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Abstract

The basic principle of heat transfer in temperature-modulated differential scanning calorimetry (TMDSC) and its influence on
the measured signals is presented. Fundamentals of transfer theory are given within the framework of linear response. On this
basis different calibration methods are suggested which enable to correct for the influence of heat transfer on the measured
(effective) complex heat capacity in TMDSC. It is shown, that the complex calibration function is the reciprocal transfer
function, which in turn is the product of the instrumental transfer function and the transfer function of the sample and its thermal
connection to the TMDSC. Methods are given how to determine the transfer functions and how to correct the measured complex

heat capacity properly.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Temperature-modulated  differential  scanning
calorimetry (TMDSC) is nowadays widely used to
investigate time dependent processes as well as to
determine the heat capacity of materials. This is done
by calculating the interesting quantities from magni-
tude and phase angle (relative to that of the modulated
temperature function) of the measured heat flow rate.
Unfortunately the measured quantities contain influ-
ences from the apparatus (the DSC) too and careful
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“calibration” should be done to separate these influ-
ences from the measured signal and come to reliable
results of the properties of the sample itself. Calibra-
tion means the quantitative determination of all appa-
ratus influences and the proper correction of the
measured raw data. In common DSC the calibration
procedures for temperature, heat flow rate and heat are
well established in practice [1] and for commercial
DSC normally part of the software. For TMDSC there
is an additional calibration procedure needed which
corrects for the huge influence of the frequency on the
magnitude and phase angle of the measured complex
heat capacity.

This paper aim at making a contribution to better
understand the influence of the TMDSC on the mea-
sured complex heat capacity and to give a procedure to
determine the falsification quantitatively and correct
it. At first we present the TMDSC and the pathway of
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heat transfer by means of very simple model consid-
erations leading to some formulas describing this
behavior approximately. These considerations form
the basis for different calibration procedures for the
magnitude as well as the phase angle of the complex
heat capacity of the sample, which we present in
Section 3 of this paper. The aim is to give the
practician a method which enables him to measure
accurate complex heat capacities (i.e. magnitude and
phase angle or real and imaginary part) with commer-
cial DSC in temperature-modulated mode. We shall
do that in different steps starting from rather simple
calibration methods (in part already published by
other authors) and proceeding to more complex meth-
ods which need more effort but enables the interested
and more advanced user to come to better results. To
understand these procedures better, it would of course
be helpful to study the basic model considerations in
Section 2 of this paper first, but it is even possible to
refrain from understanding the background and simply
make use of the recommended methods. In a second
part [2], we shall demonstrate the capabilities and
limits of the different methods applying the methods
described to one set of experimental data from a model
substance.

2. Components of a DSC model

A DSC is built from different parts, which in
principal have a certain heat conductivity and a certain
heat capacity each. Any contact area between different
parts acts as an additional heat resistance. In addition
it includes often some sophisticated electronics
that amplifies the voltages from the sensors to the
measured signal transferred to the computer. This way
a DSC, no matter how complicated it is, can be
dissected into a network of simple mechanical ele-
ments and the, hopefully, linear electronics. There is
no limit for the number of elements in such a network.
To get the properties of it, a system of linear differ-
ential equations must be solved. The number equals
the number of elements in question, this number can
be high for complex modern equipment, but, thanks to
modern computers and adequate mathematics soft-
ware, the solution is in principle possible. Neverthe-
less we shall, in what follows, restrict ourselves to very
simple models, which are absolutely sufficient for to

learn about the principle behind heat transfer in the
DSC and to the sample and its influence on TMDSC
signals.

The model of choice to evaluate a heat transfer
network is often that of electrical analogy, which has
proved its worth in DTA and DSC analysis since
decades [3]. From the physical point of view the
transport of energy (heat flow) is based on the same
type of equations, as is the transport of charge (cur-
rent), so the knowledge from theory of electricity (in
particular alternating current (ac) theory) can easily be
transferred to heat transport problems. The advantage
of looking on electrical networks rather than on often
complex heat conducting solid objects is that there are
a lots of powerful tools from electrical line network as
well as transfer theory available for our purpose and
the “wheel” has not to be invented once again.

