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Abstract

Reaction dynamics of processes involving solids are extensively studied by thermal analysis methods. They are often solved
almost naively by analogy with apparently gradientless homogeneous reactions. Other oversimplified approximations involve
the regular shape of reacting particles that are assumed to be circles or spheres regardless of their true texture (stereology). This
model never matches the results of traditional morphology observations. This article points the direction where a more rigorous
solution should go by introducing a more actual state of the sample but, unfortunately, is yet unable to show the practical way
how to actually bring in the challenge of entire introducing fluxes incorporation which solution makes difficult mathematical
problem but it enables wide options of state of the system. Practical examples are illustrated on the flux-dependent growth of

dendrites. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Motto: “‘reading literature on kinetics of solid-
state processes and, in particular, the papers on
non-isothermal kinetics, one cannot help noticing
the similarities between Science and Religion”
Brown [1].

Reaction dynamics of processes involving solids are
extensively studied by thermal analysis methods [1,2],
i.e. under conditions where the heat flow is supplied to
or absorbed from the investigated sample by means of a
surrounding thermostat which is under temperature
control (regulated at constant or under spontaneous
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heating/cooling). There is a vast amount of data pub-
lished on such “non-isothermal” kinetics of solid-state
processes frequently treated on the basis of oversim-
plified (and customarily isothermal) modelling [3-7]. It
became a subject of criticism and discussion, e.g. [1,6—
11], which we do not want to repeat, other than stres-
sing that real solid-state reactions are often too complex
to be described in terms of single pairs of Arrhenius
parameters and a traditional set of simple reaction
orders, i.e. rational exponents representing our models
of the reaction mechanism under study [4-7]. Even the
participation of the most evident flux-diffusion is sel-
dom recognised, other than by the appearance of overall
(characteristic) time-dependent terms [10].

However, the modern tools of thermal physics make
available powerful mathematical models associated
with the reality of natural processes that are never at
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equilibrium nor without gradients by appreciating the
decisive role of thermal fluxes. In the scientific intent
(publications) of non-isothermal kinetics it, however,
has not been applied yet but in the more urgent
technological processing, such as industrially signifi-
cant arc melting or welding, its solution became a real
necessity to overcome feasible manufacturing diffi-
culties. In particular, we can generally assume that at
some distance from the reaction zone where the
solidification is taking place, the molten material
undergoes irregular (turbulent) motion. It creates a
mushy zone consisting of cascade of branches and side
branches of crystals and interspacial melts that
remains lying between the original reactant (fluid)
and the product (fully solidified region). Some che-
mical admixtures of the alloy solution are concen-
trated in the interspacial regions and ultimately
segregated in the resulting microtexture pattern. Such
a highly irregular microstructure of the final solid can
become responsible for alternative properties, e.g.
reduced mechanical strength that is a costly factor
thus worthy for an active search as to resolve the
intricacy of the processes involved. It follows that
small changes in the surface tension, microscopic
temperature fluctuations or non-steady diffusion
may determine whether the growing solid looks like
a snowflake or like seaweed. The subtle way in which
tiny perturbations at the reacting interface are ampli-
fied then become important research topics bringing
necessarily into play a higher mathematics. The chal-
lenge of theorists turns out to be the prediction of
spacing of the final crystalline array which requires
computations how the initially stationary flat interface
accelerates in response to the moving temperature
gradient, how local concentrations (e.g. impurities)
adjust to this motion, how the flat interface desta-
bilise and became branched, how the resulting crystal-
line twigs interact with each other and how the
branched array coarseness and ultimately finds a
steady-state configuration. In every details it is not
an easy task at all.

A real solid-state reaction under thermoanalytical
investigation, even those most ideal one, is intrinsi-
cally more complicated than most of us would like to
believe. As emphasised above, we will have to deal
with these complications, usually caused by actual
localisation of generated heat, liquids and gases (or
other freely moving products) if we are to achieve new

levels of performance. The conceptual underpinnings
for much of our more advanced perception of phase
transformations have thus to use complicated mathe-
matics that is curiously employed to describe both the
pattern formation in crystal growth and the so called
symmetry breaking (the origin and distribution of
elementary particles in the early Universe). Therefore,
such an intricate approach is not too welcome in the
ordinary practice of chemical kinetics and its further
application to daily kinetic evaluations has not been
assumed as yet. Our contribution tries to point the
direction where we should go but, unfortunately, is yet
unable to show the practical way how to actually bring
in the challenge of entire fluxes incorporation which
solution thus sustains the imminent task for both the
advanced research to take part during this new century
and the newly educated generation of young thermo-
dynamists to undertake it.

