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Abstract

A new technique, called interpolation method, with general application in the kinetic analysis of processes studied by

thermogravimetry (TG) under linear temperature programming is developed. It is based on the linear relationship, with slope 1,

between log g(a) and log I(g, y) for the appropriate kinetic function, where I(g, y) is the normalized temperature integral, y the

normalized temperature (y ¼ T=T0) and g a dimensionless activation energy (g ¼ E=RT0). Values of log I(g, y) are calculated by

linear interpolations in a pre-built table. This method can easily be programmed and implemented in a personal computer, where

the results (kinetic parameters and quality of regressions for the kinetic functions considered) are typically obtained in a very

short time. The method is validated by analyzing different simulated thermogravimetric curves and comparing the results with

those determined with some classic methods taken from the literature. In addition, the results are compared with the values

obtained by a similar method, also developed and explained in this paper, which involves the evaluation of all the values of the

temperature integral by numerical integration, therefore, demanding a much larger calculation time. The interpolation method is

found to be more accurate than other published methods, particularly in the case of thermogravimetric curves corresponding to

processes with low activation energies. The results obtained are always similar to those determined by the integration method,

which is taken as reference. Application of the technique to experimental data for various types of reactions shows that the results

are in agreement with the published parameters and kinetic laws. # 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Thermogravimetry (TG) is a convenient technique

for studying the kinetics of processes involving solids,

such as decomposition and gas–solid reactions, by

following the weight loss and/or the rate of weight loss

(DTG) of the samples with time.

There are two alternative experimental methods.

In isothermal TG the solid reactant is kept under
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0040-6031/02/$ – see front matter # 2002 Elsevier Science B.V. All rights reserved.

PII: S 0 0 4 0 - 6 0 3 1 ( 0 2 ) 0 0 1 3 3 - 8

HTTP://WWW.FE.UP.PT/~FGM/KINETICS_TG/KINETICS_TG.HTML
HTTP://WWW.FE.UP.PT/~FGM/KINETICS_TG/KINETICS_TG.HTML
HTTP://WWW.FE.UP.PT/~FGM/KINETICS_TG/KINETICS_TG.HTML


isothermal conditions and several experiments must

be carried out at different temperatures in order to

determine the temperature dependency of the reaction

rate. In non-isothermal TG the solid is submitted to a

gradual increase in temperature (usually linear with

time) and in this case it is possible, in principle, to

obtain the kinetic parameters (activation energy and

pre-exponential constant) and the kinetic function

with a single experiment. Non-isothermal TG allows

for a wide range of temperatures to be covered, which

it is not always possible in isothermal TG, particularly

at high temperatures, since significant solid conver-

sion may occur during temperature stabilization at the

beginning of the experiments [1]. On the other hand,

one of the problems associated with rising temperature

experiments is that the kinetic parameters obtained are

frequently dependent on some procedural factors

(heating rate, initial amount of solid sample, gas phase

composition, reactor geometry, particle size, solid

porosity) [2–12]. However, this situation also arises

in isothermal studies [2,6,10]. The main reason for

such experimental observations is certainly related to

the complexity of the reaction mechanisms in the solid

state [1,13,14] and the lack of mechanistic equations

accounting in full for the processes involved. More-

over, the influence of the gas phase and the problems

associated with heat and mass transfer limitations

[4,5,11,15] are frequently underestimated.

In the context of non-isothermal studies, the utiliza-

tion of multi-heating rate data for the determination

of reaction kinetics was recently recommended

[1,13,14,16,17]. Apart from that, to avoid the pro-

blems of heat and mass transfer resistances, small

samples of solid material (at the expense of a possible

decrease in homogeneity), low particle sizes and

moderate heating rates must be used [4,13,15].

According to some authors, to overcome the diffi-

culties related to the complex nature of the mechan-

isms of reactions involving solids, only model-free

approaches such as the so called isoconversional

methods must be considered for the kinetic analysis

of data [14,18,19]. However, such methods seem to be

very sensitive to experimental errors [1] and the

model-fitting methods continue to be extensively used

for that purpose.

In this paper, a new method for kinetic analysis of

thermogravimetric data obtained under linear tem-

perature programming is developed and discussed.

The technique involves the calculation of the tem-

perature integral (actually, its logarithm) by suitable

interpolations from a pre-built table of values. In the

proposed procedure, the kinetic functions usually

considered in this type of studies are analyzed in a

systematic way. The results (kinetic function and

Arrhenius parameters) are compared with those

obtained either by a similar method based on the

numerical integration of the temperature integral, or

by application of some conventional methods. For

the validation of the proposed methodology, both

simulated and experimental curves from the literature

are considered.

2. Theoretical considerations

2.1. Brief review of integral methods for kinetic

analysis in non-isothermal thermogravimetry

The rate of decomposition of a solid depends upon

the temperature and the amount of material. If only a

single reaction is involved, it is usually assumed that

these functions are separable and the equation used to

Nomenclature

A Arrhenius pre-exponential constant

b heating rate

E activation energy

k rate constant

R gas constant

t time

T temperature

u dimensionless variable (E=RT or g=y)

W weight

Greek letters

a degree of transformation

b dimensionless parameter (AT0=b)
g dimensionless parameter (E=RT0)

y normalized temperature (T=T0)

Subscripts

0 refers to starting conditions of tempera-

ture or weight

1 refers to residual amounts
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describe the progress of reaction is

da
dt

¼ kðTÞf ðaÞ (1)

where t is the time, T the absolute temperature and a
the degree of transformation defined as a ¼ ðW0�WÞ

ðW0�W1Þ,
where W is the weight of solid and the subscripts 0 and

1 refer to the initial and residual amounts, respec-

tively.

The kinetic function f(a) is related to the reaction

mechanism, although some authors prefer to consider

empirical kinetic laws of the type f ðaÞ ¼ ð1 � aÞn
,

where n is a reaction order. All functions covered in

this work are listed in Table 1 [20–23], where the

symbols presented are the usual ones, except for those

labeled D5 and D6, which are not usually included in

this type of studies.

The rate constant is normally expressed by the

Arrhenius equation

k ¼ A exp � E

RT

� �
(2)

where E is the activation energy, A the pre-exponential

constant and R the gas constant.

Therefore,

da
dt

¼ A exp � E

RT

� �
f ðaÞ (3)

When the reaction is carried out under a linear tem-

perature programme (T ¼ T0 þ bt, where b is the

heating rate and T0 the starting temperature), Eq. (3)

may be written as

da
dT

¼ A

b
exp � E

RT

� �
f ðaÞ (4)

By separation of variables and integration, we get

gðaÞ ¼
Z a

0

da
f ðaÞ ¼

A

b

Z T

T0

exp � E

RT

� �
dT (5)

The expressions of g(a) corresponding to each one of

the mechanisms considered are also shown in Table 1.