The total network describing a DSC (the “box’’)
has one ““input” (the temperature-time program) and
one “output” (the heat flow rate into the sample,
which is calculated from the differential temperature
or directly measured as differential heat flow rate). To
evaluate the behavior of an apparatus it is often
sufficient to look at the so-called ‘‘transfer function™
P(w) of the “box”, a complex function in frequency
domain [4,5], which is defined as the quotient of
the output function Out(w) over the input function
In(w). The transfer function (in frequency domain)
is mathematically connected with the “‘step response”
or “pulse response” functions (in time domain) via
Fourier transform. It will go beyond the scope of this
paper to derive all details of the features of these
functions; the interested reader is referred to textbooks
of transfer theory. However, the transfer function of
the apparatus is in principle the “‘calibration” function
we need to correct the measured quantities for appa-
ratus influences.

From transfer theory of linear systems, it is known
that the overall transfer function of a network can be
calculated from the transfer functions of the individual
components [4,5]. In particular it holds that for trans-
fer elements connected in series the total transfer
function is the product of those from the elements.
In other words, the magnitudes of the complex func-
tions must be multiplied, whereas the phase angles
connect additively. On the other hand, for transfer
elements connected in parallel the total transfer func-
tion is the sum of those of the components.
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These facts enable to breakdown the rather com-
plicated heat transfer network of a DSC into simple
components with rather simple transfer functions (for
reasons of understanding the principle behind). These
transfer functions can then be assembled properly and
give the transfer behavior of the total TMDSC (both
with and without the sample included). We shall
proceed this way in this paper and look at the single
components first and connect the results later. Know-
ing the transfer function enables the determination of
the correction function and thus a proper calibration.

2.1. The RC-element

The simplest component of heat conducting net-
works is an object having a certain thermal resistance
Ry and a certain heat capacity C,. The respective
electrical analogy element is the low-pass filter built of
a resistor R and a capacitor C. The complex transfer
function, taking ac-voltage as input and output func-
tions, can easily be calculated, it is:

1 1 n oRC |
= " = l
1 —ioRC 1+ (wRC)* 1+ (wRC)?
ey
with the angular frequency w = 2xnf (f frequency).
Changing R to Ry,, C to C, and voltage to temperature
gets the respective transfer function for the thermal

behavior of such an element. Thus, we calculate the
magnitude (absolute value, modulus):

P(w)

1

Abs(P(w)) =1/ Re*(P)+ Im*(P) =

1 + (thh Cp ) 2
)
and the phase angle (argument):

Im(P)

Arg(P(w)) = tan™! <m

> = tan" ' (0RKC,) (3)
of the complex transfer function in the case of thermal
quantities. From these equations follows that the
magnitude of the (modulated) temperature on the
output side (compared to the input side) drops with
increasing frequency and there is a phase shift
between both signals. With other words the measured
quantities (output) are not constant for a constant input
function but depend on the frequency in question. The

change (falsification) of the output quantities is the
larger, the larger the frequency of temperature mod-
ulation, the heat capacity and the thermal resistance of
the considered RC-element.

For a given heat conducting element with given Ry,
and given C, (the product is a characteristic time 1),
the frequency dependence of the complex transfer
function can be presented graphically in different
ways. One method is to plot the logarithm of magni-
tude (2) and the phase angle (3) separately (in log
scale: “Bode plot”, Fig. 1). Another way is to plot the
imaginary part (1) against the real part (1) in a polar
diagram in the complex plane with the frequency as an
implicit parameter (“‘Cole—Cole plot”, Fig. 2). How-
ever, we prefer the first method because it seems to be
easier to handle and to interpret.

The log—log plot of the magnitude of the transfer
function (Fig. 1 upper curve) of the simple RC-ele-
ment discussed shows some characteristics; for low as
well as for high frequencies this function becomes a
straight line (asymptotes with slopes of 0 and —1,
respectively) which intersect at a certain frequency @,
the ““corner frequency” of the RC-element. The phase
angle (Fig. 1 lower curve) at wy is just half (7/4) of its
total value (n/2). The corner frequency is reciprocally
connected with the characteristic time of the RC-
element: 1/wg = © = Ry, C,,.

