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Abstract

A new method is presented for analysis of single frequency dynamic mechanical thermal analysis (DMTA) data in the
complex plane. The applicability of the method is restricted to cases where the polymer is thermorheologically simple and whose
dynamic mechanical properties are well described by the Havriliak-Negami (HN) model. The method involved two steps:
(1) the HN model was used to describe the shape of the complex plane representations of the DMTA data; and (2) the HN
relaxation time (t) was solved for at each temperature over which experimental measurements were made. This procedure
resulted in the determination of four temperature independent HN parameters (., 5, Eo, and E.) and one temperature dependent
parameter, 7(7). These model parameters were then used to calculate the dynamic mechanical properties over a range of
temperatures and frequencies. The calculated moduli and loss factors were generally in good agreement with the experimental
values for two elastomeric materials, neoprene and plasticized polyvinylchloride, that were subjected to the analysis procedure,
over an 80° temperature range and three decades of frequency. It was also demonstrated that complex plane analysis of frequency
multiplexed DMTA data could be used to calculate shift factors for time—temperature superposition. The corresponding master
curves for storage modulus and loss factor created by horizontal shifts along the log(frequency) axis were smooth, providing
additional support to the validity of the analysis procedure.
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1. Introduction axis, such that adjacent segments overlap and a
smooth master curve is obtained [1]. An alternative
to the conventional approach for generation of master

curves from DMTA data is to use viscoelastic models

Time—-temperature superposition is commonly used
with dynamic mechanical thermal analysis (DMTA)

of polymeric materials to extend the frequency range
of the measurement. This is typically accomplished by
an empirical approach in which constant temperature
data segments are shifted along the log(frequency)
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that include frequency and temperature as variables.
Once model parameters are fit to experimental data,
the models may be used to predict the polymer
dynamic mechanical properties over a wide range
of temperature and frequency.

The dynamic mechanical and dielectric relaxation
behavior of polymers in the frequency or time domains
has been described by anumber of models, including the
single relaxation time Cole and Cole [2], Davidson and
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Cole [3], Havriliak and Negami [4], and Kohlrausch—
Williams—Watts (KWW) equations [5]. The Havriliak—
Negami (HN) model relates the complex modulus (E*)
to the rubbery plateau modulus at low frequencies
(Eyp) and the glassy plateau modulus at high frequencies
(E..) through the following equation [4,6]:

% EO - Eoo
E'(w)=——
(@) 1+ (o)™

where @ = 2xf is the angular frequency, i = v/—1 is
the unit imaginary number, « is related to the width of
the loss peak, f controls the asymmetry of the loss
peak, and 1 is the relaxation time. The parameters o
and f can take on values between 0 and 1. Hartmann
et al. have shown that the five parameter HN model can
accurately describe the dynamic mechanical behavior
of polymers in the frequency domain, including the
height, width, position, and shape of the loss peak [6].

In order to use the HN model for analysis of DMTA
data, it is necessary to somehow incorporate the tem-
perature dependence of the complex modulus, E*(T).
This may be accomplished by making some or all of
the HN parameters temperature dependent. Alig et al.
used this approach in [7] by introducing a linear depen-
dence of the plateau moduli on temperature, and giving
the relaxation time a temperature dependence that
could be described by a Vogel-Fulcher equation [8,9].
The method of Alig et al. required a total of nine
adjustable parameters be fit to the experimental data.

A new approach is described in this paper for the
analysis of DMTA data in the context of the HN
model. The method involves the fit of four temperature
independent HN parameters in the complex plane of
E*, followed by a direct calculation of the temperature
dependent relaxation time 7(7) from the HN equation.
There is no specific functional dependence for T on
temperature assumed, and there are no additional
parameters introduced. The method described yields
not only the HN model parameters from single fre-
quency DMTA data, but allows one to predict the
complex modulus over a wide range of temperatures
and frequencies.

Ey (D

2. Materials

Isodamp C-1002, a plasticized polyvinylchloride,
was obtained from EAR Division of Cabot Corp.

A neoprene elastomer, an underwater transducer mate-
rial, was nominally manufactured to specifications of
5109S [10], except that it contained approximately
60 ph carbon black.