2. Current approach

Our originally proposed theory, based on general-
ised (near-equilibrium) thermodynamics applicable to
thermal treatment and analysis, employed conditions
of constant heating [4,11,12] (i.e. constant first deri-
vatives, particularly those regarding the change of
temperature, d7/dz, assuming that d*T/dr* = 0) sup-
posing only the straightforward heat interaction
between the sample and regulated thermostat. It does
not involve the actual effect of heat liberated and/or
absorbed by the reacting sample itself so that it is
herewith extended to areas so far not commonly
applied in the traditional domain of thermal analysis,
although it is most pertinent to its feature of ‘“‘real
heating and/or cooling” phenomena (where the second
derivatives can often be non-zero, in general notation
dzx/ dr?> # 0). Moreover, classical sphere of thermo-
dynamic definitions of stability are inapplicable to the
determination of the morphology of growing inter-
faces, and current extensions have not yet furnished
a fully acceptable alternative. The simplest assumption
made is that the morphology which appears is the one
which has the maximum growth rate and/or minimum
undercooling (or less commonly overheating). This
assumption can be justified on the basis of minimum
(non-equilibrium) entropy production. In contrast to
aspects of the classical thermodynamics, these new
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“true flow” features, which should be taken into
account in all actually studied thermal processes are
the subject of the thermodynamics of irreversible
processes [12-23] and are thus the issues worthy of
discussion.

Classical kinetics of solid-state reactions is mostly
performed by assuming physical-geometrical model
functions reflecting chemical changes at the flat reac-
tion interface in its systematic advance into the
unchanged reactant. These models are derived on
the basis of a formal description of geometrically
well-defined sample bodies [3-9]. It is assumed that
it is possible to transfer concepts from the convenient,
simple geometry of homogeneous-like kinetic models
(represented by non-dimensional concentration) to
idealised heterogeneous (dimension-like geometry)
models [6,24,25] (represented by the surface versus
volume ratio between the reactant and product phases
and based on the derived representation by a dimen-
sionless fractional degree of conversion). Space dimen-
sionality is factually introduced through the formation
of a reaction interface and the consequent possibility of
multi-dimensional interfacial forward movement—
called growth. However, the more adequate aspects

of fractal geometry [24,26] and/or integral geometry
(stereology) [27,29] have not been put into wider use
as yet.

Disregarding the initial process of new phase for-
mation (nucleation) the kinetic models are described
in terms of the overall atom attachments to the reaction
interface due to either chemical reaction (bond redis-
tribution steps) or interfacial diffusion (reactant sup-
ply). A stabilised (steady) state is taken for granted
neglecting, however, directional changes (fluctua-
tions). The models also neglect other important factors
such as interfacial energy (immediate curvature, capil-
larity) and particularly, internal/external transport of
heat and mass to and from the localised reaction
boundary which may result in the breakdown of planar
reacting interface, which anyhow, at the end of pro-
cess, often exhibits complex topology (resulting
microstructure). Various activated disturbances are
often amplified until a marked difference in the pro-
gress of the tips and depressions of the perturbed
reacting interface occurs, making the image of resul-
tant structures irregular (unrefinable), see Fig. 1. This
creates difficulty in correlating traditional morpho-
logy observations with anticipated structures that are

Fig. 1. Initial evolution of an unstable and stable interface. Let us imagine a planar section of a reacting interface (left). During its
propagation, any such interfaces will become a subject to random (spatially regular) disturbances caused by temperature fluctuations,
variations of grain boundaries, curvature, insoluble subdivisions, concentration fluctuations, energy irregularities, etc. An unstable interface
(upper) is distinguished from a stable interface (lower, assumed in all physical-geometrical modelling such as a contracting sphere, left) by its
response to such disturbances. Projections may find themselves in a more advantageous situation for growth and therefore increase in
prominence. Shadow area of the left magpie can represent either the traditionally, plainly projected and homogeneously layered product or, in
our view, perturbation favoured, heterogeneous and thus morphologically vastly structured growth outcome. This is usually the best manifested
during the casting of alloys, and/or rapid quenching in general, where a stable interface is only obtained in special cases, such as at the
columnar solidification of pure metals or directional solidification during pulling single crystals by the stabilised methods by the Bridgeman or
Czochralsky. It seems to operate for all transformations carried out at high rates of cooling/heating, or latent heat extraction/production, where
the cooperative outcome of heat, mass (including decomposition products) and viscous (tension) flux initiates local instabilities. We can also
meet it in everyday events of snowflakes formation.
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usually very different from the originally presupposed
(simple, planar) geometry. Depending on the direc-
tional growth conditions, so-called dendrites (from the
Greek ‘dendros’ = tree) develop, their arms being of
various orders and trunks of different spacing due to
the local uneven conditions of heat supply. This
process [28—34] is well known in metallurgy (quench-
ing and casting of alloys), water and weather preci-
pitates [35-37] (snow flakes formation, crystallisation
of water in plants) but also for less frequent types of
other precipitation, crystallisation and decomposition
processes associated with dissipation of heat, fluids,
etc.

