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Abstract

All kinetic analyses aim to determine a sufficient number of kinetic parameters, usually at least an apparent Arrhenius

activation energy and pre-exponential factor, and a conversion function or kinetic model (making up a ‘kinetic triplet’), so that

accurate extrapolations of kinetic behaviour can be made. ‘‘Model-free’’ methods of kinetic analysis postpone the problem of

identifying a suitable kinetic model until an estimate of the activation energy has been made. A major reason for doing this is that

misidentification of the kinetic model has a marked effect on the values obtained for the Arrhenius parameters in both isothermal

and non-isothermal kinetic analyses. Some aspects of this problem are discussed.

The non-parametric kinetics (NPK) method [1,2] is a ‘‘model-free’’ method of kinetic analysis that does not seem to have

received the attention that it deserves. This is probably because of its mathematical sophistication and the fact that the matrix and

non-linear regression calculations involved are not readily automated. The principle of the method appears to be that of

‘‘forcing’’ a set of non-isothermal data into the set which should have been obtained if the experiments had been carried out

isothermally. The method deserves wider testing and also raises some interesting aspects of the philosophy behind non-

isothermal kinetic analysis. # 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Although, the description ‘‘model-free’’ for an

approach to kinetic analysis is an unfortunate choice

and the alternative of ‘‘isoconversional’’ methods

[3,4] is more precise and less misleading, this mis-

nomer does focus attention on an important aspect of

kinetic analysis, namely the influence that the choice

of kinetic model has on the derivation of the Arrhenius

parameters, E and A, for a rate process. The objection

to the description ‘‘model-free’’ is that it tends to

imply that knowledge of the kinetic model (or more

precisely, the conversion function, g(a) or f(a), where

a is the extent of conversion), that best describes the

process being investigated, however complicated this

may be, is not an essential piece of information in the

kinetic analysis. That this is not true has been illu-

strated repeatedly by Maciejewski [5], and Macie-

jewski and Reller [6]. Without knowledge of all three

of the components labelled the ‘‘kinetic triplet’’, the

conversion function and the Arrhenius parameters, E

and A, no accurate predictions of kinetic behaviour

beyond the conditions of time and temperature used in

the original experiments are possible. The ‘‘model-free’’

approach does, however, postpone, with some advan-

tages, the consideration of the conversion function until

after estimates have been made of the Arrhenius para-

meters. In many of the methods, overmuch attention
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is focussed on the estimation of only the activation

energy, E.

The non-parametric kinetics (NPK) method of

kinetic analysis, proposed by Serra et al. [1,2], is an

interesting example of a ‘‘model-free’’ method that

uses a system of submatrices derived from a set of non-

isothermal experiments at different heating rates, to

find the Arrhenius parameters, without any prior

knowledge of the conversion function. Although,

the method is rather complicated and time-consuming,

and hence may not gain widespread use, it raises some

interesting aspects of the philosophy behind non-iso-

thermal kinetic analysis. Ever since the early discus-

sions about the possibilities of extracting of kinetic

information from programmed temperature experi-

ments in general and thermal analysis results in parti-

cular, there have been ‘‘heated’’ debates [7] about the

reliability of such kinetic parameters relative to those

same parameters evaluated using the more-traditional

isothermal approach. The division between these two

approaches has gradually begun to lessen as more

rational discussions have pointed out that both

approaches have their advantages and their limitations

[8]. The NPK method has the distinction of both

making the claim to be ‘‘model-free’’ and contributing

to the blurring of the division between isothermal and

non-isothermal kinetic analyses, as is discussed in

detail below.

2. Misidentification of the kinetic model

2.1. Kinetic models and conversion functions

A set of conversion functions, g(a) or f(a), derived

for a variety of kinetic models [9,10], has been in use

for many years for the kinetic analysis of solid-state

reactions. This set has been criticised [11] for being

too limited and, hence, for forcing researchers to pick

the statistically best model (or even a limited group of

statistically-equivalent models) from this set to

describe their experimental results instead, perhaps,

of exploring the possible applicability of some more-

complicated model. This is a valid criticism, but it

tends to ignore the practical difficulties of distinguish-

ing between the applicability of the existing models

[12]. Experimental data have to be highly reproducible

before the additional effort required in exploring

greater complexity is warranted. Describing experi-

mental data by some conversion function with an

increased number of adjustable parameters is of little

value unless these parameters can be given some

physical significance [13]. Amongst the many excellent

contributions to kinetic analysis made by Vyazovkin

and Wight [14], is a discussion of the statistical back-

ground to identifying which model, or group of models,

best describes a rate process. Because of the idealised

nature of the models, real processes can often be

described equally well by more than one model. An

example would be a real process, such as decomposi-

tion of an asymmetric crystal, described by a contract-

ing-geometry model with dimensions between 2 and 3.