3. Experimental

All experimental data were collected on a TA
Instruments DMA 2980 machine, using the tension-
film clamping arrangement. Specimens were excited
using a 20 um dynamic displacement, and a small pre-
load (0.2 N) to ensure that the specimens were always
in tension. For the Isodamp C-1002, measurements of
the complex Young’s modulus were made over a
temperature range from —60 to 40 °C, in 5 °C inter-
vals, at the following frequencies: 0.2, 0.3, 0.6, 1, 2, 3,
6, 10, 20, 30, 60, 125, 150, and 175 Hz. For the
neoprene elastomer, measurements were made over
a temperature range from —80 to 50 °C in 5 °C inter-
vals, except in the region of the glass transition (—45
to —12 °C), where the measurements were made in
2 °C intervals. The frequencies used for the neoprene
elastomer were 0.2, 0.3, 0.6, 1, 2, 3, 6, 10, 20, 30, 60,
125, and 150 Hz. The temperature was allowed to
come to equilibrium and held constant while measure-
ments were made at each frequency. The temperature
was then incremented in a stepwise fashion throughout
the temperature range, with measurements being made
under isothermal conditions.

4. Complex plane analysis

For thermorheologically simple materials [11] (i.e.
those for which time-temperature superposition is a
valid procedure), analysis of dynamic mechanical data
in the complex plane offers some useful insights and
advantages. The complex Young’s modulus is defined
in terms of its real (storage modulus, E') and imagin-
ary (loss modulus, E”) components:

E*=FE +iE" 2)
"

tand = = 3)

where tan ¢ is also known as the loss factor. Jones
[12,13] has shown that for thermorheologically simple
polymers, the log(tan J) versus log(storage modulus)
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plot, also known as Wicket plot, forms an inverted
U-shaped curve. Furthermore, if the complex modulus
of a polymer is determined for various temperatures
and frequencies, then all loss factor-modulus points
associated with these temperatures and frequencies
will lie on a unique curve. Jones has demonstrated
this for several polymers, including polystyrene, an
acrylic adhesive, a polyvinylchloride copolymer, and a
plasticized polyvinylchloride [12,13]. Our experience
in this laboratory has confirmed similar results for a
number of other polymers. Another complex plane
representation often used for dynamic mechanical
data is the Cole—Cole plot, in which the loss modulus
(E") is plotted against the storage modulus (E'). As in
the case of the Wicket plot, the Cole—Cole data for a
given polymer lie on a unique curve that is indepen-
dent of temperature and frequency.

If one has data for the complex modulus over a
narrow range of frequencies, or for that matter at a
single frequency over a wide range of temperatures
(i.e. DMTA data), it is not immediately obvious from

10

Eq. (1) how one might extract the five HN parameters
from this data. However, it is possible to do this in two
steps: (1) plot the modulus in the complex plane, and
solve for a, f3, Ey, and E..; and (2) solve for 7 at each
temperature over which measurements were made.
This approach is based on the following assumptions.

(a) The complex plane representation of the modulus
is independent of 7. An analysis of Eq. (1)
demonstrates that either the Wicket plot or Cole—
Cole representation of the complex modulus
computed from Eq. (1) depends on four of the
five HN parameters: o, f5, Eq, and E.,. However,
the Wicket plot is essentially invariant of the HN
relaxation time 7, as demonstrated in Fig. 1.

(b) The only temperature dependent HN parameter is
7. While there is no a priori reason for this to be
true, it will be shown that temperature indepen-
dent values for o, 5, Ep, and E,, may be
successfully employed to describe the tempera-
ture and frequency dependent complex modulus.
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Fig. 1. Wicket plot for two hypothetical polymers with HN parameters o = 0.5, f = 0.5, Ey = 1 MPa, E,, = 3 GPa, and either 7 = 10 or

1073 5. The frequency range for the calculations was 10~'-10'% Hz.
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The detailed procedure for step (1) is discussed
below. The procedure for step (2) is discussed in the
next section.

Trial values for o, f5, Ey, and E., were used to
compute E*(w) according to Eq. (1), setting T = 1 and
over the frequency range 102°-10"° Hz. The degree
of fit of the calculated complex modulus to the experi-
mental modulus for each set of trial parameters was
examined in the complex plane, using either the Cole—
Cole (E” versus E') or Wicket plot (log(tan 0) versus
log E') analysis. For the Cole-Cole plot, the error
function used was related to the sum of the squares
of the differences between the experimental and cal-
culated loss moduli, E”, over a given range of storage
moduli, E'.

