it is often observed experimentally, that
the value of E so obtained varies along the curves with

the value of o*. This does not mean that the Arrhenius
law is no valid but simply that it is obscured by the
contribution of other thermally activated parameter.
Indeed, the other situation (frequent in practice) is
when the curves a(f) or n(f) are not related by the
aforementioned affinity relation. Then, for instance,
changing the temperature affects the equilibrium state
and hence the value of E!. Then, the foregoing
considerations are no longer valid and it is important
to realise that the activation energy of the reaction can
no longer be obtained as mentioned, e.g. using
Eq. (25). This can be made obvious by considering
the explicit integral forms of the rate equation derived
in the next section.

3. Confrontation to experimental kinetics

There are neither place nor sufficient motivation of
the authors to embark upon reviewing the heap of
published experimental data about solid—liquid dis-
solution kinetics in such fields as pharmaceutical or
geological applied sciences. Instead, and based on
the current knowledge that the Nernst Eq. (5) cor-
rectly models a number of such experimental results,
it is simply assumed that a test of the present formal
kinetic analysis can be reduced to a comparison of its
predictions with those inferred from Nernst equation.
The latter has been derived by Nernst [1] and also by
other authors [2,3] based on the assumption that the
mass transfer through the boundary (diffusion) layer
is the rate-limiting step of the reaction. In other
words, and in contrast with the present approach,
it requires the reaction mechanism to be known
beforehand.

In our notation, Nernst equation would write:
dC, D

Vig—, =5 Si0[CS! = G = 1S ()[C5 - €
(26)

In Eq. (26), D is the diffusion coefficient of the solute
in the liquid phase, § the boundary-layer thickness,
and the ratio of both can be identified with the mass
transfer coefficient .

If and only if C5* = C3%and g = 1, can one strictly
identify our Eq. (23) with Eq. (26). As for Eq. (24), it
remains valid whatever the initial excess of solid S,
but then the solid phase surface area reaches a finite
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final value. In both cases, one can transform Eq. (26)
into:

do d
Viig i hS\(t)[1 —of or Vliqd_iz = hS ()[1 —1]

27)

and the following relations hold between parameters
in both notations:

(dimension : T™'L7?) (28)

_h
kTE(e)q = Via
fa(0) = 8i(t) and  f,(n) = $i1(2)

in accordance with theory (3) (29)

Then, the only remaining problem before integrating
the rate equation is to express the surface area of the
solid phase, S1(f), as a function of either « or #.

In contrast, when Cy* < C3?, Nernst equation is no
longer equivalent to our Eq. (23), because the term
Ey™ is now replaced by Ej’. This minor change in
script bears of fundamental significance: the assump-
tion that the reaction rate is function of (here propor-
tional to) the availability of the limiting reactant is not
valid here. Accepting this, Nernst equation can now be
written as: Viiq dC,/dt = hS(1)[C5" — CI — (C; — C9)]
and, by use of Egs. (17)—(20) one obtains:

do h
= §/()[EY — EMax
dr Eglaxv]iq 1( )[ 0 0 Od
h EX
=—25(1)| =2 oc] (30)
Viiq 1) {ES‘“

One proceeds now to the calculations in these different
cases, up to the integration of the rate equation. This
is made possible because the surface area can be
expressed as a function of o or # as considered first.

3.1. Expression of S; as a function of o« or y

Let us consider the “isomorphous” contraction of a
sphere or any other 3D non-fractal geometrical object
as modelling the dissolution of an average particle
of solid A;. The relations between the value of the
volume or surface area at time ¢ and the initial values at
t = 0 are simple functions of the conversion factor o or
n. Furthermore, at any time, the surface area remains
proportional to the volume raised to the power 2/3.
Thus, if the initial solid A is fully dissolved at the

end of the reaction, its volume and surface area can be
expressed as:

Vi=V'(1—a) and S =8 x(1-2)® (31)

In contrast, in case there is an initial excess of A,
which will remain in suspension at the end of the
dissolution process, the final values of its volume and
surface area, noted V{* and S}°, respectively, are finite.
Whence:

Vi=V0x(1—n)+V® and
Si =50 x (1—n) +8p (32)

Egs. (31) and (32) are independent of the shape factors
that would appear in expressions of either volume or
surface area in terms of a linear dimension of the
particles. As stated in different terms, this remains true
only and only if the shape of the particles remains
unchanged during the dissolution process.