On the basis of Eq. (5), it is possible to analyze

experimental data by the integral method, in order to

determine the kinetic function and the kinetic para-

meters E and A. However, the integral in the right-hand

side has no exact analytical solution and several kinds

of approximations are generally used. In all of them it is

considered that the value of the integral between 0 and

Table 1

Algebraic expressions of f(a) and g(a) for the kinetic models considered in this work

Kinetic model f(a) g(a) Observations

F0, R1, P1 1 a Zero-order kinetics; one-dimensional advance

of the reaction interface; power law (a ¼ Kt)

F1/2, R2 (1 � a)1/2 2½1 � ð1 � aÞ1=2	 One-half order kinetics; two-dimensional

advance of the reaction interface

F2/3, R3 (1 � a)2/3 3½1 � ð1 � aÞ1=3	 Two-thirds order kinetics; three-dimensional

advance of the reaction interface

F1 (1 � a) �ln(1 � a) First-order kinetics

F3/2 (1 � a)3/2 2½ð1 � aÞ�1=2 � 1	 Three-halves order kinetics

F2 (1 � a)2 a/(1 � a) Second-order kinetics

P2 a1/2 2a1/2 Power law (a ¼ Kt2)

P3 a2/3 3a1/3 Power law (a ¼ Kt3)

P4 a3/4 4a1/4 Power law (a ¼ Kt4)

A2 ð1 � aÞ �lnð1 � aÞ½ 	1=2
2½�lnð1 � aÞ	1=2

Avrami–Yerofeyev equation (n ¼ 2)

A3 ð1 � aÞ½�lnð1 � aÞ	2=3
3 �lnð1 � aÞ½ 	1=3

Avrami–Yerofeyev equation (n ¼ 3)

A4 ð1 � aÞ �lnð1 � aÞ½ 	3=4
4 �lnð1 � aÞ½ 	1=4

Avrami–Yerofeyev equation (n ¼ 4)

D1 1/a a2/2 Parabolic law (a ¼ Kt1/2)

D2 1=� lnð1 � aÞ ð1 � aÞlnð1 � aÞ þ a Holt–Cutler–Wadsworth equation

D3 ð1 � aÞ2=3=1 � ð1 � aÞ1=3
3=2½1 � ð1 � aÞ1=3	2 Jander equation

D4 ð1 � aÞ1=3=1 � ð1 � aÞ1=3
3=2½1 � 2a=3 � ð1 � aÞ2=3	 Ginstling–Brounshtein equation

D5 ð1 � aÞ5=3=1 � ð1 � aÞ1=3
3=2½ð1 � aÞ�1=3 � 1	2 Zhuravlev–Lesokhin–Tempelman equation

D6 ð1þ aÞ2=3=ð1þ aÞ1=3 � 1 3=2½ð1þ aÞ1=3 � 1	2 Komatsu–Uemura equation (or anti-Jander equation)
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T0 is negligible, which is an acceptable hypothesis,

since the starting temperature is near room temperature

and the activation energy is not too low. In this case

gðaÞ ¼ A

b

Z T

0

exp � E

RT

� �
dT (6)

This integral is called the temperature integral, which

can be approximated in different ways.

The most common of them lead to expressions of

the type

gðaÞ ¼ AR

bE
T2Q

E

RT

� �
exp � E

RT

� �
(7)

where QðE=RTÞ is a function whose value is as closer

to unity as higher is E=RT and has several particular

forms, depending on the technique of approximation

[24–32]. The kinetic analysis is performed through an

iterative method, starting with QðE=RTÞ ¼ 1, on the

basis of the linear equation

ln
gðaÞ

T2QðE=RTÞ ¼ ln
AR

bE
� E

RT
(8)

A second type of methods is based on the fact that

Eq. (6) can be written in the form

gðaÞ ¼ AE

bR

Z 1

u

expð�uÞ
u2

du ¼ AE

bR
pðuÞ (9)

where u ¼ E=RT . In the literature, some empirical

approximations of the function p(u) can be found

[33–36], which are valid inside well-defined intervals.

Finally, Gyulai and Greenhow [37] correlated

directly the temperature integral (Eq. (6)) with the

values of Tand E. These authors arrived at two different

expressions, with a reasonable degree of approximation

in the range of temperatures 400–900 K and for activa-

tion energies between 30 and 90 kcal/mol.

It is outside of the scope of this work to discuss the

relative merits of the various approximations of the

temperature integral, although it can be asserted that

those of Senum and Yang [27], based on polynomial

expressions with degrees three or four, are very good

[38] and that, generally, all of them are not good

enough for low values of E=RT .

2.2. Description of the proposed method

Eq. (4) may be rendered dimensionless by normal-

izing the temperatures by the starting temperature and

defining a new variable y ¼ T=T0 [39]. Then

da
dy

¼ b exp � g
y

� �
f ðaÞ (10)

where b ¼ AT0=b and g ¼ E=RT0.

After separation of variables and integration, it

comes

gðaÞ ¼ bIðg; yÞ (11)

where

Iðg; yÞ ¼
Z y

1

exp � g
y

� �
dy (12)

Eq. (11) is structurally similar to Eq. (5), but has the

advantage of setting the lower value of the integration

interval without doing any simplification (as T0 ¼ 0).

The integral presented in Eq. (12) depends only on two

dimensionless quantities (the parameter g, which con-

tains the activation energy, and the normalized vari-

able y), while the integral in the right-hand side of

Eq. (5) depends on T0 (defined by the experimental

conditions), the activation energy and the variable T.

So, the method proposed in this work is based on the

use of normalized temperatures, although it can be

extended to Eq. (5), with additional complications.

Eq. (11) can be linearized by application of decimal

logarithms to both sides, leading to

�log gðaÞ ¼ �logbþ ½�log Iðg; yÞ	 (13)

The minus sign was inserted for convenience, because

the integral values are generally <1 at the normalized

temperatures of practical importance, with the excep-

tion of some cases corresponding to extremely low g
values (g < 4).

According to Eq. (13), a linear relationship with

slope 1 must be obtained when [�log g(a)] is plotted

versus [�log I(g, y)], for the correct kinetic law and

the g value associated to the reaction. So, in the

method proposed here, starting from a normalized

thermogravimetric curve a versus y obtained under

linear temperature programming, the values of the

parameter g that originate such slope are successively

determined for all the kinetic functions listed in

Table 1. At the end of this analysis, the choice of

the most satisfactory kinetic function is performed on

the basis of the linear regression quality. The kinetic

parameter b is calculated from the intercept of the

fitted straight line.
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The strategy used to calculate the values of

[�log I(g, y)] and the methodology followed to make

the approach to the solution, in other words, to the g
value that originates a slope equal to 1, remain to be

explained.

Initially, a table of values of (�log I) is built as a

function of g and y. The integral I(g, y) (Eq. (12)) can

be determined numerically, for instance, by the Simp-

son rule, establishing a low enough allowed maximum

error, according to the desired objectives (we consid-

ered at least seven significant figures in our calcula-

tions). Besides, our table was calculated for y values

between 1.1 and 5.0 (increments of 0.1) and for g
values in the range 0–500 (increments of 5). These

limits largely exceed the values usually found in real

reactions.

Next, the values of (�log I) corresponding to the

normalized temperatures considered in the a versus y
curve which is the object of analysis are calculated by

linear interpolation relatively to 1=y for all the values

of g presented in the original table, above mentioned.

According to the different types of approximations of

the temperature integral, discussed in Section 2.1 (see

for instance Doyle’s expression of log p(u) [33]), this

procedure may be expected to lead to better results

than performing linear interpolations relatively to y.

Observation of Table 2, where some calculated values

of (�log I) are shown as well as the errors that

correspond to the two interpolation procedures, con-

firms this assumption. As a matter of fact, not only the

errors associated to the interpolation relatively to 1=y
are generally much smaller, but it can also be con-

firmed that they are negligible, with the exception of

those corresponding to low g and y values, although

they are still admissible in these cases.

In order to find the value of the parameter g for each

of the kinetic functions, the interval with magnitude

Dg ¼ 5 within which the slope of the straight line

defined by Eq. (13) is equal to 1 is determined in the

first place. This is done by systematic search directly

on the table of (�log I) values obtained in the previous

step. It is recommended to begin the determinations of

the slope for g values in large intervals (for instance, of

50) and, after that, for increments of 5 inside the

previously defined interval. After determination of

the interval with Dg ¼ 5 mentioned above, the solu-

tion is calculated by the bisection method. For each

value of g that appears during this procedure, the

calculation of (�log I) is done by linear interpolation.