Cole—Cole error function

2
o ZE’ |ngp - EZalc' 4)
- 2
ZE’ |E/e/xp|

where E is the experimentally determined loss
modulus and E7,. is the calculated loss modulus.
For each set of trial parameters, the error function
was computed over the range of E' for which there

was an overlap of experimental and calculated data.

fi

10

The corresponding error function used for the Wicket
plot was as follows.
Wicket error function

_ 2_p[log(tan dexp) — log(tan dcarc) ?
>~ [log(tan dexy )

where tan de, is the experimentally determined loss
factor, and tan J.,. is the calculated loss factor.

A multi-parameter optimization was carried out
using the Matlab software’s optimization toolbox to
find values for the parameters o, f5, Eq, and E that
minimized the error functions f; and f>. The most
consistent results and the fastest convergences were
reached by first optimizing with respect to the Cole—
Cole function f;, then with respect to the Wicket
function f5.

Fig. 2 shows the storage and loss modulus of
Isodamp C-1002 over a range of temperatures and
at a frequency of 1Hz. The results of the fitting
procedure described above are shown in Fig. 3 and
tabulated in Table 1. It can be seen from Fig. 3 that the
four temperature independent HN parameters (o, f3,
Ey, and E_.) describe the complex plane behavior of
Isodamp C-1002 quite well. The same procedure was
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Fig. 2. DMTA data for Isodamp C-1002 at 1 Hz. Sample was excited in tension.
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Fig. 3. Cole—Cole plot for Isodamp C-1002 at 1 Hz (data taken from Fig. 2). The best fit HN parameters (excluding t) were o = 0.440,

fp =0.165, Ey = 3.03 MPa, and E,, = 3.86 GPa.

Table 1

Temperature independent HN parameters determined from com-
plex plane analysis of DMTA data for two different elastomeric
specimens

HN parameter Isodamp C-1002 Neoprene elastomer

o 0.440 0.605
B 0.165 0.452

E, (Pa) 3.03 x 10° 2.28 x 107
E (Pa) 3.86 x 10° 441 x 10°
Table 2

applied to the neoprene elastomer, and the results
tabulated in Table 1. The HN model (Eq. (1)) describes
the dynamic mechanical behavior of the neoprene
elastomer specimen quite well, except at the lowest
and highest moduli. This is especially true for moduli
less than 2 x 107 Pa, where the HN model data is
markedly different from the experimental data. The
DMTA experiments and the complex plane fitting
procedure was repeated a number of times for repli-
cate specimens of each elastomer (Table 2). The

Averages and standard deviations (S.D.) for the temperature independent HN parameters determined for three replicate samples of Isodamp

C-1002, and five replicate samples of the neoprene elastomer

o B log(Ey) (Pa) log(E) (Pa)
Isodamp C-1002 (three replicates) Average 0.454 0.322 6.537 9.541
S.D. 0.030 0.172 0.059 0.048
Neoprene elastomer (five replicates) Average 0.582 0.493 7.255 9.621
S.D. 0.038 0.167 0.044 0.044
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statistical variability of results in Table 2 is due mainly
to factors such as the precision of the instrument,
reproducibility of the clamping conditions and iso-
tropy of the sample, rather than robustness of the
analysis technique. The experimental results for two
specific elastomer specimens and their associated
HN parameters in Table 1 are the subject of further
analysis described below.

5. Havriliak—-Negami relaxation time

Using the o, f8, Ey, and E, values from Table 1, and
the associated experimental complex moduli, E*(w, T),
it should be possible to calculate the relaxation times
7(T) from Eq. (1). This may be accomplished analyti-
cally if 7 can be isolated from other variables in that
expression. Using the Matlab symbolic toolbox to solve
this problem yielded the following expression for 7:

Applying Eq. (6) to the data for Isodamp C-1002
resulted in the relaxation times shown in Fig. 4. Note
that the results of this calculation were complex, and
only the real part is considered here. The temperature
dependence of the relaxation time follows an Arrhe-
nius relationship:

T =Aexp ( If%) 7

where T'is absolute temperature, R the gas constant, E,
the Arrhenius activation energy, and A is a constant.
The activation energy determined by least squares
analysis of a plot of log(r) versus 1/T was
E, =2.25x 10° Jmol . This value is higher than
the value of E, = 1.53 x 10° J mol ™', which has been
reported elsewhere [12] for Isodamp C-1002.