3.2. Expression of the conversion-functions o(t)
and n(t) in case q = 1

Based on the foregoing, it is now possible to obtain
the conversion-functions «(f) or #n(t) by integrating
the rate equation. Only the simple assumption g = 1
in the rate equation is investigated here because it
corresponds to common experimental observation as
expressed by the general validity of Nernst equation.
The three following situations are considered succes-
sively: the initial amount of solid A; is either equal
to, larger or lower than the amount needed to reach
saturation of the liquid phase at the end of the
process.

Cy* =34, ie. n) = (W)™ = Viig x (G5 — ©9)

Since in this situation EJ** = E, the combination of
Eqgs. (23) and (29) with expression (31) for S(¢) yields
the simple ordinary differential Eq. (33):

d h
Y SEkpdr =S dr (33)

(1—a)? Viiq

Integrating Eq. (33) from zero initial time to ¢ gives:

(@) F(o)=(1—0)?—1=28E%;r (34)

Here, it is possible to reverse the integral form
Eq. (34) and obtain the algebraic expression of the
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conversion degree in function of time:
1

[1+ (2/3)SSE ert]
1
=1-

U5 (/30 .
Defining the time constant t* = 1/SYEg kr allows one
to reduce all curves obtained for different values of the
physical variables to a single master curve plotted in
Fig. 2. F(«) in Eq. (34) is the so-called linear transform

1

F(aﬂ?)zw

23 V3 (201 =an)'?
+[1—an? ]—&—\/garctaan <ﬁ_

1
(1-a)*?

+ v/3arctan [ﬁ <# — 1)
3 \(1-a)'

of the dissolution curve «(f) from which the numerical
value of the time constant can be readily computed.

(b) ny > (n))™

Solution to Eq. (27) requires that the final surface area
of the remaining solid phase when equilibrium is reached
be taken into account. A simple way to do it is as follows.
The fractional reaction variable 7 can be written as:

y— = sV (s
nf—n VP =V (s1)Y2 - (59)Y2

nlfn(])

(36)

Eq. (36) stems from the trivial proportionality relations
between volume and number of moles, n on the one
hand and between volume and the fractional power
3/2 of the surface area on the other. Accordingly,
(1) = n > [(52)™% = ()] + (59)** and:

S
5

where a = (n9)™/n® =1 — ($59/89)*? > 0 repre-
sents the soluble fraction of the initial amount of solid
A,. Combination of Eqgs. (27) and (28) (with # as the
conversion degree) and Eq. (37) yields:

1 dn t
= SVE kyt = — (38)
/0 (1=l - an*’? r

The definite integral on the LHS of Eq. (38) admits the
following solution (obtained using Maple V symbolic
computation code):

7 { —nl( = @) = (1= @)+ S (1 @+ (1@ =)'

)l

{ —In[1 —(1 —a)1/3] +---+%1n[(1 _a)2/3+(1 —a)'/3 41

1
T

(39)

The graphs of Eq. (39) for different values of para-
meter a are shown in Fig. 3 (the numerical values of
F(o, ) constitute the values of the abscissa #/f* and
those of # from which they were computed constitute
the ordinate).

() < ()™

The liquid phase is not saturated at the end of the
process. In this case and as already mentioned, the rate
equation Eq. (30) has to be used instead of Eq. (23). It
can be written as:

* do
— = SYEN ™yt
/()(a—a)(l—a)2/3 o

E4 7O sat
where 0 = 0.~ ( ,11% (40)

S=0—ay? (37) Solution to Eq. (40) writes:
1 1-0)P+@-1D" 1. 1-0P-(1=-a)Pa-1"+@-1)*?
F(a,0) = 3 In 3 + 5 In 1/3 2/3
(a—1) 14 (a—1) I—(a=1)"4+(a-1)

\/g (1 . 06)1/3
— v/ 3arctan l?’ (1 — 2(61_1)1/3>

+ /3 arctan [\f (1 2@_11)1/3”} :ti* 41)
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Fig. 2. Graph of the fractional dissolution curves a(#/t*) expressed by Eq. (35) if n{ = (n(l’)sz“.