To calculate the (complex) heat flow rate into a RC-
element from the transfer function (1) for a given
modulated temperature function (with frequency w),
we have to multiply it with C,, and w. The magnitude
of that function is got easily in the Bode plot via a
simple shift in y-direction of the magnitude of the
transfer function (Fig. 1), which leaves the shape of
the curve unchanged. To get the phase angle of the
heat flow rate, we have to take a phase jump of 7/2
between temperature and heat flow into consideration,
which we have to subtract from the argument of the
transfer function. Again this is a simple shift in y-
direction in the Bode plot (Fig. 1) leaving the shape of
the curve unchanged. Here the advantage of the Bode
plot becomes obvious the first time. The calculation of
the real heat flow rate (magnitude and phase angle) is
very simple. To get the proper heat flow (or C,,) curve
of a certain RC-element, we only have to shift the
transfer function properly in the Bode plot.

It should be noticed that the sample (including
crucible) normally behaves like a simple RC-element
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Fig. 1. Bode plot: magnitude (upper) and phase angle (lower) of transfer function of an RC-element (Ry, = 0.03 K mW ', C, =100 mJ K,

T=235).

in a TMDSC which is shown in what follows. In Fig. 3,
the measured transfer functions (i.e. the normalized
measured heat capacity) of four aluminum discs in a
PerkinElmer instruments Pyris-1 DSC is given.
Because of the high thermal conductivity of alumi-
num, it is clear that these samples should behave like a
simple RC-model composed of the total heat capacity
(sample + pan) and the thermal resistance of heat

transfer. But if we compare the results from Fig. 3
(especially the phase angle shift in Fig. 3b) with Fig. 1,
it is obvious that the data cannot be described by a
single RC-element. This is mainly caused by the
transfer function of the instrument itself, which is
included in the results of Fig. 3. After subtraction
of the proper transfer function of the instrument the
behavior of all four samples is well described by a
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Fig. 2. Cole—Cole plot of the transfer function of an RC-element with w as parameter (Ry, = 0.03 K mwW~!, C, =100 mJ K™, 1=35).
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Fig. 3. Bode plot: magnitude (a) and phase angle (b) of the total
transfer function of a PerkinElmer Instruments Pyris-1 DSC with
different Al discs (symbols) together with the transfer function of
the empty instrument (solid line, see Section 3.4).

simple RC-element composed of the heat capacity in
question and an almost constant thermal resistance as
shown in Fig. 4. In what follows we shall discuss the
reasons for the additional contributions to the total
transfer function and how to obtain them.

2.2. RC-element networks

The simple RC-element can even be helpful to
model the properties of the total equipment, i.e. the
apparatus (DSC) plus sample what concerns the heat
transport influence on the measurement. In a first
approximation the heat flows along an one-dimensional
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Fig. 4. Bode plot: magnitude (a) and phase angle (b) of the sample
part of the transfer function from Fig. 3 (symbols) together with the
fit function using Eqgs. (2) and (3), respectively (solid lines). From the
fit parameter 7, an effective thermal resistance can be determined:
Ruy, = 23 KWL, PerkinElmer Instruments Pyris-1 DSC.

pathway through the DSC. This can be modeled by a
series of RC-elements. The simplest model contains
three elements: one, for instance, for the part of the
pathway from the oven to the thermometer, one from
the thermometer to the sample (or reference) support
(or pan) and one from there to the inner of the sample
(or reference). All these RC-elements have different
(apparent) heat resistances and different (apparent)
heat capacities, which, of course, are unknown for the
user but almost fixed concerning the apparatus part
(but they differ for the sample part). If needed these
data can be determined from the measured transfer
function as will be shown elsewhere.
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From transfer theory it is known, that for transfer
elements connected in series the total transfer function
is the product of the transfer functions from the ele-
ments. In other words, the magnitudes (amplitudes)
have to be multiplied, whereas the phase angles connect
additive. This way the total transfer function can be
deduced from Egs. (1)~(3) with different t; = Ry ;G
for the different RC-elements in question:

Abs(P(w) = H ! and
i1+ (0RnCpy)

Arg(P(w)) = Ztan’1 (0Rm;Cp ) 4)
J

From the multiplicative behavior of the magnitude
another advantage of the Bode plot becomes obvious:
the slope of the high frequency asymptote in the log—
log plot characterizes the number of effective different
RC-elements involved. One RC-element will give a
slope of —1 (Fig. 1); two RC-elements in series will
give a slope of —2 and so on.