The relaxation time was also derived from Eq. (1)
and the o, f§, Eg, and E,, values from Table 1 using
numerical methods. For Isodamp C-1002, this yielded

+ exp L0E(EXPU0R((ED — Ex)/(E" ~ E-)) /) = 1)/2)

(6)

e (a) Analytical Solution
_ (b) Arrhenius Fit
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Fig. 4. HN relaxation time t for Isodamp C-1002 calculated from o, 8, Ey, E,, (Table 1), and the complex modulus (E*) at 1 Hz according
to Eq. (6). The temperature dependence of the relaxation time follows an Arrhenius relationship, with an activation energy of

E, =225x10° Jmol™".
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Fig. 5. HN relaxation time 7 for the neoprene elastomer calculated from o, f8, Ey, E, (Table 1), and the complex modulus (E*) at 1 Hz: (a) T
calculated directly from Eq. (6) (analytical method); and (b) 7 solved from Eq. (1) using numerical methods.

nearly identical results to the analytical method. The
analytical solution given by Eq. (6) is compared to a
numerical solution for t using Eq. (1) for the case of
the neoprene elastomer in Fig. 5. It can be seen that the
analytical solution is in agreement with the numerical
solution from —43 to —10 °C, but outside this tem-
perature range the analytical solution gives negative
results for T (not shown on semi-log plot). This can be
attributed to a poor fit of the HN equation outside the
transition region for the neoprene elastomer (for the
numerical solution, the value of T was constrained to
be positive).

6. Prediction of dynamic mechanical properties

So far, it has been shown that analysis of DMTA
data in the complex plane may be used to derive four
temperature independent HN parameters, and the
temperature dependent relaxation time. In this section,
the applicability of the analysis method to the predic-
tion of dynamic mechanical properties at various
frequencies and temperatures will be explored. Spe-
cifically, it will be shown that it is possible to use
single frequency DMTA data to predict the complex
modulus over a range of frequencies and temperatures.

The temperature range for prediction will be limited to
the range over which the HN relaxation time has been
determined.

Calculation of the complex modulus at a given
temperature (7) and frequency (w) using Eq. (1) is
straightforward once o, f3, Ey, E,., and #(7) have been
determined from the procedure described above.
Fig. 6 shows the real part of the complex moduli
for Isodamp C-1002 that were determined experimen-
tally by DMTA over three decades of frequency
(0.2-175 Hz), and at several different temperatures.
The complex moduli that were predicted from the
complex plane analysis of | Hz DMTA data compares
favorably with the experimental data over the range of
frequencies studied, especially at 0 °C, which is in the
glass transition region for this polymer. The relaxation
time for each temperature was found by interpolation
of the data in Fig. 4. For Isodamp C-1002, the relaxa-
tion times at —30, 0, and 20 °C were found to be
1.65 x 10%, 1.02 x 1073, and 1.34 x 107 % s, respec-
tively. The corresponding experimental data and cal-
culations for neoprene elastomer are shown in Fig. 7
for the storage modulus and Fig. 8 for the loss factor.
Again, the agreement between experimental data and
calculations based on complex plane analysis is very
good. Note that the calculations accurately predict the
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Fig. 6. Experimental and calculated storage moduli for Isodamp C-1002 over a range of frequencies and at three different temperatures. The
moduli were calculated from Eq. (3) using the HN parameters in Table 1 for Isodamp C-1002, and the relaxation times from Fig. 4.
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Fig. 7. Experimental and calculated storage moduli for the neoprene elastomer over a range of frequencies and at three different temperatures.
The moduli were calculated from Eq. (1) using the HN parameters in Table 1 for neoprene elastomer, and the relaxation times from Fig. 5b.
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Fig. 8. Experimental and calculated loss factors for the neoprene elastomer over a range of frequencies and at three different temperatures. The
loss factors were calculated from Eqs. (1)—(3) using the HN parameters in Table 1 for neoprene elastomer, and the relaxation times from Fig. 5b.

location and shape of the peak in the loss factor curve
for a temperature of —25 °C.