2.2. Reduced-time plots

It is fairly generally accepted that attempts to

identify the kinetic model are simplified if the results

of isothermal experiments are available for analysis.

The results of a series of experiments at different

isothermal temperatures can be converted to a com-

posite reduced-time plot [9,10,15]. The real-time

values in each experiment are converted to reduced-

time values by setting the time, ta, required for the

extent of conversion, a, to reach some reference value

usually, but not necessarily [15], a ¼ 0:50 as unit

reduced-time and then all other real times are con-

verted to reduced times by division by the same factor

(ta). If the curves are superimposable (within the limits

of the reproducibility at individual temperatures), the

conversion function does not change with temperature

and the kinetic model may be temporarily eliminated

from consideration while the Arrhenius parameters are

determined from the scaling factors used to convert the

real times to reduced times [9,10,15]. Such an

approach is thus the equivalent of the non-isothermal

approaches that have been labelled ‘‘model free’’ or

‘‘isoconversional’’. If the conversion function does

change with temperature, the composite plots are

not superimposable and the Arrhenius parameters

would be found to depend upon a. From a super-

imposable plot (or for any individual isothermal plot),

the kinetic model, or models, that come closest to

describing the experimental results can be determined

by quantitative comparison of the experimental results

with the predicted reduced-time curves for the models

[9,10,15].

218 J.D. Sewry, M.E. Brown / Thermochimica Acta 390 (2002) 217–225



2.3. Non-isothermal isoconversional methods

A series of programmed temperature experiments at

different heating rates provides an alternative (or

additional) means of estimating the activation energy,

E, and any dependence of E on the extent of conver-

sion, a, [3,4], by temporary elimination of the con-

version function and the pre-exponential factor, A,

during the solution of simultaneous equations. The

subsequent identification of the conversion function

and any dependence upon temperature is not as

straightforward [16]. In both isothermal and non-

isothermal approaches, a dependence of one or both

of the Arrhenius parameters on the extent of reaction,

a, is a warning of complexity that must be examined

further [14]. An additional complication, always

hovering in the background, is the interdependence

of the Arrhenius parameters through the so-called

‘‘kinetic compensation effect’’ [17,18].

2.4. Misidentification of the model during

isothermal kinetic analysis

Assume that, for a particular isothermal process, the

rate equation is

gðaÞ ¼ kt ¼ At exp � E

RT

� �

so

E ¼ RT �ln
gðaÞ
At

� �� �

If the true conversion function g(a) is misidentified as

some other model, g�(a), say, then there will obviously

be an error in E that will vary with a, because of the

differences between g(a) and g�(a).

g�ðaÞ ¼ k�t ¼ At exp � E�

RT

� �

E� ¼ RT �ln
g�ðaÞ

At

� �� �

Alternatively, the error could be regarded as arising in

the pre-exponential factor, A. The differences in the

conversion functions, g(a), with extent of reaction, a,

for the well-known sigmoidal group of JMAEK mod-

els [9,10], with different values of the exponent n, are

shown in Fig. 1. Vyazovkin and Wight [16] have given

a plot containing a wider range of the models. In

Fig. 2, the consequences of misidentifying the ‘‘true’’

A3 model (with ‘‘true’’ E set at 100 kJ mol�1 and

‘‘true’’ A ¼ 4:0 � 108 min�1, so as to give a ¼ 0:95 at

t ¼ 100 min at 500 K) as A4 or A2 are shown as a

dependence of E upon a.

Similar results for a deceleratory group of models

that are difficult to distinguish are shown in Fig. 3,

where the F1 kinetic model (with E set at

100 kJ mol�1 and A as 8:4 � 108 min�1) has been

misidentified as R2 and R3, and in Fig. 4, where

the F1 kinetic model has been misidentified as F2

and F3. In Fig. 5, the R3 kinetic model (with E set at

100 kJ mol�1 and A as 1:8 � 108 min�1) has been

misidentified as R2 and F1.

Fig. 1. The differences in the conversion functions, g(a), with

extent of reaction, a, for the sigmoidal group of JMAEK models

An: (circles) A3; (rectangles) A4; and (crosses) A2.