It should be mentioned too, that for transfer ele-
ments connected in parallel the total transfer function
is the sum of the transfer functions of the respective
elements:

P(w) = _Pi() 5)

2.3. A simple DSC model

As an example for modeling a DSC, the simplest
possible network is as follows (Fig. 5): One RC-
element on the reference side, Ry, 15 Cp,1, (collecting
the heat flow path and the pan together) and two RC-
elements in series on the sample side, Ry, 1; Cp, 15 R s
C, s (the apparatus part and the sample separated).

The transfer function for this model is again defined
as the quotient of the output function (i.e. the AT signal
of the DSC) over the input function (i.e. the temperature
of the heater T§,,). It can be calculated straight forward
in analogy to the single RC-element, see [6-8]:

_ AT _ 1
T T 1 — ioRn Gy
1
1—iwRm1 Cp‘l Jr((Rth,l /Rth‘s — (l/iwC,,,,S))
(6)

P(w)

Res

fur

Fig. 5. Circuit representing the simplest model for a DSC, see text.

This is simply the difference of the transfer func-
tions of a single low pass and that of two low passes in
series, representing the reference side and the sample
side of a differential calorimeter, respectively. The
quantities Ry and C,; characterize the (apparent)
thermal resistance and the (apparent) heat capacity of
the heat flow pathway from the furnace to the inner
side of the pans, which are thought to be identical on
sample and reference side. Ry, and C, s symbolize
similar quantities for the sample itself (Fig. 5). The
magnitude and phase angle of the complex transfer
function (6) was calculated using MAPLE mathe-
matics software and plotted in Fig. 6 (solid lines)
after inserting reliable values for the parameters.
The curves look similar to the curves in Fig. 1, but
the slope of the asymptote at higher frequencies is
about —2 in this case and the phase angle shift is much
larger, nevertheless the model describes the behavior
of a real DSC (see measured values in Fig. 6) only
approximately.

The model can be refined with additional RC-ele-
ments both on the reference and on the sample side. In
a second approximation, we may use two serial RC-
elements on the reference side and three on the sample
side, characterizing the heat path between the heater
and the temperature sensor, between the thermometer
and the inner side of the pan and the sample itself,
respectively. The transfer function of this network,
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Fig. 6. Bode plot: magnitude (upper) and phase angle (lower) of transfer functions of different DSC models; solid lines: the model of Eq. (6)
with Ryy = 0.02KmW ™', G,y = 130mIK ™!, 1y =2.6 5, Rps = 0.1 KmW ™', C,s = 6.5mI K™, 7, = 0.65 5; dotted lines: more detailed
model with Ry ; = 0.02KmW™', C,; = 100mI K", 7y =2.05, Rpyp = 0.03 KmW ™', C,p =20mJ K™, 715 = 0.6 5, Rpps = 0.1 KmW ™",
Cps =6.5m] K™, 1, =065s; symbols: measured values of C;, measured/ Cp true (squares) and phase angle (triangles) of a 20 mg sapphire disc

in a PerkinElmer Instruments DSC-7.

which can be deduced straightforward, is presented in
Fig. 6 (dotted lines) using a reliable set of values for
the different resistances and capacities. The overall
shapes of these functions are again not very different
from those of the simpler model (solid lines) though
the exact formula is much more complicated and
contains much more parameters. The reason why
we present it here is to show, that the magnitude curve
is not changed very much (it is somewhat steeper
again), whereas the phase angle is much more sensi-
tive to model changes. In principle the model can be
extended even further by adding more and more RC-
elements, such examples can be found in literature
[7,9—-12], but the question arises whether this is really
helpful way to get the true calibration function for the
TMDSC in question. With increasing number of RC-
elements in the model the number of parameters
increases as well and in principal every real TMDSC
can be described this way, but the problem remains
how to obtain the correct values for the increasing
number of parameters. Furthermore the question
arises whether the certainty of the results is really
improved by using an only approximate model with a
lot of parameters which have to be determined with
additional measurements. Another argument is, that

modern equipment often contains other elements
which possibly cannot be described with a simple
RC-network.