It is always interesting to see how far the use of
classical methods can be extended in this non-equili-
brium situation. Growth rates, undercoolings and
supersaturations are closely related by functions
whose forms depend upon the process controlling
growth [28,29] (the chemical reaction involved in
the atomic attachment, heat and electrical conduction,
or mass and viscous flow). In each case, the growth
rate increases with increasing degree of undercooling
and the perturbation on the reaction interface can be
imagined to experience a driving force for such an
accelerated growth usually expressed by the negative
value of the first derivative of the Gibbs (free) energy
change, AG, with respect to distance, r. For small
undercoolings, we can still adopt the above-men-
tioned concept of the constancy of the first derivatives
[4,12], so that dAG equals to the product of the
entropy change, AS, and the temperature gradient,
AT, which is the difference between the thermody-
namic temperature gradient (associated with transfor-
mation) and the heat-imposed gradient at the reaction
interface as a consequence of external and internal
heat fluxes. Because AS is often negative, a positive
driving force will exist to allow perturbations to grow,
only if AT is positive. This pseudo-thermodynamic
approach gives the same result as that deduced from
the concept of zone constitutional undercooling [32]
and its analysis is important for the manufacturing of
advanced materials (fine-metals, nano-composed
assets, growth of quantum-low dimensional posses-
sions, composites and whiskers, tailored textured
configurations, growth of biological structures, pro-
cesses involving water freeze-out in, e.g. cryopreser-
vations, etc.) and thus, it is worth further and more
detailed examination.

3. Impact of non-equilibrium thermodynamics

Any treatment of classical thermodynamics begins
with some sort of statement of the principle of con-
servation of energy, E, (1st law) defining the mechan-
ical concept of work and introducing temperature, 7,
as an integrating factor of a certain differential equa-
tions (which apparently eliminates heat from thermo-
dynamics). If we could identify heat, g, with entropy,
S, the mysterious 2nd law becomes quite intuitive and
very easy to understand when imagining that heat
cannot be annihilated in any real physical process.
In classical thermodynamics (understood in the yet
substandard notation as “‘thermostatics™) we gener-
ally accept for processes the non-equality dS > dg/T
accompanied by a statement to the effect that,
although dS is a total differential, being completely
determined by the states of system, dg is not. It has the
very important consequence that in an isolated system
dg = 0 and entropy has to increase. Because in isolated
systems processes move forwards equilibrium, the
equilibrium state corresponds to maximum entropy.
In true non-equilibrium thermodynamics, the local
entropy follows the formalism of extended thermody-
namics [13-22] where gradients are included and small
corrections to the local entropy appear due to flows
making (dS/d¢) > (dg/dr)(1/T). The local increase
of entropy in continuous systems can be then defined
by using the local production of entropy density, a(r, ).
For the total entropy change dS, consisting of internal
changes and contributions due to interaction with
surroundings, i and e, we can define the local produc-
tion of entropy as o (r,1)=d;S/dt > 0. The irreversible
processes obey the Prigogine evolution theorem about
the minimum of the entropy production [22].

Traditionally, the phenomenological description of
macroscopic systems is based on a selected number of
observables accessible by macroscopic measure-
ments. These may be intensive, I (temperature 7,
pressure P, magnetic field H, etc.) or extensive, X
(energy E, entropy S, volume V, mass m, momentum ,
dimensionless extent of reaction o, etc). Classical
thermodynamic systems at (infinitesimal d/ and dX)
or near equilibrium including its extension to constant
heating [4,11] (assuming real Al and AX) cannot
depict the often disturbing role of heat fluxes, dg/dt.
In most real situations, we can assume local equili-
brium, where thermodynamic relations remain valid
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for the thermodynamic variables assigned to an ele-
mentary volume AV [14,15]. With each extensive
quantity, X, we can associate a density (quantity per
unit volume) through the function x(r, r) dependent on
position, r, and time, f,

. X(r,1)
x(r,1) = Alxlflllo AV

For the total value of the extensive quality

X(t) = /Vx(r, t)dr )

ey

where the space integral, fv , extends over the volume,
V, occupied by the system under study.

4. Introducing fluxes

By manipulating various factors that influence the
rate of change of X(7) in a non-equilibrium system, we
can obtain a balance equation for the density x(r, 7)
by specifying hydrodynamic derivatives (d/dr a total
time derivative) thus maintaining the view of conti-
nuum mechanics. The general balance of x(r, f) has the
form:

dx
4 = —divi + o, 3)

where g, is density of the source of value x, and j, is
the non-convective (dissipative) part of the flux of a
particular x (e.g. diffusive flux, thermal flux, viscosity
flux, etc. i.e. fluxes responsible for the actual condition
of a given region of the reacting interface). In the case
of a mass balance or an energy balance, we have

do.
% = —div p;u; + v; (mass balance) (€]
and
dE
% = —divjg + pq (energy balance as a local form