Table 3 shows that the errors are generally small and

can only be significant for low g values, which is the

situation with less practical interest in the context of

solid state reactions. Note that, for example, g ¼ 10

corresponds to an activation energy of only about 25 kJ/

mol, in an experiment with linear temperature program-

ming starting at room temperature. By application of

the bisection method, subintervals of decreasing width

that contain the g value corresponding to a slope of

1 relatively to Eq. (13) are successively defined. Of

course, in the two limits of those subintervals, the

variable (slope�1) has opposite signs. The procedure

ends according to a pre-established error. In the

examples presented in this work, the stopping criterion

considered is that slope � 1j j < 5 � 10�5. The results

for all the kinetic functions analyzed (see Table 1)

Table 2

Numerically calculated values of (�log I) and absolute errors

associated with their determination by linear interpolation

relatively to y and 1/y

g y �Log I Errora Errorb

0 1.15 0.8239087 2.56 � 10�2 1.90 � 10�2

1.25 0.6020600 8.86 � 10�3 5.34 � 10�3

1.55 0.2596373 1.80 � 10�3 5.25 � 10�4

2.55 �0.1903317 2.26 � 10�4 �4.87 � 10�5

3.55 �0.4065402 8.35 � 10�5 �3.64 � 10�5

4.95 �0.5965971 3.48 � 10�5 �2.07 � 10�5

50 1.15 20.4795573 3.81 � 10�2 6.01 � 10�4

1.25 18.8976596 2.86 � 10�2 �6.41 � 10�4

1.55 15.3532276 1.50 � 10�2 �4.28 � 10�4

2.55 9.4419258 3.44 � 10�3 �1.54 � 10�4

3.55 6.7699547 1.30 � 10�3 �7.75 � 10�5

4.95 4.7697626 4.91 � 10-4 �3.87 � 10�5

100 1.15 39.6531108 7.24 � 10�2 �7.85 � 10�4

1.25 36.5603362 5.64 � 10�2 �6.79 � 10�4

1.55 29.6514032 2.96 � 10�2 �4.39 � 10�4

2.55 18.2391891 6.72 � 10�3 �1.60 � 10�4

3.55 13.1620793 2.51 � 10�3 �8.13 � 10�5

4.95 9.4237779 9.39 � 10�4 �4.09 � 10�5

150 1.15 58.7083618 1.08 � 10�1 �8.09 � 10�4

1.25 54.1047302 8.42 � 10�2 �6.84 � 10�4

1.55 43.8327227 4.42 � 10�2 �4.43 � 10�4

2.55 26.9240380 9.99 � 10�3 �1.62 � 10�4

3.55 19.4457648 3.73 � 10�3 �8.28 � 10�5

4.95 13.9742885 1.39 � 10�3 �4.19 � 10�5

a Linear interpolation with respect to y.
b Linear interpolation with respect to 1/y.
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are ordered according to the determination coefficient

(r2) obtained in the last iteration.

The method just described, which is the basis of this

work, is called ‘‘interpolation method’’ in the follow-

ing pages. The algorithm presented can be easily

programmed and implemented in a personal computer

and the results are obtained in a very short time.

For comparison, another calculation method was

considered-‘‘integration method’’. In this case, the

determination of g for each kinetic function is also

performed on the basis of the bisection method, but the

procedure begins in the g interval [0, 500]. Besides, all

the values of the integral I(g, y) associated to the

normalized temperatures considered in the thermo-

gravimetric curve are evaluated numerically in each

calculation step, using the Simpson rule. As no inter-

polations are involved in this method, errors of the

type presented in Tables 2 and 3 do not occur, and the

results have a greater accuracy. Obviously, the calcu-

lation times are much larger.

3. Results and discussion

3.1. Simulated thermogravimetric curves

A considerable number of simulated thermogravi-

metric curves were analyzed by the methods described

in the previous section (interpolation and integration

methods), considering many pairs of values of the

dimensionless kinetic parameters g and b and all the

kinetic functions listed in Table 1. Among these, six

representative examples are shown in Fig. 1. The

points used in the analyses are also presented over

the curves.

For comparison, some of the conventional methods

of kinetic analysis, namely, those developed by Coats

and Redfern [24], Senum and Yang [27] and Madhu-

sudanan et al. [34], were also considered.

The first two are representative of the methodology

that leads to Eqs. (7) and (8) (see Section 2.1); one of

them was chosen because it is a classical and fre-

quently used method (Coats and Redfern, CR), the

other due to the high accuracy attributed to it when

based on polynomial expressions with degree three

and higher (Senum and Yang, SY) [38,40]. In terms of

dimensionless quantities, Eq. (8) can be written in the

form

ln
gðaÞ

y2Qðg=yÞ
¼ ln

b
g
� g
y

(14)

The kinetic parameters are obtained by an iterative

procedure, starting with Qðg=yÞ ¼ 1. Designating

u ¼ E=RT ¼ g=y, the expressions of function Q are

QðuÞ ¼ u � 2

u
(15)

Table 3

Numerically calculated values of (�log I) and absolute errors

associated with their determination by linear interpolation

relatively to g

y g �Log I Error

1.1 2.5 2.0338853 �9.27 � 10�4

7.5 4.0961175 �9.00 � 10�4

22.5 10.2410912 �7.41 � 10�4

47.5 20.3716153 �4.26 � 10�4

97.5 40.4101407 �1.36 � 10�4

147.5 60.3273326 �6.11 � 10�5

1.5 2.5 1.1695260 �1.11 � 10�2

7.5 2.8430419 �7.87 � 10�3

22.5 7.5661457 �2.13 � 10�3

47.5 15.1030402 �5.38 � 10�4

97.5 29.8789367 �1.35 � 10�4

147.5 44.5308934 �6.00 � 10�5

2.0 2.5 0.7277441 �2.20 � 10�2

7.5 2.0682690 �1.09 � 10�2

22.5 5.7025748 �2.05 � 10�3

47.5 11.4230149 �5.21 � 10�4

97.5 22.5759368 �1.32 � 10�4

147.5 33.6074230 �5.92 � 10�5

3.0 2.5 0.2575805 �2.83 � 10�2

7.5 1.2266981 �1.08 � 10�2

22.5 3.7494385 �1.86 � 10�3

47.5 7.6479423 �4.90 � 10�4

97.5 15.1745752 �1.28 � 10�4

147.5 22.5843578 �5.78 � 10�5

4.0 2.5 �0.0172916 �2.92 � 10�2

7.5 0.7525621 �9.84 � 10�3

22.5 2.7103289 �1.71 � 10�3

47.5 5.6933694 �4.64 � 10�4

97.5 11.4038900 �1.24 � 10�4

147.5 17.0016706 �5.66 � 10�5

5.0 2.5 �0.2077479 �2.83 � 10�2

7.5 0.4371785 �8.92 � 10�3

22.5 2.0509290 �1.59 � 10�3

47.5 4.4817184 �4.42 � 10�4

97.5 9.1004705 �1.20 � 10�4

147.5 13.6101997 �5.54 � 10�5
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in the CR method and

QðuÞ ¼ u3 þ 10u2 þ 18u

u3 þ 12u2 þ 36u þ 24
(16)

for the third degree approximation of SY.

On the other hand, Eq. (9) can be written in dimen-

sionless form as

gðaÞ ¼ ðbgÞpðuÞ (17)

Considering the expression for p(u) developed by

Madhusudanan, Krishnan and Ninan (MKN) after

linearization, it comes

ln
gðaÞ

y1:921503
¼ lnðbgÞ � 0:297580

� 1:921503 ln g� 1:000953
g
y

(18)

In this case, a linear relationship between the left-hand

side of Eq. (18) and the variable 1=y must be found for

the correct kinetic model. The parameters g and b are

obtained from the slope and the intercept, respectively.

This method was selected among those of the same

type, since previous studies have shown its superior

quality in almost all situations.

The results obtained for the simulated curves cor-

responding to F2/74.72/11.50 and F1/74.72/11.50

(denominations that refer to: kinetic function/g/log b)

are shown in Tables 4 and 5, respectively. The kinetic

functions are presented according to the decreasing

order of the determination coefficients as calculated

with the interpolation or integration methods. The

results associated to the methods of CR, SY, and

MKN are also shown.

In these examples, which correspond to relatively

high activation energy (about 180 kJ/mol for experi-

ments starting at room temperature) and values of u

also high (u > 20), all the methods lead to similar

kinetic parameters, for the correct kinetic functions.