2.4. Electronics and data processing

Every DSC nowadays contains electronic controllers
and amplifiers for signal processing and the question
arises how they may influence the measured signal. The
answer is easy in the case of modern analog (dc)
amplifiers, they contain operational amplifiers and other
linear components only and the bandwidth is so large
(kHz) that there is no influence on the signal of common
TMDSC. The situation is different, however, if electro-
nically signal smoothing is used to improve the signal-
to-noise. Here we have to distinguish between passive
and active filtering. The former is normally done with an
electronic low pass filter (i.e. a RC-element), which
already has been presented in Section 2.1 (Eq. (1)). If
such a filter is included in the electronics of the DSC,
we have to add one more serial RC-element into the
network model, in other words the transfer functions of
the DSC and that of the filter in question have to be
multiplied (i.e. addition of the respective Bode plots) to
get the total transfer function.
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If active filtering is performed (by hard- or soft-
ware) the influence on the signal cannot be determined
without further knowledge about the method used.
Unfortunately this information is often confidential
and not easy to get, but nevertheless it is essential for
the behavior of the equipment, in particular as there
are even non-linear methods used in practice. This is
a dilemma and there is no other way out than to test
the apparatus experimentally, e.g. with the methods
presented in Section 3.

Another type of amplifier (often used for amplifica-
tion of very weak signals) is the chopper-amplifier.
With this technique the signal (e.g. that from the AT
sensor) is periodically grounded resulting in a period-
ical signal, which then is processed using more sensi-
tive ac-amplification techniques. However, the effect
of the chopper on the transfer function of such an
amplifier is similar to the influence of a low-pass filter
(Section 2.1) with the chopper frequency acting as
corner frequency. Normally the chopper frequency
(50 Hz or more) is much higher than the frequency
range of the TMDSC and there is no measurable
influence on the signal. But there may be an inter-
ference of the chopper frequency with the line fre-
quency of 50 (60) Hz and the differential frequency
could fall into the frequency window of the tempera-
ture modulation and this way influence the measured
signal.

Every DSC contains (electronic) controllers for
temperature control and—if existent—power compen-
sation. Normally such controllers work linearly using
the PID principle (a Proportional amplifier, an Inte-
grator and a Differentiator normally in parallel). The
transfer function of the P-element is simply a constant
factor. The I-element is identical to a low-pass filter
(Eq. (1), Fig. 1). The D-element, in turn, behaves like a
high pass filter and its transfer function is like that of a
low-pass filter (Fig. 1) but mirrored at the y = 1 axis
(i.e. the slopes of the asymptotes are in this case 0 and
+1, respectively). For the PID, all three elements are
connected in parallel and act on the temperature of the
heater, which is the input quantity of our model. This
means, that the sum of the respective transfer func-
tions (i.e. the total PID) acts multiplicative on the
transfer function of the DSC evaluated in Section 2.3
(i.e. the respective Bode plot has to be added).

There is, however, another effect with control cir-
cuits that has an essential influence on the transfer

behavior. This is a certain time lag (‘“‘dead-time” t4)
between an action of the controller and the reaction of
the controlled element (heater), which is caused by the
inertia of the controlled path. If such a dead-time exist,
there is an additional phase angle shift

Pq = Ta® @)

whereas the magnitude of the transfer function
remains unchanged.

Of course, even the sampling rate of the analog—
digital converter, involved in nowadays data proces-
sing is a limiting factor. Let At be the time interval
between data points in time domain, then it follows
from Fourier transform that every (even non-periodic)
sampled function becomes periodical in frequency
domain with a period:

_ 1
T Af,

This periodicity is an artifact caused by the sam-
pling, which falsifies the true function in frequency
domain and in the same moment limits the frequency
range of that function. As a rule of thumb, the sam-
pling interval should be chosen at least 20 times
smaller than the period of the modulation to get
reliable results (i.e. falsification <5%) for the Fourier
transformed signal.