of the first law of thermodynamics) (®)]

where p is the total mass density and p; is the partial
mass density of the ith subsystem. Some other appro-
priate fluxes like the momentum density, pu; (for
individual velocities u; which principally also include
diffusion) or the heat flux jg, and those expressing the
presence of sources or sinks, like rates of chemical

reactions v; or density of supplied heat, g may also be
included. In this generalised thermodynamic view the
notion of irreversibility is of the utmost importance
and a local field derived from entropy must again obey
the Clausius inequality. The temporal change of the
total entropy S in some subsystem is due to both
the interaction of the system with its surroundings
(the entropy flux d.S) and the internally produced
entropy (d;S). Moreover, dS —d.S=d;S>0. In a
like manner to Eq. (3) we may write
p%S = —divjg + o (local form of the second

! law of thermodynamics) (6)

where js and ¢ are the entropy flux and the entropy
production per unit volume, respectively.

Let us consider the extension into the range of non-
linear phenomenological laws where the balance
Egs. (3)-(6) have a general form

do;
de

=fi{@i}, ¥) (7

where @; and f; are shorthand notations for the state
variables and the rates respectively. In general, f; are
functionals of {®;} because they contain the effect of
space derivatives. The symbol ¥ stands for a set of
parameters that may enter in the description to define
the process. Within the framework of linear non-
equilibrium thermodynamics, the mass and entropy
balance Egs. (4) and (6) would give certain forms for f;
as summarised in Table 1 which illustrates the various
type of fluxes, that can be involved.

The entropy flux js =jg/T — > .jiu;/T and the
entropy production take a remarkable bilinear form
0 =Y ,JaX4, where J, and X, are conjugate variables
known as generalised fluxes and forces associated with
the various irreversible processes, see also Table 1.
Generalised forces can be viewed as the driving forces
for irreversible phenomena which are manifested
through the fluxes (e.g. a temperature gradient is
associated with a heat flow). Such gradients may arise
transiently, or be maintained systematically, by appro-
priate boundary conditions (constraints) applied on the
surface of the system studied. For the local formulation
of irreversible processes, it is necessary to see how the
fluxes J,, (which in principle are unknown quantities)
are related (if at all) to the forces X, which, according
to Table 1, are known functions of the state variables
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Table 1
Fluxes and forces corresponding to irreversible phenomena

Process Flow/current

Generalised force Tensor character

Chemical reaction
Heat conduction
Mass transport
Electrical conduction
Viscous flow

Reaction rate (w)
Energy flow (Jg)
Diffusion current (J)
Ton current (J;)
Stress tensor (P)

Affinity (A,/T) Scalar
(VTIT) Vector
—(Vui/T) Vector
—V(UIT) Vector
—(1/T)Vu Tensor

V represents the gradient of the appropriate function, i.e. it means the vector which components are derivatives of the space coordinates x, y
and z, y; is the chemical potential of the ith component, U is the potential of the electric field.

and their gradients (we should note that the above
mentioned classical equilibrium is characterised by the
absence of both the macroscopic constraints, X;1 = 0
and travelling fluxes JS4 = 0).

In the linearity range of irreversible processes, the
phenomenological Onsager coefficients, L, [19,21],
are determined by the internal structure of the system,
independently of the applied constraints (but depen-
dent on the state variables X(¢) = T, P,...) yielding
Jo = pLapX, where Ly, = (dJ,/dX,),, fulfilling
o= ZabLabXaX,, > 0. An important issue of dynamic
equations is the stationary solution which describes
the state of the system that is independent of time. The
answer to the question of how this state remains stable
during the action of small fluctuations of physical
values (fluctuations are usually damped with time),
lies in the criteria of stability. Linearised stability
asserts asymptotic stability around its reference state,
e.g. X; = X;rer + dX; (for dX;/X; < 1) and expanded
for small dX; we obtain, in abstract notation,
d{dx}/dt = Ldx, where L is a linear operator and
the problem is solved by determining so called eigen-
functions and eigenvalues of L and the unseen char-
acteristic parameters m. The reference state is
asymptotically stable for most m but, for some m,
the solution of such a thermodynamic branch is
unstable and, for critical values of ¥, bifurcation
appears, in other words, several quite different evolu-
tions of the system are possible and that which is
realised depends on ¥ in a non-analytical fashion (a
special domain of non-linear mathematics).

5. Stereology aspects

In the special case of non-isothermal reaction
kinetics, which regularly involves solid-state processes,

the rate equations are often solved almost naively by
analogy with apparently gradientless homogeneous
reactions. Other oversimplified approximations (as
mentioned above where reacting particles are often
assumed to be regular circles or spheres regardless of
their true morphology) are introduced that never match
the results of traditional morphology measurements by,
e.g. light or electron microscopy. This is worth of
similar attention, being related to the above discussed
case of disregarded temperature and concentration
gradients. This simplification aspect is often neglected,
although very important, because we have to keep in
mind that all possible images (postulated geometrical
models or real structures seen on a screen, or otherwise
observed) are only two-dimensional representations
of the real three-dimensional structures. For a more
objective evaluation of the numerical characteristics
of real geometrical bodies we, therefore, have to
employ so called steorology, understood here as integral
geometry.