Fig. 2. The consequences of misidentifying the ‘‘true’’ (circles) A3

model (with ‘‘true’’ E set at 100 kJ mol�1 and ‘‘true’’ A ¼ 4:0�
108 min�1) as (crosses) A4 or (rectangles) A2 are shown as a

dependence of E upon a.
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The results illustrated here refer to those groups of

models that are notoriously difficult to distinguish

[12]. If all the possible combinations were explored

entirely mechanically, without regard for the most

likely misidentifications, the differences in the appar-

ent Arrhenius parameters would be even greater.

2.5. Misidentification of the model during

non-isothermal kinetic analysis

An early method of kinetic analysis suggested by

Piloyan et al. [19] starts from

da
dt

¼ Af ðaÞ exp � E

RT

� �

and hence

ln
da
dt

� �
¼ ln A þ ln½fðaÞ	 � E

RT
(1)

They proposed that the term ln[f(a)] could be

neglected and the value of E (and ln A) estimated

from a plot of ln(da/dt) against 1/T. They stated [19]

that the error in E values estimated in this way could

be of the order of 15–20%. Although, this method

falls into the now discredited group of methods which

attempt to obtain the kinetic triplet from a single

programmed temperature experiment, Criado and

Ortega [20] have also pointed out that this limitation

has often been overlooked and they have published

detailed calculations of the errors in E resulting from

this assumption. The derivative and integral conver-

sion functions, f(a) and g(a), respectively are related

through

gðaÞ ¼
Z a

0

da
f ðaÞ ¼

AE

bR

� �
pðxÞ

where x ¼ E=RT and p(x) is the temperature integral.

Hence,

ln gðaÞ ¼ ln
AE

bR

� �
þ ln pðxÞ

They then used the Doyle approximation [21]:

ln pðxÞ ¼ �5:331 � 1:052x

Fig. 3. The F1 kinetic model (circles) (with E set at 100 kJ mol�1

and A as 8:4 � 108 min�1) has been misidentified as (rectangles)

R2 and (crosses) R3.

Fig. 4. The F1 kinetic model (circles) (with E set at 100 kJ mol�1

and A as 8:4 � 108 min�1) has been misidentified as (rectangles)

F2 and (crosses) F3.

Fig. 5. The (crosses) R3 kinetic model (with E set at 100 kJ mol�1

and A as 1:8 � 108 min�1) has been misidentified as (rectangles)

R2 and (circles) F1.
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to obtain

lngðaÞ ¼ ln
AE

br

� �
� 5:33 � 1:05

E

RT

� �
(2)

From Eqs. (1) and (2):

ln
da
dt

� �
¼ ln½f ðaÞgðaÞ1=1:05	 þ constant

If it is assumed that the following relationship holds:

ln½f ðaÞgðaÞ1=1:05	 ¼ a ln gðaÞ þ b (3)

where a and b are constants, then

ln
da
dt

� �
¼� 1:05a

E

RT

� �
þ constant

Thus, the slope of a plot of ln(da/dt) against 1/T would

give an apparent activation energy, E� ¼ 1:05aE. The

percentage error in the activation energy is then:

e ¼ 100
E� � E

E
¼100ð1:05a � 1Þ

Eq. (3) was found [20] to apply to the standard models

with values of a ranging from 0.35 (D3 model) to 2.25

(A3 model) and, hence, neglect of the model in the

Piloyan method could lead to errors in the activation

energy of from �62% (D3 model) to þ142% (A3

model).

Koga et al. [22] have discussed the distortion of the

Arrhenius parameters caused by the selection of an

inappropriate kinetic model in non-isothermal kinetic

analyses based on measurements of the temperature,

Tp, and conversion, ap, at which the conversion rate is

a maximum. The distortion in the values of E is given

by

E�

E
¼ ½f ðapÞf �0ðapÞ	

½f 0ðapÞf �ðapÞ	

where f ( ) and f 0( ) are the derivative and second

derivative conversion functions, respectively, and �

labels the misidentified function, as used above.

The distortion in the value of ln(A) is given by [22]:

ln
A�

A

� �
¼ E

RTp

� �
ðf ðapÞf �0ðapÞ � f 0ðapÞf �ðapÞ

f 0ðapÞf �ðapÞ

� �

þ ln
f ðapÞ
f �ðapÞ

� �

Using various combinations of true and misidentified

functions, they obtained values of E�/E ranging from

0.46 to 4.23 and of ln(A�/A) from �12.8 to þ80.7.