It is also possible to calculate the modulus-tem-
perature dependence at frequencies other than 1 Hz,
by utilizing the full temperature range of relaxation
times derived in the complex plane analysis. Fig. 9
shows the experimental and calculated storage mod-
ulus data for Isodamp C-1002 over the temperature
range —60to 40 °C, and at 0.2, 1, 30, and 150 Hz. The
temperature dependence of the calculated storage
moduli agree quite well with the experimental data,
with the exception perhaps of the 150 Hz data at low
temperature. The calculations were based entirely on
the analysis of 1 Hz DMTA data, using the HN para-
meters derived from complex plane analysis. Calcu-
lated DMTA curves for neoprene elastomer also agree
quite well with experimental data (Fig. 10), except in
the low modulus, high temperature region, where the
degree of fit to the HN model in the complex plane was
poor. The shape and location of the loss factor peaks
for neoprene elastomer were well captured by the
analysis, including the broadening of the peak with
increasing frequency (Fig. 10).

7. Master curves

An additional means of investigating the robustness
of the analysis method presented here is to examine its
success in producing smooth master curves from
frequency multiplexed DMTA data. Fig. 11a shows
experimental unshifted storage modulus data for Iso-
damp C-1002 over the frequency range 0.2—-175 Hz,
and at 5 °C temperature increments between —60 and
40 °C. The discrete temperature segments can readily
be distinguished from one another in the glass transi-
tion region, and are labeled accordingly. A master
curve at 0 °C was created by shifting the temperature
segments along the frequency axis by a shift factor ar
given by

T

ar = — (3)
To

where 7 is the relaxation time at temperature 7 (taken

from Fig. 4), and 74 is the relaxation time at the

reference temperature of 0°C (1.59 x 1073 5). As

shown in Fig. 11b, the resultant master curve is a

smooth function of frequency. This master curve also



Fig. 9. Experimental and calculated storage moduli for Isodamp C-1002 over a range of temperatures and at four different frequencies. The
moduli were calculated from Eq. (1) using the HN parameters in Table 1 for Isodamp C-1002, and the relaxation times from Fig. 4.
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Fig. 10. Experimental and calculated loss factors for the neoprene elastomer over a range of temperatures and at four different frequencies.

The loss factors were calculated from Eqgs. (1)—(3) using the HN parameters in Table 1 for the neoprene elastomer, and the relaxation times
from Fig. 5a.
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Fig. 11. (a) Multiple fixed frequency DMTA data for Isodamp C-1002 over the temperature range —60 to 40 °C, and at frequencies ranging
from 0.2 to 175 Hz. (b) Master curve at 0 °C constructed by shifting data along the frequency axis by the ratio t/zy, where 7o = 1.02 x 1073 s
is the relaxation time at 0 °C (Fig. 4). (c) Calculated according to Eq. (1) using 79 = 1.59 x 1073 s and the HN parameters in Table 1 for

Isodamp C-1002.

agrees quite well with the predictions based on Eq. (1),
the HN parameters in Table 1 for Isodamp C-1002, and
the relaxation time 7o = 1.59 x 1073 s (Fig. 1lc).
Note that the HN parameters, relaxation times, and
shift factors were all derived from 1 Hz DMTA data,
but were successfully applied to frequency multi-
plexed DMTA data.

8. Conclusions

It has been shown that complex plane analysis of
DMTA data may be used to predict the complex
modulus of thermorheologically simple polymers as
a function of temperature and frequency. The method
described involved deriving four temperature inde-
pendent HN parameters (o, f8, E,, and E,.) and the
temperature dependent relaxation time 7 from single
frequency DMTA data. These five HN parameters
were then used to calculate the complex modulus as
a function of temperature and frequency. Agreement

with experimental data was generally good for two
elastomeric materials investigated, Isodamp C-1002
and a neoprene elastomer.

The method described is restricted to thermo-
rheologically simple polymers, whose dynamic
mechanical properties may be described by the
HN model. The accuracy of the predicted properties
is limited by the degree to which the experimental
data may be fit to the HN model in the complex
plane. In the case of the neoprene elastomer, there
was generally a good fit of the experimental data to
the HN model in the complex plane, with the excep-
tion of the low modulus region. As a result, the high
temperature predictions for the neoprene elastomer
were less accurate than the lower temperature pre-
dictions.

Shift factors were derived from the temperature
dependent relaxation times, and applied to frequency
multiplexed data to create master curves. The resultant
curves had overlapping temperature segments and
were smooth functions of frequency.
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