The graphs of Eq. (41) for different values of the
deficit parameter a are shown in Fig. 4. The major
difference with graphs of Eqs. (35) and (39) in Figs. 2
and 3 is that the reaction now stops at a finite time ™%,
An expression for the dependence of ™ on the solid
excess parameter a can be obtained by setting = 1 in
Eq. (41):

* 1/3
! (a—l)/ +11n

(a— l)2/3

the graph in Fig. 2 may be regarded as the super-
imposition of all possible «(f) by appropriate time
scale multiplication. As an example, let us consider
two temperature values, T, to 75, and the correspond-
ing pair of curves a(t, T1) and a(¢, T>). That the former
can be superimposed on the latter if its time scale is
multiplied by the constant factor (affinity ratio)

M = —In
(a—1)2/3[ l+@-1D" 2 1-(a

+ v/3arctan [\/5 <1 — 21>H
3 (a— 1)1/3

max

The limit value of ™" as a — oo is 0 whereas if
a— 1T, M 5 0.

It has been amply emphasised in Section 2 that the
fractional conversion curves «(f) have the interesting
property of being superimposable by an affinity trans-
formation if the conversion degree is separated from
all physical variables and time in the rate equation. Let
us reconsider this point in the light of the foregoing
results.

In the particular case where n) = (n)* =
Viig(C5% — ©9), the condition of affinity is obviously
fulfilled in Eq. (34) and it is easy to demonstrate that

)P r@-1 76

(42)

b =1t /t; = k(T)/k(T>) is readily proved by consid-
ering Eq. (34) and noting that for any particular value
of o, one can write:

—a) 1]

—*:t—iznzzt—ixtl:btl 43)
noh n

In case of either initial excess or deficit of solid phase,
the LHS of the integral rate Egs. (38) and (40) is no
longer function of the sole conversion degree but
contains the extra factor, a. The consequence of this
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0.8
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T

Fig. 3. Graph of the fractional dissolution curves n(a, #/t") expressed by Eq. (39) in case there is an initial excess of solid phase, i.e.

nd > (nd)™.

on the mathematical property of the fractional con-
version curve requires attention and is not the same as
in the former case.

One considers first the case n{ > (n{)** remember-
ing that parameter a stands for the soluble fraction of
solid A1, and that, in the limit case a = 1, «=n and the
rate Eq. (38) reduces to Eq. (33). The set of curves #(¢)
shown in Fig. 3 may be tested for affinity by adjusting

1

their respective time scale to that of the curve a(#/¢") in
Fig. 2 and the process can be put in the following
mathematical terms: for any particular value of the
conversion degree n and «, we define the ratio of the
corresponding time values:

F(a,n) _F(a,n)

t/t:
R, = — — I 44
YT F(Ly) T Flo) i/ “4

0.8

0.6
=
&
° 04 N
—e—a= 1001
—=—a= 1.01
—e—8a= 11 [
0.2 | : —%—a= 1.5 e
' | & a= 2
i —¥—a= 4
| —o—a= 10
0 i i
3 4 5

Fig. 4. Graph of the fractional dissolution curves a(a, #/f) expressed by Eq. (41) in case there is an initial deficit of solid phase, i.e.

< ),
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Fig. 5. The value of the ratio R, ; defined by Eq. (44) varies with « if the parameter a is not maintained constant.

The values of R, | thus computed from the curves in
Fig. 3 are show in Fig. 5, from which it is clearly seen
that a # 1 = R,; # 1 and the curves are not super-
imposable. However, this is not generally valid
for there exists a restricted subset of such curves
that can be superimposed on one of them by affinity.
Let us focus again on a pair of #(#) curves obtained
at temperatures 7 and T, and remark that the value
of the saturation concentration is normally expected
to vary with temperature. Let us also assume that
this dependence is accurately known. Accordingly
one is capable in principle to conceive an experi-
ment in which the initial amount of solid would
be adjusted in such a way as to maintain the value
of a constant. Indeed at temperature 7, one may
write:

0ysat,T; eq,T1 0

T (n}) Vig (G — G3)

T1—»c§q1 —a(Ty) = ]QTI =— zun 2
ny ny

(45)

and the equivalent at temperature 7,. Obviously, the
value of @ may be made constant if:

0,7y eq,T 0
ny' GV -G

0.7, — eq,T> 0
ny G -G

(46)

If the condition expressed by Eq. (46) is fulfilled, a
particular set of superimposable #(f) curves can be
obtained since then, whatever the value of #:

a(Ty) = a(Ty) = F(a(T1),n) = F(a(T2),n)