Málek [23] extended this approach and related the

apparent activation energy, E�, to the the true activa-

tion energy, E, by a multiplicative factor, q:

E� ¼ qE

where the value of q is characteristic of the true kinetic

model [23].

3. The NPK method of kinetic analysis

In brief, and hopefully fair summary, the NPK

method [1,2] involves the following. The basic rate

equation is assumed to be able to be written as

rate ¼ da
dt

¼ f ðaÞhðTÞ (1)

where f(a) is the derivative form of the conversion

function (the corresponding integral form is g(a) as

used above) and the temperature-dependent function,

h(T), is usually the Arrhenius equation:

hðTÞ ¼ k ¼ A exp � E

RT

� �

The rate, da/dt, can thus be expressed as a three-

dimensional surface determined by the temperature,

T, and the degree of conversion, a. Serra et al. [1,2]

suggested that this surface should be discretised as an

(n � m) matrix A of which the elements of the rows are

rates at constant a, but varying temperatures, and the

elements of the columns are rates at constant tem-

perature, but varying a.

A ¼

f ða1ÞhðT1Þ f ða1ÞhðT2Þ f ða1ÞhðT3Þ . . . f ða1ÞhðTmÞ
f ða2ÞhðT1Þ f ða2ÞhðT2Þ f ða2ÞhðT3Þ . . . f ða2ÞhðTmÞ
. . . . . . . . . . . .
. . . . . . . . . . . .
f ðanÞhðT1Þ f ðanÞhðT2Þ f ðanÞhðT3Þ . . . f ðanÞhðTmÞ
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The matrix A can be written as the product of two

vectors:

A ¼ fhT

where

f T ¼ ½f ða1Þf ða2Þf ða3Þ � � � f ðanÞ	
hT¼½hðT1ÞhðT2ÞhðT3Þ � � � hðTmÞ	

Applying the mathematical procedure known as sin-

gular value decomposition (SVD) to matrix A, pro-

vides the vectors f and h, without any prior

assumptions about the forms of the conversion func-

tion, f(a), or the temperature-dependent function, h(T).

From these two vectors, plots of f(a) against a and of

h(T) against Tare immediately available and the nature

of the functions f(a) and h(T) can be determined. Plots

of the calculated values of f(a) against a for most of the

models have been published [24,25]. If, as is almost

always the case, the Arrhenius equation describes the

temperature dependence, the parameters, A and E, for

the process can be calculated.

Amidst the mathematical complexity, the principle

of the method may be easily overlooked. Sets of non-

isothermal data (reaction rate against temperature)

obtained at different heating rates, b, are being

‘‘forced’’ into the sets which would have been

obtained if the experiments had been carried out

isothermally, that is, each column of the matrix is a

set of rate against alpha data at a constant temperature.

How does this differ in principle from what have

been named isoconversional methods [3,4]? The gen-

eral principle of isoconversional methods is that for

sets of non-isothermal data (alpha or reaction rate

against temperature) obtained at different heating

rates, b, sets of values of temperatures against b
obtained at constant values of alpha (isoconversion)

are used, with the major assumption that the form of

the conversion function, f(a), does not change with

either temperature or a, so that it can be (temporarily)

eliminated from calculation of the Arrhenius para-

meters (on the further, but usually well-grounded,

assumption that the Arrhenius equation applies). It

is also usually assumed that the pre-exponential factor,

A, is independent of temperature and alpha.

Fig. 6 shows four a–temperature curves simulated

for a first-order reaction (E ¼ 110 kJ mol�1 and

A ¼ 1 � 1012 s�1) at different heating rates, b of 2,

4, 8 and 16 K min�1. In actual practice it is not

possible to find all the elements of matrix A for a

sufficient range of alpha values and temperatures and

hence the thermal analysis curves must be subdivided

into submatrices. The rectangles shown indicate the

submatrices.

If q submatrices are formed, SVD on each will

produce q matrices Ui, Si and Wi, respectively, of

which only the first columns will be used.

Ai ¼ uisiw
T
i

Each ui and wi will have to be multiplied by some

factor to combine the ui’s to form one continuous

vector u and the wi’s to form one continuous vector w,

i.e.

uT ¼ ½a1u1a2u2 � � � aquq	

wT ¼ s1

a1

� �
w1

s2

a2

� �
v2 � � �

sq

aq

� �
wq

� �

where si is the first singular value of submatrix Ai.