Invariant measures of the internal configuration of
a multiphase body (where individual phases A, B, ...
internally form three-dimensional structures must
fulfil three basic criteria: invariance of motion, addi-
tivity and monotony which corresponds to a mathe-
matical hypothesis based on the four Minkowski
functionals [29] (quermass integrals or measures)
abbreviated as Wl.3. These measures have, for each i,
a definite practical meaning, i.e. volume of A, WS,
mean area (surface), W3, length, W5 and number of
disjunctive features of A (e.g. number of opened
against closed structural holes), W;, needed for a
global geometrical characterisation M. It follows that
M3(A) = 5" ¢;W?(A) where each W?(A) is a homo-
geneous functional of the root (3 — i) and M?(A) is
then a monotonous functional (¢; > 1). For actual
calculations, the two-dimensionally screened images
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Table 2
Measure of the induced structure

Measure of Section by random probe Lf

structure (A) - -
Plane 13 Line L3 Point L}

Volume (V3) A, L, P,

Surface (S,) B, 1,

Length (D)

can be used bearing in mind, however, that these
evaluations are only statistical. The solution is based
on the utilisation of so-called symmetrical functions of
curvature, C;_, , 5, providing the relations for mean
curvature (CS = 1), Gaussian curvature (C? = (ki1 +
k;)/2) and fundamental curvature (C3 = 1/(kik2)),
where ky = 1/pmin and k, = 1/p,,,, are the main
curvatures for minimal and maximal radius of the
oscillation circles in a given infinitesimal element
of the measured phase surface JA. Objective proofs
of stereological relations are difficult, but the resultant
relations reveal surprising simplicity. A convenient
universal relation is based on the so-called Kubota’s
recurrent formula [28] showing that W3 (A) = V(A)
(i.e. approaches the n-dimensional volume of A in the
sample space E) which is the mean value of the W;ljll
for all projections of the phase A onto the linear
subspace with a lower dimension (n — i), providing
more generalised values of constants g ;.3 = 2, 2,
47 and 27*. From measurements in a random section
(planar or linear probes or random points) of the
investigated structure, we can obtain concrete values

i)

structure

of the quantities introduced in Table 2 and illustrated
in Fig. 2.

It is clear that introduction of the actual state of the
system, either real body structures or imposed gradi-
ents, is not easy. The introduction of legitimate non-
equilibrium phenomena in the non-linear range leads
to new regimes differing quantitatively from the
“reference” stationary states of regular equilibrium
or near-equilibrium descriptions.

6. Dissipative structures

The question that arises is, therefore, whether the
move away from a standard configuration can lead to
states displaying spatial or temporal order. We call
these regimes dissipative structures to show that they
can only exist in conjuction with their environment
and if influence constraints are relaxed and the system
is allowed to approach equilibrium, the entire orga-
nisation will collapse. They can form only in open
systems far from equilibrium and dynamic equations
have to be non-linear. The best example comes from
fluid dynamics when a horizontal fluid layer is heated
from below. When the temperature gradient remains
small with respect to some characteristic values, heat
passes through the fluid by conduction. As the heating
is intensified, however, at a certain well-defined cri-
tical temperature the gradient pattern (regular due to
convention) changes spontaneously, being organised in
a cell-like fashion. This high degree of molecular/cell
organisation becomes possible through transfer of

sample v

L,(v)
1\ a0/ B
L3

/l-i? L \ g1(5)

Ay(s)

Fig. 2. Stereology view. Left, internal structure of a three-dimensional sample; right, graphical connotation of the steorological quantities for

planar L} and linear L3 probes (cf. Table 2).
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energy from thermal motion to macroscopic convec-
tion currents. A similar situation can occur at a reac-
tion interface under the cooperative action of thermal
and concentration gradients, within yet unreacted
layer of reactants (solidification). Other examples
are the Belousov—Zhabotinsky reaction [39] or the
variety of biophysical signals emitted by living cells to
control a number of key processes.