Actually, for the interpolation, integration and SY

methods, they are exactly the same. It should be noted

that these parameters are slightly different from the

original ones (g ¼ 74:72 and log b ¼ 11:50), probably

because values of a with just three decimal figures

were considered in the analyses. For the correct kinetic

functions, the methods of CR and of MKN lead to

values of g a little higher or lower, respectively.

However, the corresponding small variations of log b
make the compensation and the calculated thermo-

gravimetric curves also approach the original points

(differences in a < 0:005).

The decreasing order of the determination coeffi-

cients, which represents an increasingly significant

Fig. 1. Simulated thermogravimetric curves selected for kinetic analysis (a: F1/6.87/2.99; b: D4/10.00/2.00; c: F1/27.48/5.00; d: P3/10.00/

2.00; e: F1/74.72/11.50; f: F2/74.72/11.50. These denominations refer to: kinetic function/g/log b).
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Table 4

Results of the kinetic analysis corresponding to the TG curve for F2/74.72/11.50

Kinetic

function

Interpolation Integration CR SY MKN

g Log b r2 g Log b r2 g Log b r2 g Log b r2 g Log b r2

F2 74.74 11.50 1.000 74.74 11.50 1.000 74.80 11.52 1.000 74.74 11.50 1.000 74.68 11.49 1.000

F3/2 60.56 9.28 0.992 60.56 9.28 0.992 60.66 9.30 0.991 60.58 9.28 0.991 60.49 9.26 0.991

D5 118.45 16.74 0.986 118.45 16.74 0.986 118.50 16.75 0.985 118.47 16.74 0.985 118.45 16.74 0.985

F1 48.68 7.39 0.966 48.68 7.39 0.966 48.85 7.42 0.958 48.71 7.39 0.958 48.59 7.37 0.958

A2 21.66 3.69 0.965 21.65 3.69 0.965 22.30 3.84 0.950 21.69 3.70 0.946 21.32 3.61 0.944

A3 12.81 2.48 0.964 12.80 2.48 0.964 14.37 2.85 0.949 12.83 2.49 0.931 12.23 2.32 0.923

A4 8.48 1.89 0.963 8.46 1.89 0.963 11.29 2.56 0.961 8.51 1.90 0.911 7.69 1.63 0.889

D3 90.04 12.31 0.940 90.04 12.31 0.940 90.13 12.33 0.932 90.09 12.32 0.932 90.06 12.31 0.932

F2/3 42.16 6.34 0.939 42.16 6.34 0.939 42.39 6.39 0.923 42.21 6.35 0.922 42.05 6.31 0.922

F1/2 39.32 5.88 0.923 39.32 5.88 0.923 39.57 5.93 0.902 39.37 5.89 0.901 39.20 5.85 0.900

D4 82.21 11.08 0.917 82.20 11.08 0.917 82.31 11.10 0.906 82.26 11.08 0.906 82.22 11.08 0.906

D2 78.44 10.96 0.904 78.44 10.96 0.904 78.56 10.98 0.891 78.51 10.97 0.891 78.46 10.96 0.891

D1 70.13 9.63 0.874 70.12 9.63 0.874 70.27 9.66 0.855 70.20 9.64 0.855 70.14 9.63 0.855

F0 32.26 4.72 0.872 32.25 4.72 0.872 32.62 4.80 0.835 32.33 4.73 0.831 32.10 4.68 0.829

P2 13.59 2.30 0.869 13.58 2.30 0.869 15.04 2.64 0.814 13.65 2.31 0.775 13.07 2.15 0.758

P3 7.56 1.51 0.867 7.53 1.52 0.867 10.77 2.28 0.852 7.62 1.53 0.703 6.73 1.24 0.645

P4 4.59 1.13 0.865 4.59 1.14 0.865 –a – – 4.75 1.17 0.617 3.56 0.69 0.468

D6 63.50 8.06 0.857 63.49 8.06 0.857 63.66 8.09 0.834 63.58 8.07 0.834 63.50 8.06 0.834

a Not considered (negative values of Q(u)).

Table 5

Results of the kinetic analysis corresponding to the TG curve for F1/74.72/11.50

Kinetic

function

Interpolation Integration CR SY MKN

g Log b r2 g Log b r2 g Log b r2 g Log b r2 g Log b r2

F1 74.77 11.51 1.000 74.77 11.51 1.000 74.82 11.52 1.000 74.77 11.51 1.000 74.72 11.50 1.000

A2 34.69 5.84 1.000 34.68 5.84 1.000 34.91 5.89 1.000 34.69 5.84 1.000 34.49 5.79 1.000

A3 21.44 3.96 1.000 21.43 3.96 1.000 21.99 4.10 1.000 21.43 3.96 1.000 21.08 3.87 1.000

A4 14.88 3.04 1.000 14.87 3.04 1.000 15.95 3.30 1.000 14.88 3.04 1.000 14.38 2.90 1.000

D3 136.15 19.45 0.994 136.15 19.45 0.994 136.18 19.45 0.993 136.17 19.45 0.993 136.14 19.45 0.993

F2/3 65.26 10.00 0.994 65.26 10.00 0.994 65.34 10.02 0.993 65.27 10.00 0.993 65.20 9.99 0.993

D5 178.03 25.93 0.993 178.02 25.93 0.993 178.03 25.93 0.993 178.02 25.93 0.993 177.98 25.93 0.993

F1/2 61.19 9.35 0.987 61.18 9.35 0.987 61.27 9.37 0.984 61.20 9.36 0.984 61.12 9.34 0.984

F3/2 92.55 14.30 0.985 92.54 14.29 0.985 92.57 14.30 0.983 92.53 14.29 0.983 92.50 14.29 0.983

D4 124.94 17.70 0.983 124.94 17.70 0.983 124.98 17.71 0.982 124.96 17.70 0.982 124.94 17.70 0.982

D2 119.63 17.35 0.976 119.63 17.35 0.976 119.67 17.35 0.974 119.65 17.35 0.974 119.63 17.35 0.974

D1 108.05 15.52 0.959 108.04 15.52 0.959 108.09 15.53 0.955 108.07 15.53 0.955 108.04 15.52 0.955

F0 51.24 7.76 0.959 51.23 7.76 0.959 51.37 7.79 0.950 51.26 7.76 0.950 51.16 7.74 0.949

P2 23.01 3.90 0.958 23.01 3.90 0.958 23.52 4.02 0.940 23.03 3.91 0.937 22.71 3.82 0.935

P3 13.75 2.63 0.957 13.73 2.64 0.957 14.99 2.94 0.936 13.76 2.64 0.922 13.23 2.49 0.915

P4 9.20 2.01 0.957 9.18 2.02 0.957 11.51 2.58 0.943 9.22 2.02 0.903 8.49 1.78 0.885

D6 98.54 13.52 0.950 98.53 13.52 0.950 98.59 13.53 0.944 98.56 13.52 0.944 98.54 13.52 0.944

F2 113.96 17.63 0.948 113.96 17.63 0.948 113.95 17.63 0.943 113.93 17.62 0.943 113.91 17.62 0.943
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deviation relatively to the correct kinetic function, is

not the same in all methods employed. As a matter of

fact, the published methods can originate a different

order (for instance, see the r2 value for D4 function

compared with that of F1/2 in Table 4 or, in Table 5,

the corresponding values for D6 and F2 models rela-

tively to those of P2, P3 and P4). These observations

are directly related to the low accuracy of the tem-

perature integral approximations associated to those

methods in the low activation energy range. So, when

the solution corresponds to a lower g, there is an

additional tendency to yield a worse fit. However,

the opposite effect can also be observed in the appli-

cation of the CR method (see A4 and P3 functions in

Table 4), as if the errors of the respective approxima-

tion had a partial compensation effect for the corre-

sponding particular values of g.