Submatrices are compiled [1,2] choosing constant

alpha values, (i.e. moving horizontally across Fig. 1,

this is the isoconversional aspect of the method) and

determining the rates at different temperatures, by

numerical differentiation of the a–temperature data.

The rate against temperature data for alpha values

ranging from the minimum to the maximum alpha

values accessible in each submatrix are obtained. The

more difficult part is attempting to fill in the subma-

trices by estimating rates at the alpha values corre-

sponding to vertical movement (constant temperature)

in Fig. 6. This can be done using non-linear regression.

Fig. 6. Four a–temperature curves simulated for a first-order

reaction (E ¼ 10kJ mol�1 and A ¼ 1 � 1012 s�1) at different

heating rates, b of 2, 4, 8 and 16 K min�1. The rectangles define

suggested overlapping submatrices.
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For example, for one of the rectangles in Fig. 6, the

temperatures corresponding to the intersections of the

curves with minimum and maximum alpha values are

found. For the four curves at different heating rates,

normally only three intersections are within the rec-

tangle for any constant alpha value.

For alpha values between the maximum and mini-

mum, the values of the intersection temperatures are

different each time, so that non-linear regression has to

be done using the measured rates and temperatures at

constant alpha values, to determine the rates at the

required temperatures. It is important to use the high-

est possible numerical precision in the regression. For

example, alpha values of 0.061, 0.072 and 0.082 were

chosen to fit between a ¼ 0:050 and 0.098. At

a ¼ 0:061, the temperatures and corresponding rates

from the original data were as follows:

Applying the non-linear regression software

NLREG [26] to these values, gave, for a second-order

regression:

rate ¼ a þ bT þ cT2

where

a ¼ 0:320457643, b ¼ �0:00175783659 and c ¼
2:41214177 � 10�6, and for a third-order regression:

rate ¼ a þ bT þ cT2 þ dT3

where

a ¼ �3:00539992, b ¼ 0:0247634833,

c ¼ � 6:80676071 � 10�5, d ¼ 6:24182082 � 10�8.

The third-order regression gave a far better fit, so this

was used and the rates at temperatures of 370.8, 377.6

and 384.8 K and alpha values of 0.061, 0.072 and 0.082,

respectively were then calculated to give the second

row of the submatrix as: 0.000327, 0.000618, 0.001195

(values calculated from the second-order polynomial

were 0.000304, 0.000626, 0.00120).

Care must be taken that overlapping submatrices

contain at least one common alpha value, and that

submatrices that have one side in common, also have

at least one temperature in common. This becomes

necessary for scaling the vectors later on Serra et al.

[1,2] have suggested that the maximum alpha of one

submatrix be the minimum of an alternate submatrix.

This is not always very practical, as illustrated (Fig. 7)

by the differently shaped a–temperature curves simu-

lated for a reaction following the JMAEK model [9,10]

with n ¼ 3 (E ¼ 120 kJ mol�1 and A ¼ 1� 1012 s�1)

at heating rates, b of 1, 2, 5, 10 and 20 K min�1.

Submatrices thus have to be chosen to give as good

a range of a and temperature values as possible.

SVD (using MATLAB [27] for example) of each of

the submatrices produces the vectors ui and wi, from

which plots of the elements of vector ui against the

corresponding alpha values and the elements of vector

wi against the corresponding temperatures can be

constructed for each submatrix Ai. To get one con-

tinuous graph instead of the several separate graphs,

the ordinates of the individual submatrices are scaled,

using the fact that the submatrices overlap. One con-

tinuous plot can thus be formed for vector u against

alpha and another for vector w against temperature.

The plots of the f(a) values from the compiled

vector u against alpha give characteristic shapes from

which the form of f(a) can be determined [24,25]. For

example, for a first-order model, f ðaÞ ¼ ð1�aÞ, so the

plot is linear with unit negative slope. If a general

order-of-reaction model, f ðaÞ ¼ ð1�aÞn
, applies, a

plot of ln[f(a)] against ln(a) should be linear with

the slope providing the value of the order, n. The

characteristic shape of the plot for the JMAEK model

with n ¼ 3 is shown in Fig. 8. An alternative means of

identifying the form of the conversion function is to

plot the f(a) values against those calculated from the

corresponding a values for the various reaction models

[24]. These plots are linear for correct identification of

T (K) 366 372.8 379.6 386.8

Rate 0.000204 0.000394 0.000745 0.001423

Fig. 7. The a–temperature curves simulated for a reaction following

the JMAEK model [9,10] with n ¼ 3 (E ¼ 120 kJ mol�1 and

A ¼ 1 � 1012 s�1) at heating rates, b of 1, 2, 5, 10 and 20 K min�1.