%z%@hz%xn:ml (47)
non h
The very same reasoning applies to the case n! < (n?)sat.
The experimental parameter a in Eq. (40) is defined
in the same way but takes values larger than unity:
a = Ey'/Eg™ = (n)™/n) > 1.
Since Eq. (40) reduces to Eq. (34) if a = 1, one can
again define the following ratio R, ; for testing the
condition of affinity:

F(a,a) F(a,oa) t/t

Rt =Ft o)~ F) 1/, (*8)

As shown in Fig. 6 its value is different from unity for
all values of parameter a larger than unity, which
constitutes evidence that the curves of Fig. 4 cannot
be superimposed. But again, there exist particular
experimental conditions that can allow one to obtain
a subset of superpimposable «(f) curves, and they are
determined by the same constrain @ = constant, which
can be achieved for instance if CY is set equal to zero
and nf/ VliqCEq’T is kept constant.
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Fig. 6. The value of the ratio R, | defined by Eq. (48) varies with o if the parameter a is not maintained constant.

4. Conclusion

At start, the present theoretical investigation was
intended to clarify the equivalence between the dif-
ferent formulations of the dissolution kinetics by
comparing the “predictions” of a purely kinetic
approach with those inferred from a particular “reac-
tion” mechanism. Because one considers a closed
system, the solid-liquid fraction proves an essential
parameter.

The first result is to show that the ‘“‘limiting reac-
tant” concept and the rate equation derived from it
strictly apply to solid—liquid dissolution only in the
particular case where the initial amount of the solid
phase equals the amount required to saturate the liquid
at constant temperature. This comes from the fact that
the end of the reaction is reached when the solid phase
which constitutes the limiting reactant it exactly con-
sumed and the final value of the concentration gap
E™ exactly equals the equilibrium value E*9.

When the initial amount of solid is lower than
needed to saturate the liquid phase, the reaction does
not reach an end because equilibrium is reached but
because the limiting reactant is exhausted. Accord-
ingly, the maximum value of the conversion degree &,
then equal to the initial number of mole of reactant
(vi = —1), is determined solely by a choice of the

experimenter not by a particular thermodynamic state.
In such condition, if the rate of reaction is set propor-
tional (¢ = 1) to the instantaneous concentration gap
E™ (the term finally appearing in the rate constant
will be Ef*) and translated in terms of the solute
concentration value, C,, it will be at variance with
Nernst equation. This comes from the fact that the
driving force for the dissolution process was inten-
tionally ignored in the formal kinetic approach. In
contrast, if a reasonable reaction mechanism is pos-
tulated (in fact here the physical process of interfacial
mass transfer) then, rate and fractional dissolution
(integral) equations derived from the formal kinetic
theory and Nernst equation are equivalent: the effec-
tive concentration gap E°9, the difference between the
saturation and instantaneous average concentration in
the bulk of the liquid phase, has to be substituted to
E™. The interest of the kinetic approach lies in the
formulation in terms of conversion degree and the
possibility to obtain integrated expressions (39) and
(41) of the fractional dissolution curves without the
need for approximations such as setting S;(¢) constant
to integrate Nernst equation in the so-called ‘‘sink
conditions”.

In the last case where the initial amount of solid is
larger than needed to saturate the liquid phase, the
kinetic approach is valid, but the active surface area of
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the solid and consequently the dissolution rate are
larger than in the former cases for the same fraction
dissolved.

Thus it appears that the lowest experimentally
achievable dissolution rate of a particular solid—liquid
system is obtained when the amount of solid equals the
amount needed to saturate the solution.

The second result of the present work is to prove
that the conversion degree and the physical variable E
are not separated in the rate equation whenever this
last condition is not fulfilled. Accordingly, in such
common experimental conditions as the “‘sink condi-
tions” widely used in practical applications, the dis-
solution curves are not related by an affinity relation
except if the initial amount of solid is tuned accurately.
Indeed, it is proved that, provided the temperature
dependence of the saturation concentration is known,
it is possible in principle to make the fractional
dissolution curves superimposable by affinity by
maintaining constant the excess-deficit parameter,

a=nd = Vi (C3*" — CY). Then, they can be inter-
preted in the usual way to determine the correct value
of the activation energy, which otherwise would be
impossible.
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