Although the results presented in Table 5 refer to

first-order kinetics, it can be observed that the A2, A3

and A4 functions also fit the simulated curve,

obviously for different values of parameters g and

log b. This situation can be understood on the basis of

the respective g(a) expressions (see Table 1). In fact,

the values of ln g(a) for those kinetic models are

directly related to the corresponding values for the

F1 model through

ln gðaÞAn ¼ ln n þ 1

n
ln gðaÞF1 (19)

As Criado and Morales [41] explained, this relation-

ship associated with the fact that the reactions typi-

cally occur in a narrow range of temperatures, giving

rise to ln T (or ln y) values approximately constant

inside that interval, make the discrimination between

the mentioned models impossible or at least difficult,

in the context of non-isothermal thermogravimetric

experiments. The thermogravimetric curves calcu-

lated with the parameters obtained for the A2, A3

and A4 functions by the interpolation, integration and

SY methods (practically independent of the method)

show a good agreement with the original simulated

curve. However, repeating the procedure for the

kinetic parameters corresponding to the methods of

CR and MKN, large differences are observed (Fig. 2),

in spite of the good quality of the fits (r2 ¼ 1:000).

These deviations are positive for the former method

and negative for the latter. It is important to note that

the mentioned differences increase from A2 to A4, in

Fig. 2. Points considered in the kinetic analysis of the thermogravimetric curve corresponding to F1/74.72/11.50 and calculated curves from

the results obtained by the Coats and Redfern (1, 2, 3) and the Madhusudanan, Krishnan and Ninan (4, 5, 6) methods for the mechanisms A2

(3, 4), A3 (2, 5) and A4 (1, 6).
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other words in the direction of the lower g values. This

shows clearly the lack of rigor of those methods when

the activation energies are not high enough.

The results obtained in the analysis of the thermo-

gravimetric curve corresponding to a first-order reac-

tion with g ¼ 27:48 and log b ¼ 5:00 are summarized

in Table 6. It should be mentioned that it was not

possible to obtain any results by the CR method for the

kinetic functions that correspond to very low g (less

than about 7), since some negative Q(u) values occur

after the first iteration. As in the cases mentioned

before, the interpolation, integration and SY methods

lead to equal parameters for the correct kinetic func-

tion F1. The other two methods originate significantly

different values of g, and the corresponding variations

of log b do not produce a total compensation effect.

Thus, the corresponding calculated curves are slightly

displaced relatively to the original points (upwards for

the results of the CR method and downwards for those

obtained with the MKN expression), although the

differences do not exceed 0.02 in terms of a.

Since the analyzed curve corresponds to a first-

order reaction, good fits are also generally obtained for

the kinetic functions associated to the Avrami–Yer-

ofeyev mechanisms. With respect to A2, the results of

the interpolation and SY methods are very similar to

those of the integration method, taken as reference.

For the kinetic models A3 and A4 there are some

deviations, particularly evident in the second case, as a

consequence of the corresponding very low g values.

The other two methods lead to very different para-

meters, in spite of the relatively high determination

coefficients obtained, as occurs for the A2 function.

On the other hand, the associated calculated curves are

far away from the original points.

Considering now the results obtained for the

selected points in the simulated curve corresponding

to F1/6.87/2.99 (Table 7), larger differences between

the determined parameters for the correct kinetic

function are found, as a consequence of the low value

of g involved. The integration method leads to values

that correspond to the expected ones. The small

deviation in g (6.88 instead of 6.87) certainly results

from the consideration of just three decimal figures for

the values of a used in the calculations. The kinetic

parameters obtained with the interpolation method

(g ¼ 6:69 and log b ¼ 2:92) are slightly lower than

the original parameters. In spite of this, the corre-

sponding calculated curve approaches the considered

points, as can be seen in Table 8. Considering the

Table 6

Results of the kinetic analysis corresponding to the TG curve for F1/27.48/5.00

Kinetic

function

Interpolation Integration CR SY MKN

g Log b r2 g Log b r2 g Log b r2 g Log b r2 g Log b r2

F1 27.48 5.00 1.000 27.48 5.00 1.000 27.71 5.06 1.000 27.48 5.00 1.000 27.29 4.95 1.000

A2 11.64 2.48 1.000 11.63 2.48 1.000 12.77 2.80 1.000 11.63 2.49 1.000 11.16 2.33 1.000

A3 6.47 1.66 1.000 6.46 1.67 1.000 –a – – 6.52 1.68 1.000 5.79 1.39 0.999

A4 3.84 1.23 1.000 3.89 1.26 1.000 – – – 4.07 1.30 0.999 3.10 0.83 0.995

D3 51.83 8.12 0.994 51.82 8.12 0.994 51.91 8.15 0.993 51.84 8.13 0.993 51.78 8.11 0.993

F2/3 23.62 4.23 0.993 23.61 4.23 0.993 23.95 4.32 0.991 23.64 4.23 0.990 23.41 4.17 0.990

D5 68.90 11.39 0.992 68.89 11.39 0.992 68.91 11.39 0.991 68.87 11.38 0.991 68.84 11.38 0.991

F1/2 21.97 3.89 0.986 21.96 3.89 0.986 22.35 3.99 0.980 21.99 3.90 0.979 21.74 3.83 0.978

F3/2 34.71 6.42 0.984 34.71 6.42 0.984 34.82 6.45 0.980 34.67 6.41 0.980 34.54 6.37 0.980

D4 47.25 7.24 0.983 47.25 7.24 0.983 47.37 7.26 0.979 47.28 7.24 0.979 47.20 7.22 0.979

D2 45.08 7.29 0.975 45.08 7.29 0.975 45.21 7.32 0.969 45.12 7.30 0.969 45.03 7.28 0.969

D1 40.37 6.36 0.955 40.37 6.36 0.955 40.54 6.40 0.945 40.43 6.37 0.944 40.32 6.34 0.944

F0 17.94 3.06 0.953 17.94 3.06 0.953 18.51 3.22 0.934 17.99 3.07 0.928 17.68 2.98 0.925

P2 6.97 1.45 0.950 6.96 1.46 0.950 – – – 7.05 1.47 0.880 6.36 1.21 0.851

P3 3.29 0.89 0.949 3.36 0.93 0.948 – – – 3.62 0.98 0.805 2.58 0.46 0.656

P4 1.41 0.61 0.949 1.50 0.66 0.948 – – – 2.05 0.77 0.693 0.70 �0.21 0.183

F2 43.43 8.10 0.946 43.43 8.10 0.946 43.46 8.11 0.934 43.37 8.09 0.934 43.27 8.07 0.934

D6 36.59 5.10 0.943 36.59 5.10 0.943 36.79 5.14 0.929 36.65 5.11 0.929 36.53 5.07 0.928

a Not considered (negative values of Q(u)).
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published methods studied, the associated parameters,

for the correct kinetic function F1, are too high and

bad fits are observed (see Tables 7 and 8). It is

interesting to note that it is not possible to discriminate

the true model by any of these methods. In effect, the

best results are obtained for the mechanism named D5

(r2 ¼ 0:997), for which the determined parameters are

similar, independently of the method. In the last

column of Table 8, some values of a of the TG curve

calculated with the parameters obtained by application

of the SY method and corresponding to D5 are shown.