Let us analyse the simplest cases of bifurcation.
Higher-order non-linearities, by involving two or
more variables in connection with spatially inhomo-
geneous systems, give rise to more complex phenom-
ena. The best examples are systems controlled by
simultaneous chemical reactions and mass diffusion.
Their evaluation is given by Eq. (3), with the addi-
tional assumption that the diffusion flux j; is approxi-
mated by Fick’s law, a special form of the linear
phenomenological laws given in Table 1, that is

Ji=—-DiVp; (8

where V is the above mentioned space derivative and
D; are the diffusion coefficients which are in the first
approximation, assumed constant. The reactions rates,
w,, are (generally non-linear) functions of the con-
centrations (often in a cubic manner). This gives rise to
the following evolution equation

dp; 2
o =V (Z:Piv lP) + D;V-p; )

where ¥ denotes again a set of parameters descriptive
of the system (e.g. initial composition, cooling rate,
undercooling, characteristic lengths, etc.). When
¥ = Y., the state of the system may change dra-
matically causing the symmetry breaking in space and
time. From the mathematical point of view, the system
becomes localised at the thermodynamic branch and
the initially stable solution of the appropriate balance
equation bifurcates. New stable solutions suddenly
appear and may overlap. One possibility is time-
symmetry breaking, associated with the merging of
time-periodic solutions known as limit cycles whose
period and amplitude are stable and independent of the
initial conditions. Their importance lies in the fact that
they can constitute models of rhythmic phenomena
observed in nature, particularly biological or chemical
clocks. Cascading bifurcations are also possible. This
opens the way to a gradual increase of complexity by a

mechanism of successive transitions, leading either
to the loss of stability of a primary branch and the
subsequent evolution to a secondary solution display-
ing asymmetry in space similar to stable rotating
waves as observed in the classical Belousov—Zhabo-
tinsky reaction [38,39]. Such transitions are some-
times accompanied by some remarkable trends, e.g.
certain classes of reaction-diffusion systems under
zero-flux boundary conditions, may exhibit no net
entropy production change when the system switches
from the thermodynamic branch to a dissipative struc-
ture. On the other hand, there is a systematic decrease
in entropy in the vicinity of bifurcation points. Asso-
ciated fields are the theory of chaos [40—43], fractals
[44] and some aspects of the prediction of weather
[35].

7. The chaotic case of dendritic growth

One of the most practical applications is the highly
non-equilibrium crystallisation of highly supersatu-
rated solutions or, as mentioned above, any solidifica-
tion of rapidly quenched alloys. They exhibit a free
dendritic growth, i.e. unconstrained development of
curious shapes of crystals precipitating within con-
centration or temperature gradients (mostly in under-
cooled melt). This phenomenon has long been known
in the technology of the crystal growth and is exem-
plified in the formation of cellular structures [27].
Explanation of this complex phenomena is usually
done in terms of constitutional undercooling, A7, and
its thermodynamic meaning is associated with the
local equilibrium temperature of the melt solidifica-
tion in an arbitrary point near the solidification front.
It corresponds to a local concentration in the melt
which is higher than that for the actual temperature in
the same point. Consequently, the disturbance of the
solidification front spontaneously increases and the
phase interface become unstable, see Fig. 3.

The formation of a dendrite begins with the break-
down of an unstable planar solid/liquid interface, cf.
Fig. 1. Perturbations are amplified until a marked
difference in growth of the tips and depressions
occurs. The temperature gradient must be deformed
in the liquid at the tip increases, while that in the solid
decreases. Therefore, more heat will flow into the tip
and less will flow out of it. Meanwhile, the reverse
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o

plane front

gy, =

A

Fig. 3. The conditions of dendritic growth. The right diagrams illustrate the reacting front geometry (upper), temperature (bottom) and
concentration (middle) fields resulting in dendrite growth. T is the temperature field in the system, T} the equilibrium temperature of
solidification, T* the growth temperature, 7; the temperature of liquidus, Cy the concentration in the liquid phase, AC™ the supersaturation (as a
length of the tie-line at the temperature tip), G the temperature gradient and mG, the gradient of liquidus (1). In pure substances with the plane
(Co =0 and G > 0) or equiaxed (Cyp =0 and G < 0) front dendrites can grow in an undercooled melt only. The necessary condition of
dendritic growth in binary systems is a constitutional undercooling, illustrated for both the columnar (dashed, C, > 0 and mG, > G > 0) and
equiaxed (Cy > 0 and G < 0) conditions. When a positive gradient of temperature (G > 0) is imposed (such as directional columnar
solidification) the latent heat is transported together with unidirectional heat flux into the solid(s). When heat is extracted through the solid the
solute diffusion will be the limiting factor only. AT,, see phase diagram left, factually provides the degree of supersaturation, AC/AC™, but its
determination is also a function of other parameters and requires its evaluation by a set of differential equations. The simplest solution is
obtained when the tip morphology is supposed to be hemispherical, instead, the real form of the dendrite tip is best represented by a paraboloid
of revolution. Due to the anisotropy the dendrite will grow in the preferred crystallographic direction which is closets to the heat flow, Jg,
whereas cells grow with their axes parallel to the heat flow direction without regard to the crystal orientation (e.g. marked [0 O 1]). In the
opposite case of one component system the heat is rejected at the interface of a tip into the liquid phase. Consequently, the equiaxial dendrites

emerge in solid phase.