The rectangles define suggested overlapping submatrices.
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the model and have characteristic shapes when the

wrong model is chosen [24].

The plot of the h(T) values (k ¼ rate/f(a)) from the

vector w against temperature usually gives a typical

exponential curve (Fig. 9) as expected for applicability

of the Arrhenius equation. An Arrhenius plot of

ln[h(T)] against 1/T should give a straight line with

slope ¼ �E=R and intercept (as so often happens)

picking up any constants (arising from scaling) in

addition to A.

4. Conclusions

The distortion of Arrhenius parameters caused by

misidentification of the kinetic model, using either

isothermal or non-isothermal kinetic analyses, is a

good reason for postponing this problem until an

estimate of the activation energy has been made using

an isoconversional method [3,4]. It is important,

though, to heed Maciejewski’s advice that the problem

is only postponed and is not avoided [5,6].

The recently proposed NPK method [1,2] has not

received the attention that it probably deserves. The

method does involve a large amount of calculation and

the types of calculation do not lend themselves to

automation, mainly due to the selection of submatrices

and the calculation of missing values. The principle of

the method is, however, very interesting because it

appears to ‘‘force’’ a set of non-isothermal data into

the set which should have been obtained if the experi-

ments had been carried out isothermally, that is, each

column of the matrix is a set of rate against alpha data

at a constant temperature. When a set of simulated

isothermal data was processed using the NPK method,

the procedure recovered the input parameters.

The main assumption that the NPK method relies on

is that the conversion function, f(a), and the tempera-

ture-dependent function, h(T) can be regarded as

independent of each other. Unusual results are

expected if the conversion function is different over

different temperature ranges and/or the Arrhenius

parameters vary with extent of reaction [16]. The

method has been shown [28] to be able to deal very

successfully with concurrent first-order reactions.

Unlike some of the other methods labelled as

‘‘model-free’’ all the kinetic information is available

in the two vectors. In this sense, the NPK method is

similar in principle to the reduced-time method used in

isothermal kinetic analysis [9,10]. In this method, the

influence of temperature is temporarily eliminated to

enable a check to be made on the constancy of the

form of the conversion function, f(a) or g(a), over the

range of isothermal temperatures used.

Maciejewski [5], and Maciejewski and Reller [6]

have demonstrated very clearly the absolute necessity

of describing a reaction by its complete kinetic triplet

(f(a) or g(a), A and E) and has shown how predicted

behaviour can be way off the mark if any one of these

three factors is not known, so no kinetic method

should be regarded as being more than temporarily

‘‘model-free’’.

Many researchers, for example Flynn and Wall [3]

and Criado et al. [29], have demonstrated equally

clearly the impossibility of obtaining a unique kinetic

Fig. 8. A plot of f(a) against a for a reaction following the JMAEK

model [9,10] with n ¼ 3. E ¼ 12 kJ mol�1 and A ¼ 1 � 1012 s�1)

at heating rates, b of 1, 2, 5, 10 and 20 K min�1.

Fig. 9. A plot of h(T) against T for a reaction following the

JMAEK model [9,10] with n ¼ 3. (E ¼ 120 kJ mol�1 and A ¼ 1�
1012 s�1). An Arrhenius plot of the data shown gave an activation

energy of 121:7 � 0:5 kJ mol�1 and A ¼ ð2:05 � 0:04Þ � 1012 s�1;

R2 ¼ 0:9997.
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triplet from experiments at a single heating rate.

Vyazovkin and Wight [30], and Vyazovkin [31] has

shown, by numerous examples, the advantages of

isoconversional methods and the necessity of testing

Arrhenius parameters for dependence upon extent of

reaction. Such a dependence usually indicates some

inadequacy in the kinetic model that is assumed to

apply.

Galwey and Brown [17] have sounded repeated

warnings on the apparent relationships observed

between the Arrhenius parameters, E and A, known

as the kinetic compensation effect. Maciejewski [5],

Vyazovkin [11], Burnham and Braun [32,33] have

emphasized the need for proceeding beyond the pre-

sent oversimplified kinetic models of solid-state

decompositions, and the NPK method [1,2], used to

its full potential, appears to be a step in the right

direction. It is interesting that, in principle, the method

blurs the once unbridgeable gap between non-isother-

mal and isothermal techniques.
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