A greater approximation to the original points can be

observed, in comparison with the curve determined

with the parameters related to the correct kinetic

function F1. Therefore, if g is small, the interpolation

method, in spite of its simplicity, is better both in what

concerns parameter accuracy and kinetic model dis-

crimination. Although simple reactions with low acti-

vation energies (low g) are not very common in the

decomposition of solid materials, this conclusion is

important in some situations such as the desorption of

gases from solid surfaces [38]. It may be also relevant

in the context of the decomposition of complex mate-

rials (for instance, coal and biomass) where lumped

Table 7

Results of the kinetic analysis corresponding to the TG curve for F1/6.87/2.99

Kinetic

functiona

Interpolation Integration CR SY MKN

g Log b r2 g Log b r2 g Log b r2 g Log b r2 g Log b r2

F1 6.69 2.92 1.000 6.88 2.99 1.000 8.74 3.66 0.994 8.42 3.49 0.992 8.24 3.38 0.992

D5 23.37 8.15 0.998 23.42 8.17 0.998 23.67 8.25 0.997 23.62 8.23 0.997 23.58 8.21 0.997

F2/3 4.43 2.01 0.996 4.60 2.07 0.996 7.12 3.00 0.967 6.61 2.73 0.957 6.39 2.58 0.952

F1/2 3.34 1.57 0.991 3.59 1.67 0.991 6.48 2.74 0.948 5.86 2.40 0.927 5.61 2.24 0.918

F3/2 10.84 4.57 0.988 10.96 4.61 0.989 12.08 5.01 0.991 11.91 4.92 0.991 11.79 4.85 0.991

D3 14.83 4.80 0.984 14.90 4.83 0.984 15.54 5.05 0.971 15.43 5.00 0.970 15.34 4.95 0.970

F0 0.81 0.53 0.973 1.05 0.62 0.971 5.18 2.19 0.890 4.11 1.61 0.799 3.79 1.38 0.765

D4 12.52 3.88 0.968 12.63 3.92 0.967 13.45 4.21 0.941 13.32 4.14 0.939 13.21 4.08 0.938

F2 15.59 6.42 0.963 15.68 6.45 0.964 16.31 6.68 0.960 16.22 6.63 0.959 16.14 6.58 0.959

D2 11.44 3.92 0.958 11.55 3.96 0.956 12.49 4.29 0.921 12.33 4.21 0.918 12.21 4.15 0.916

D1 9.15 2.98 0.936 9.27 3.03 0.934 10.51 3.47 0.875 10.29 3.35 0.867 10.14 3.27 0.863

D6 7.44 1.75 0.931 7.61 1.82 0.929 9.16 2.37 0.853 8.86 2.22 0.841 8.69 2.11 0.834

a The kinetic functions A2, A3, A4, P2, P3 and P4 are not considered, since both the interpolation and the integration methods originate

negative g values.

Table 8

Comparison between the simulated TG curve for F1/6.87/2.99 and the curves calculated from the results obtained by application of the

mentioned methods

y a

Simulated,

F1/6.87/2.99

Interpolation,

F1/6.69/2.92

CR,

F1/8.74/3.66

SY,

F1/8.42/3.49

MKN,

F1/8.24/3.38

SY,

D5/23.62/8.23

1.110 0.149 0.151 0.122 0.112 0.103 0.145

1.165 0.251 0.253 0.218 0.200 0.184 0.239

1.210 0.345 0.346 0.314 0.287 0.266 0.334

1.250 0.434 0.434 0.410 0.375 0.348 0.429

1.290 0.525 0.524 0.511 0.470 0.436 0.527

1.330 0.613 0.611 0.612 0.566 0.528 0.623

1.375 0.705 0.702 0.719 0.670 0.630 0.722

1.430 0.802 0.798 0.829 0.783 0.745 0.819

1.520 0.914 0.909 0.943 0.914 0.887 0.921

1.650 0.984 0.982 0.995 0.988 0.980 0.979
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kinetic models are often considered. Some of the

pseudo-components defined in that way can decom-

pose by reactions with low activation energies [42].

The results of the kinetic analysis of the simulated

curve corresponding to P3/10.00/2.00 are shown in

Table 9. In this case, six decimal figures for the values

of a were considered. The interpolation and integra-

tion methods lead to kinetic parameters exactly equal

to the expected ones, while there is a very slightly

difference relatively to g determined according to the

SY method (10.01 instead of 10.00), which leads to a

calculated curve with negative deviations from the

original one (maximum difference of 0.01 in a). On

the other hand, the methods of CR and of MKN

originate kinetic parameters far from the starting ones.

In addition, there is no compensation effect, since the

corresponding calculated a versus y curves do not fit

the original points. To clarify this statement, it can be

said that for g ¼ 11:91 and log b ¼ 2:48 (CR) the

reaction becomes complete at a normalized tempera-

ture near 3, and for g ¼ 9:36 and log b ¼ 1:79 (MKN)

a degree of transformation of about 0.45 is obtained at

y ¼ 3:2 (compare with curve d in Fig. 1).

All the considered methods foresee the possibility

of the simulated curve to be approached by the kinetic

functions P2, P4, F0 or D1, besides P3. The relation-

ship between the F1 model and the mechanisms of

Avrami–Yerofeyev was discussed previously. In this

case, the g(a) values corresponding to the mentioned

functions are also related through the expressions

ln gðaÞPn ¼ ln n þ 1

n
ln gðaÞF0 (20)

lngðaÞD1 ¼ ln 1
2
þ 2 ln gðaÞF0 (21)

Since the reaction occurs in a narrow range of tem-

peratures (the points considered in the calculations

correspond to normalized temperatures between 2.6

and 3.2), it is not possible to perform the discrimina-

tion among those mechanisms, as reported before for

F1, A2, A3 and A4 [41]. In what concerns the results

obtained, it may be concluded again that their accu-

racy strongly depends on the method used and on the

values of the parameter g. Thus, taking the kinetic

parameters calculated by the integration method as

reference, it can be stated that the interpolation and SY

methods lead to equal or very similar values, with the

possible exception of those associated to the P4 func-

tion when estimated with the latter method, according

to the low g involved. For the other two methods, only

Table 9

Results of the kinetic analysis corresponding to the TG curve for P3/10.00/2.00

Kinetic

function

Interpolation Integration CR SY MKN

g Log b r2 g Log b r2 g Log b r2 g Log b r2 g Log b r2

P3 10.00 2.00 1.0000 10.00 2.00 1.0000 11.91 2.48 0.9998 10.01 2.00 1.0000 9.36 1.79 1.0000

P4 6.48 1.52 1.0000 6.47 1.53 1.0000 –a – – 6.51 1.54 1.0000 5.63 1.21 0.9999

P2 17.23 2.97 1.0000 17.22 2.97 1.0000 17.99 3.16 1.0000 17.22 2.97 1.0000 16.82 2.86 1.0000

F0 39.34 5.95 1.0000 39.34 5.95 1.0000 39.50 5.99 1.0000 39.34 5.95 1.0000 39.19 5.91 1.0000

D1 83.96 11.96 1.0000 83.96 11.96 1.0000 84.00 11.97 1.0000 83.96 11.96 1.0000 83.93 11.96 1.0000

D6 77.75 10.44 0.9997 77.75 10.44 0.9997 77.80 10.45 0.9996 77.75 10.44 0.9996 77.71 10.43 0.9996

D2 90.21 13.00 0.9982 90.21 13.00 0.9982 90.24 13.00 0.9980 90.20 13.00 0.9980 90.17 12.99 0.9980

D4 92.75 12.94 0.9966 92.76 12.94 0.9966 92.78 12.95 0.9962 92.75 12.94 0.9962 92.72 12.93 0.9962

F1/2 44.40 6.81 0.9956 44.40 6.81 0.9956 44.52 6.84 0.9945 44.39 6.81 0.9945 44.27 6.78 0.9945

F2/3 46.30 7.13 0.9922 46.31 7.13 0.9922 46.41 7.16 0.9902 46.29 7.13 0.9902 46.18 7.10 0.9902

D3 97.95 13.80 0.9920 97.95 13.80 0.9920 97.97 13.80 0.9910 97.94 13.79 0.9910 97.92 13.79 0.9910

A4 9.12 2.05 0.9831 9.12 2.05 0.9831 11.28 2.60 0.9688 9.12 2.05 0.9611 8.42 1.82 0.9561

A3 13.60 2.67 0.9828 13.59 2.67 0.9828 14.75 2.96 0.9707 13.58 2.67 0.9680 13.08 2.52 0.9662

A2 22.71 3.95 0.9823 22.71 3.95 0.9823 23.16 4.06 0.9740 22.70 3.95 0.9734 22.39 3.87 0.9729

F1 50.45 7.83 0.9818 50.45 7.83 0.9818 50.54 7.85 0.9778 50.44 7.83 0.9777 50.34 7.80 0.9777

D5 115.51 16.67 0.9665 115.51 16.67 0.9665 115.51 16.68 0.9633 115.49 16.67 0.9633 115.47 16.67 0.9633

F3/2 57.54 9.01 0.9578 57.54 9.01 0.9578 57.59 9.03 0.9498 57.51 9.01 0.9497 57.44 8.99 0.9497

F2 65.61 10.35 0.9261 65.61 10.35 0.9261 65.64 10.36 0.9142 65.58 10.35 0.9141 65.52 10.34 0.9141

a Not considered (negative values of Q(u)).
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the parameters corresponding to the D1 mechanism