situation occurs in the depressions forcing perturba-
tions to be damped out. Moreover, the equilibrium
temperature at the interface, determined mainly by
composition, is changed as a consequence of the local
interface curvature. Because the tip can also reject
solute in the lateral direction, it will tend to grow more
rapidly than a depression, which tends to accumulate
the excess solute rejected by the tips. Therefore, the
form of the perturbation is no longer (initially) sinu-
soidal but adopts the form of cells which are ellipsoid-
like crystals growing anti-parallel to the net flux
direction. If the growth conditions continue close to
the limit of constitutional undercooling of the corre-
sponding planar interface, tree-like formation occurs
and the cells rapidly change to dendrites, which then
exhibit secondary arms and crystallographically gov-
erned growth directions. If the heat extraction is
isotropic, dendritic growth is equiaxial. For a single
dendrite, a short parabolic tip region can be observed
which often constitutes less than 1% of the length of

the whole dendrite and perturbation appear on the
initially smooth needle as in the case of the breakdown
of the originally discussed planar interface. If the
primary spacing is sufficiently great, these cell-like
secondary branches will develop into dendrite-type
branches and thus leads to the formation of tertiary and
higher-order arms. When the tips of the branches
encounter the diffusion field of the arms of neighbour-
ing dendrite, they will stop growing and begin to ripen
and thicken. Beside the normal temperature gradients
discussed above, the radial temperature gradient can
also be accounted through convention usually origi-
nating by the non-homogeneous distribution of the
mass density throughout the fluid (Rayleigh-Bernard
instability [29,34]) or by variation of the surface
tension of free surfaces (Marangoni convection [29,
34]) for the densities differences between phases or by
electromagnetic forces (electrophoresis). Numerical
computations provided both a long-wave convective
instability or short-wave bifurcations.
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These diffusion processes are driven by gradients
in the liquid which are in turn due to temperature on
the interface. The interface temperature is related to
the interface composition, the surface curvature and the
departure of interface from local equilibrium. The last
contributions are curvature undercooling, composition
and kinetic undercoolings. The ratio of the change in
concentration at the tip to the equilibrium concentra-
tion difference is known as supersaturation and repre-
sents the driving force for the diffusion. The form of
the tip is affected by the distribution of the rejected
heat or solute and interactions makes the development
of an exact theory extremely complex, usually invol-
ving an exponential integral (known from nonisother-
mal evaluation procedures [4]). The methods of the
perturbation analysis were introduced into crystal
growth theory by Mullins and Sekerka [33] who
expressed the deviations from the spherical form in
terms of spatial functions Y,(®,¢)

R=ry(t) + 6()Yim(O,0) (10)

where r is the radius of the unperturbed sphere, o(¢)
the time-dependent amplitude of the perturbation and
R is the distance of the perturbed surface from sphere
centre. It was assumed that the principle of local
thermodynamic equilibrium is satisfied. Relationships
describing the rate of change of the perturbation
amplitude were derived. This quantity determines
the stability conditions of the growing interface: when
dd/dr > 0, than the perturbations are amplified and
the growth process is unstable.

More complex equations of perturbation balance of
the discontinuity interface were derived within the
framework of the linear approach. Generalised con-
ditions for the heat transport at a curved interface have
the form

VN [(PCT)L - (PCT)S]
aTs 6TL

ZDSE—DLW"N[Q‘FCM(JCS —f)] (11)

where Cy, is twice the mean curvature of the solidi-
fication front, vy is the normal component of the
growth rate, (fs — f) is the difference between Gibbs
and surface energy, Dy _ s is the diffusion coefficients in
the liquid (L) and solid (S) phases, T1_g is appropriate
temperatures on interface, p is density and c is heat
capacity. All the derivatives are taken with respect to
the direction normal to the interface. Since the surface

energy can be expressed in terms of interface entropy,
the last term on the right hand side of Eq. (11)
destabilizes the system for negative values of the
surface entropy (and vice versa).

The applications of linear and also non-linear mor-
phological stability theory to diverse areas of crystal
growth are developing rapidly. Any steady-state
description of dendritic growth ignores the rather
obvious fact that dendrites are inherently time-depen-
dent structures. The dendritic side branches also
appear to be oscillatory in time and space. These
important morphological and dynamical properties
of dendrites suggest that a dendrite might be better
treated as a dynamical phase transformation display-
ing time-dependent behaviour. So, dendritic growth
may represent an example of self-organising forma-
tion phenomena, which is a deeply researched subject
within the broader field of nonlinear dynamics and
dissipative phase formation [29,39]. The effect of
temperature flow can affect the degree of ordering
of certain directionally solidified eutectics to produce
a characteristic growth of well-organised lamellae
[27,28] and can be found in directionally grown
composites, layered products of decompositions, etc.