are very similar to those determined with the integra-

tion method, an observation that is directly related to

the higher value of the parameter g.
The results for the case D4/10.00/2.00 are presented

in Table 10. All the methods allow for the correct

mechanism to be determined, but the poor quality of

the linear regressions obtained with the published

procedures can be noted. Contrary to the previous

case, which corresponds to the same kinetic para-

meters, the interpolation method does not lead to

the correct g and log b, but to slightly smaller values

(g ¼ 9:94 and log b ¼ 1:98). The normalized tem-

perature ranges involved (1.15–2.2 for the present

TG curve and 2.6–3.2 for the curve corresponding

to P3/10.00/2.00) may explain these differences. As a

matter of fact, according to Section 2.2 of this paper,

when the parameter g has a low value, the errors

associated to the interpolations relatively to 1=y are

larger for low values of y (see also Table 2). In any

case, there is an effective compensation between the

two kinetic parameters and consequently the calcu-

lated curve approaches the original points very well

(see Table 11). All the analyzed methods taken from

the literature lead to parameter values higher than the

starting ones and to differences larger than those

determined by the interpolation method. As shown

in Table 11, the curve corresponding to the solution

obtained by the CR method fits the simulated curve

only in the beginning, and has important positive

deviations for a > 0:3. On the contrary, the calculated

curve associated to the results obtained by the method

of MKN is below the original. Finally, the values of g
and log b determined by the SY method, although far

from the expected results, show some compensation

effect, which leads to a good agreement between the

calculated and the initial curves for intermediate and

high a values.

From the results presented in this section, it may be

concluded that the interpolation method, developed in

this work, in spite of its simplicity, fulfills the objective

of allowing the determination of the kinetic law and

the kinetic parameters of reactions studied by linear

temperature programming TG. In comparison with

other methods already known from the literature,

the interpolation method leads to as good or better

results, both for mechanism discrimination and para-

meter accuracy. In particular, this new method is much

superior for processes where g and/or y are low.

3.2. Experimental thermogravimetric curves

Some experimental thermogravimetric curves taken

from the literature were also analyzed, namely, those

corresponding to the decomposition of polytetrafluoro-

ethylene (Teflon) in vacuum [43], the dehydroxylation

Table 10

Results of the kinetic analysis corresponding to the TG curve for D4/10.00/2.00

Kinetic

functiona

Interpolation Integration CR SY MKN

g Log b r2 g Log b r2 g Log b r2 g Log b r2 g Log b r2

D4 9.94 1.98 1.0000 10.00 2.00 1.0000 10.78 2.28 0.9995 10.43 2.11 0.9992 10.23 2.01 0.9989

D2 9.34 2.23 0.9996 9.42 2.26 0.9995 10.28 2.57 0.9981 9.89 2.39 0.9969 9.68 2.28 0.9963

D3 11.11 2.42 0.9979 11.19 2.44 0.9981 11.83 2.67 0.9977 11.54 2.54 0.9981 11.36 2.45 0.9983

F0 1.06 0.20 0.9975 1.30 0.29 0.9981 –b – – 3.22 0.83 0.9646 4.16 1.22 0.9821

D1 7.97 1.71 0.9961 8.09 1.75 0.9955 9.17 2.14 0.9900 8.67 1.91 0.9850 8.43 1.78 0.9830

F1/2 2.40 0.72 0.9943 2.66 0.82 0.9956 – – – 4.19 1.24 0.9983 3.77 0.97 0.9964

D6 6.80 0.75 0.9937 6.93 0.80 0.9928 8.26 1.28 0.9841 7.63 0.99 0.9742 7.37 1.02 0.9704

F2/3 2.93 0.93 0.9908 3.18 1.02 0.9923 – – – 4.58 1.41 0.9981 4.18 1.15 0.9982

F1 4.13 1.39 0.9789 4.30 1.45 0.9807 6.56 2.28 0.9730 5.46 1.77 0.9821 5.11 1.55 0.9822

D5 15.29 3.95 0.9698 15.34 3.96 0.9704 15.67 4.08 0.9606 15.50 4.01 0.9608 15.37 3.95 0.9609

F3/2 6.10 2.12 0.9486 6.24 2.17 0.9509 7.79 2.73 0.9307 7.07 2.40 0.9319 6.78 2.24 0.9296

F2 8.28 2.93 0.9100 8.41 2.97 0.9123 9.45 3.34 0.8767 8.97 3.12 0.8737 8.74 3.00 0.8705

a The kinetic functions A2, A3, A4, P2, P3 and P4 are not considered, since both the interpolation and the integration methods originate

negative g values.
b Not considered (negative values of Q(u)).
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of magnesium hydroxide [44], the decomposition of

NH4HF2 [45] and the dehydration of calcium oxalate

monohydrate [46]. The data points selected and the

curves determined according to the best solutions

obtained with the interpolation method are shown in

Fig. 3. For the calculation of the normalized tempera-

tures, it was considered that those experiments started

at room temperature except for the dehydration of

CaC2O4�H2O, in which case the temperature pro-

gramme began at 40 8C (313 K) [46].

The results of the interpolation and integration

methods, for the kinetic functions that correspond

to the best fits in each case, are presented in

Table 12. Both methods lead to equal or similar kinetic

Table 11

Comparison between the simulated TG curve for D4/10.00/2.00 and the curves calculated from the results obtained by application of the

mentioned methods

y a

Simulated,

D4/10.00/2.00

Interpolation,

D4/9.94/1.98

CR,

D4/10.78/2.28

SY,

D4/10.43/2.11

MKN,

D4/10.23/2.01

1.15 0.091 0.092 0.088 0.085 0.083

1.25 0.147 0.148 0.146 0.139 0.135

1.35 0.214 0.215 0.216 0.205 0.198

1.45 0.292 0.292 0.299 0.282 0.272

1.55 0.380 0.379 0.394 0.370 0.356

1.65 0.474 0.473 0.498 0.466 0.448

1.75 0.574 0.572 0.607 0.568 0.545

1.85 0.674 0.671 0.716 0.671 0.644

1.95 0.771 0.768 0.820 0.771 0.741

2.05 0.859 0.856 0.910 0.862 0.832

2.20 0.963 0.960 0.996 0.968 0.944

Fig. 3. Experimental thermogravimetric curves analyzed (a: dehydration of CaC2O4.H2O; b: decomposition of NH4HF2; c: dehydroxylation of

Mg(OH)2; d: decomposition of Teflon (polytetrafluoroethylene)). The experimental points considered are shown as well as the lines

corresponding to the best results obtained.
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parameters, since the g values involved are not too

small. Similar results (not presented) were also

obtained with the classic techniques mentioned in

this work.

The dehydration of calcium oxalate monohydrate

data seem to correspond to a one-half order kinetics

with g ¼ 40:06 and log b ¼ 13:56, but the fit has not a

very good quality. Thus, mechanisms F2/3, D3 and D4

must also be considered. The authors of the original

paper [46] analyzed the data for a great number of

kinetic laws, either by a differential method or by the

CR method, and concluded that the mechanism F1/2

led to the best solution, as in the actual study. From the

reported parameters, determined by the CR method,

and keeping in mind the experimental conditions

T0 ¼ 313 K and b ¼ 10 K/min, we can calculate

g ¼ 40:14 and log b ¼ 13:55, which are values prac-

tically equal to those determined by us.