8. Conclusion

It is clear that above-mentioned, single-value char-
acterisation of non-equilibrium processes [11,40,44]
is not fully agreeable and thus needs to undergo
modifications to match another style of presentation
adequate to the modern level of scientific treatments
available. Some progress was achieved in the deter-
mination of activation energy E of reaction in the-
ories, in which the temperature gradient, temperature
dependence of E, or competitive processes were
assumed [45—47]. But it should be brought into con-
currence with the description of fluxes, in particular,
with the ever-participating heat flux that is involved in
all thermophysical measurements that employ higher
rates of temperature changes. During such a non-
equilibrium (or even ‘“‘thermodynamically near-equi-
librium’”) processing the resulting overall reaction rate
is determined not only by kinetic processes taking
place at the phase interface (usually characterizable by
some set of constants) but also by the nearby mass and
energy transport. Both features combine their course
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of action in a complex manner, because the transport
properties determine the conditions on the entire phase
interface and, vice versa, the depletion of interfacial
reactants controls the strength of the fluxes. The
kinetics of phase transformations is thus influenced
by the neighbouring temperature, stress, concentration
and similar distribution gradients both across and
along the reaction interface. Thus, it is necessary to
bring all processes together in one model, which is
capable of describing the evolution of the system as
whole. Such a model of the total process needs to be
described by a set of functions of time and space co-
ordinates yet inconvenient in our, so far common,
kinetic language.

As an example of such functions resulting from
non-linear theories of diffusion or heat conduction we
can mention the following relations [48,49]:

ap 0 ap op\*

= o [Dl(x)a + Ds(x) (a) (12)
o*p p *p

"o Yo~ Pae (13)

N N ) nop
5_a</0dz/ocdxD(t—t,x—x)a (14

Eq. (12) reflects the dependence of the fluxes on the
quadrate of the density gradient (by coefficient D,).
During the derivation of the next Eq. (13), the relaxa-
tion of fluctuated fluxes to the value given by the Fick
law was supposed. The relaxation time of this process
is . The Eq. (14) introduces the generalised diffusion
coefficient D(t,x) which described non-local depen-
dence of fluxes on the density gradients and on history
of the density profiles. It would be also interesting to
see this classical diffusion process in relation to
quantum mechanics [39,50-52] which would be the
subject of our next communication.

In the view of our thermoanalytical practice, the
expected results in terms of functions instead of the
traditional constants would, however, be quit unfami-
liar but we need to get acquainted with them when
facing the new prospects of the 21st century. It, in fact,
would be better to match the real thermal state
dynamics than to use the old representation in terms
of customary and almost ‘“‘religious” constants [1]
mostly linked with the activation energy that never
express the ease of reaction (desirably to be related to

the reactivity ‘““tolerance” and mechanism ‘‘annexa-
tion”). High values of activation energies are often
misleading when determining the character of the
process investigated, because high values do not mean
difficult reactivity (e.g. spontaneous and rapid exother-
mic crystallisation) and low values do not imply easy
reactivity (e.g. for habitually slow diffusional pro-
cesses). The interpretation is exactly the other, example
is the repeatedly studied case of the reversible CaCOj3
decomposition, which is strongly mass and heat flow
dependent (CO, partial pressure and diffusion as well as
its due concentration gradients created within the solid).
The related classical kinetic analysis is thus generating
the numberless figures of almost insignificant values of
activation energies [3,4] strongly dependent on the
experimental conditions applied.

From the experimental point of view it means that
we must complete our thermal analysis by the methods
describing more details about the resulting material.
We often require to determine chemical composition
of phases and their distribution in sample (by energy
dispersive analysis of X-rays, or wave dispersive
analysis of X-rays, by X-ray microanalysis or electron
probe microanalysis). Important information is given
by the geometrical relations between all phases pre-
sent in the system as well as geometrical properties of
any individual phase. In this respect the best results
can be obtained by image processing and stereology of
images obtained by electron microscopy or STM,
AFM, etc. The structure and texture of resulting phase
depend on conditions of phase transformation process,
on its stability and the particular course. The analysis
of relation between these conditions (actual tempera-
ture, cooling rates, volume and geometry of sample,
variable external fields, etc.) and changes of resulting
phase properties contribute to the real description of
reaction kinetics. As an example of the dependence of
solid phase transitions on the thermal conditions is the
transformation amorphous—microcrystalline or poly-
crystalline silicon [55].

The flux approach discussed above was assumed to
be important as early as during the 1974 NATAS/
Mettler award lecture ‘‘Rational approach to the study
of processes by thermal analysis” [44] and expanded
upon our review [28] and book [29] by introducing a
new discipline entitled ““kinetic phase diagrams” . The
concept of heat allocation may also be recognised as
an integrating element in the pathway of ordering not
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only matter, but also society [53,54] supporting our
better understanding of both our environment and the
science of nature in general.
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