Dhar [45] analyzed NH4HF2 decomposition data

by five methods, although most of them had a ques-

tionable degree of accuracy. Moreover, this author

only considered kinetic expressions of the type

f ðaÞ ¼ ð1 � aÞn
, that is to say Fn models. Using the

CR method, he arrived to n ¼ 0:5 and E ¼ 68:4 kJ/

mol, which corresponds to g ¼ 28:1, a value slightly

higher than the one obtained in this paper for the F1/2

function (g ¼ 24:97). However, as may be observed in

Table 12, mechanisms D4 and D2 approach the experi-

mental points equally well or even better. The difficult

discrimination between the mentioned mechanisms is

a direct consequence of the limited range of a in the

experimental thermogravimetric curve (only values

between 0.148 and 0.670 were considered).

Fong and Chen [44] studied the dehydroxylation of

magnesium hydroxide and performed the kinetic ana-

lysis using data corresponding to a lower than approxi-

mately 0.8. The experimental points of run 1 of that

work were considered for analysis, and we concluded

by the interpolation method that a three-halves order

kinetics with g ¼ 93:79 and log b ¼ 19:13 gives the

best fit to the experimental curve (see Table 12). This

is in agreement with those authors, which presented

reaction orders between 1.5 and 1.7, variable accord-

ing to the used method, and E and A values equivalent

to g between 91.0 and 98.2 and log b between 18.6 and

21.1.

The decomposition of Teflon (polytetrafluoroethy-

lene) was examined by Wen [43]. Considering a first-

order reaction, he obtained E ¼ 301 kJ/mol and

A ¼ 9:45 � 1015 s�1, corresponding to g ¼ 124 and

Table 12

Results of the kinetic analysis corresponding to the experimental TG curves (only the functions associated to the best fits are shown)

Reactiona Kinetic

function

Interpolation Integration

g Log b r2 g Log b r2

a F1/2 40.06 13.56 0.9989 40.06 13.56 0.9989

F2/3 43.11 14.58 0.9986 43.11 14.58 0.9986

D3 88.87 28.13 0.9986 88.87 28.13 0.9986

D4 80.48 25.37 0.9983 80.48 25.37 0.9983

b D4 52.08 13.93 0.9999 52.08 13.93 0.9999

D2 50.57 13.96 0.9999 50.57 13.96 0.9999

F1/2 24.97 7.44 0.9999 24.97 7.44 0.9999

F2/3 26.09 7.78 0.9996 26.08 7.78 0.9996

D3 55.11 14.83 0.9996 55.11 14.83 0.9996

c F3/2 93.79 19.13 0.9998 93.78 19.13 0.9998

D5 185.53 36.04 0.9994 185.52 36.03 0.9994

F2 103.89 21.20 0.9988 103.88 21.20 0.9988

d F1 126.31 19.86 0.9994 126.31 19.86 0.9994

A2 60.48 10.13 0.9994 60.48 10.13 0.9994

A3 38.60 6.89 0.9994 38.60 6.89 0.9994

A4 27.71 5.28 0.9994 27.71 5.28 0.9994

a Dehydration of CaC2O4�H2O, a; decomposition of NH4HF2, b; dehydroxylation of Mg(OH)2, c; decomposition of Teflon

(polytetrafluoroethylene), d.
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log b ¼ 19:5, respectively. The results determined

by the methods developed in this paper are similar

(see Table 12). However, the functions A2, A3 and

A4 are also possible solutions, obviously with diffe-

rent kinetic parameters, according to the discussion

already presented in Section 3.1.

4. Conclusions

A new method for kinetic analysis of dynamical

thermogravimetric curves obtained under linear

temperature programming, called the ‘‘interpolation

method’’, was developed and validated in this paper.

The method is based on the linear relationship

between log g(a) and log I(g, y) for the kinetic func-

tion(s) corresponding to the correct mechanism(s) and

on calculations of the values of the integral I(g, y) by

linear interpolations, relatively to 1=y or g, in a pre-

built table. It proved to be a simple, fast and useful tool

for that purpose, in comparison with other methods,

particularly for low activation energy processes.

The errors associated to the linear interpolations

mentioned above are generally small when the values

of log I in the original table are calculated with

increments of Dy ¼ 0:1 and Dg ¼ 5, as considered

in this work. They are relatively important only for

low values of g and y.

A similar method, called the ‘‘integration method’’,

which is based on the numerical calculation of the

values of the normalized temperature integral I(g, y),

was taken as reference. Comparison between the

results obtained by the two methods (correct kinetic

law and associated parameters g and b) for a large

number of simulated thermogravimetric curves led to

the conclusion that they were identical. According to

the linear interpolation errors mentioned in the pre-

vious paragraph, very small and still acceptable dif-

ferences in the determined kinetic parameters were

observed when the curves simultaneously correspond

to low values of the parameter g and of the variable y.

It was verified that the CR and the MKN methods

always lead to parameters more or less distant from the

reference values. However, these differences are not

significant for high g values and seem to be non-

admissible only for g lower than about 20. On the

contrary, the results obtained by the SY method are in

general equal or close to the reference solutions, but it

can be stated that for g values less than about 10 their

quality is poor, of the same level as those determined

by the other two literature methods considered.

In one of the cases presented (F1/6.87/2.99), accord-

ing to the very low g value involved and the previous

comments, only the methods developed in this paper

were able to discriminate the correct mechanism.

Application of the interpolation method to real

experimental data collected from the literature, cover-

ing a wide range of parameters and kinetic models,

showed good agreement between the results obtained

and those reported in the original papers, determined by

a number of techniques, and reinforced the main con-

clusions of the study performed with simulated curves.

In conclusion, the method presented in this work

is very efficient to perform the kinetic analysis of

processes studied by TG under linear temperature

programming, particularly when they correspond to

low activation energies and high reactivities, situations

for which the known methods usually lead to impor-

tant errors or even completely wrong solutions.
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210 J.J.M. Órfão, F.G. Martins / Thermochimica Acta 390 (2002) 195–211



[11] U.B. Ceipidor, R. Bucci, A.D. Magrı́, Thermochim. Acta 199

(1992) 77.

[12] B. Roduit, M. Maciejewski, A. Baiker, Thermochim. Acta

282/283 (1996) 101.

[13] M.E. Brown, M. Maciejewski, S. Vyazovkin, R. Nomen,

J. Sempere, A. Burnham, J. Opfermann, R. Strey, H.L.

Anderson, A. Kemmler, R. Keuleers, J. Janssens, H.O.

Desseyn, C.R. Li, T.B. Tang, B. Roduit, J. Malek, T.

Mitsuhashi, Thermochim. Acta 355 (2000) 125.

[14] S. Vyazovkin, Thermochim. Acta 355 (2000) 155.

[15] J. Czarnecki, Thermochim. Acta 192 (1991) 107.

[16] B. Roduit, Thermochim. Acta 355 (2000) 171.

[17] J. Opfermann, J. Therm. Anal. Cal. 60 (2000) 641.

[18] S. Vyazovkin, C.A. Wight, Thermochim. Acta 340/341

(1999) 53.

[19] A.K. Burnham, Thermochim. Acta 355 (2000) 165.

[20] J.H. Sharp, G.W. Brindley, B.N.N. Achar, J. Am. Ceram. Soc.

49 (1966) 379.

[21] J. Sesták, V. Satava, W.W. Wendlandt, Thermochim. Acta 7

(1973) 333.

[22] M.E. Brown, D. Dollimore, A.K. Galwey, in: C.H. Bamford,

C.F.H. Tipper (Eds.), Comprehensive Chemical Kinetics

(Reactions in the Solid State), Vol. 22, Elsevier, Amsterdam,

1980.

[23] J.P. Elder, Thermochim. Acta 171 (1990) 77.

[24] A.W. Coats, J.P. Redfern, Nature 201 (1964) 68.

[25] V.M. Gorbachev, J. Therm. Anal. 8 (1975) 349.
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