Ay

®)

2.5. Thermal waves

Another approach to describe the behavior of poor
heat conducting materials (e.g. polymer samples) in a
TMDSC starts from the (one dimensional) heat diffu-
sion equation:
or _ OT
" ox?
with Dy, the thermal diffusivity. From this equation
follows, that a temperature change at the border of a
conductor proceeds through it as a damped thermal
wave. In this case, we have to consider the sample as
an infinite series of infinitesimal small RC-elements
rather than a series of some RC-elements used for the
simple formula (4) which leads to wrong results, if
the sample is so big, that a damping of the thermal
wave (i.e. change of the temperature amplitude) inside
the sample becomes significant. In this case the
proper solution of the diffusion Eq. (9) must be used

®
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which depends on the particular boundary conditions.
Examples can be found in literature [13-20].

2.6. Conclusions concerning the behavior of the

TMDSC

The reason for the relative broad presentation of the
transfer behavior of the TMDSC was to enable the
experimenter to get better insight about the influence
of heat transfer on the measured quantities. Up to now,
in all our considerations a linear behavior of the DSC
(and all its components including data processing) was
assumed. Unfortunately, there are other effects that
disturb the measurements and may lead to faulty
results. There can be a possible non-linearity which
often is not obvious for the experimenter. One fact is
that any asymmetry between the sample and reference
side in the DSC result in problems, in particular when
not reproducible, this should be detected and, if
possible, eliminated. To prove the linearity and find
possible exceptions from it, we are in need of a proper
experimental procedure. We are as well in need of a
method to get the proper calibration function to cal-
culate the true magnitude and phase angle of the
(complex) sample heat capacity from the measured
raw data. The mentioned transfer function can be
helpful in this case.

If we compare the calculated transfer function for
different DSC models with that from real measure-
ments of a sapphire sample at different frequencies
(Fig. 6), it becomes obvious that these rather simple
models describe a real TMDSC rather well. The
improved network model with three RC-elements
on the sample side and two on the reference side is
better than the simpler one. The magnitude fits better
to the measured values than the phase angle does, the
phase angle seems to be more sensitive to the model in
question. However, these models are approximations
for the heat transfer behavior only, the possible influ-
ences of electronics and control circuits are not
included and can hardly be included exactly because
of missing knowledge of the details which may differ
for the different DSCs.

To summarize the results we can state, that the real
DSC used in the TMDSC mode behaves like the simple
models presented above. The (reciprocal) transfer func-
tion calculated with proper parameters may serve as
calibration function to correct the measured raw data

for frequency influences. The magnitude (in particular
the static heat capacity of the sample) is rather well
corrected this way, whereas the phase angle correc-
tion, necessary to get the correct complex heat capa-
city of the sample, is rather uncertain. Consequently
we are in need of a suitable method to determine the
real transfer function experimentally, which then can
be used to calibrate the magnitude and the phase angle
of the measured signal and correct for apparatus
influences. We shall present different calibration pro-
cedures in what follows.

3. Calibration procedures

In this section, we want to give the practician a
calibration method into the hand which enables him to
measure exact complex heat capacities with commer-
cial DSC in the temperature-modulated mode. To
begin with, we would like to summarize the consid-
erations which the calibration methods are based on.

The TMDSC is a linear device, and the behavior
concerning the heat conduction can be described quan-
titatively with the tools of transfer theory. This can be
done in time domain using either the pulse response
(Greens) or the step response function, or in frequency
domain using the complex transfer function (i.e. the
normalized quotient of the output over the input func-
tion). All three functions are equivalent and can be
converted into one another mathematically by integra-
tion, differentiation and Fourier transform, respectively.

Linear response implies the possibility to break-
down a complex device into a network of simple
elements with known transfer behavior. For serial
connection of elements the total transfer function is
the product of the single transfer functions. For par-
allel connection, the total transfer function is the sum
of the single transfer functions. In the case of TMDSC,
the apparatus and the sample can be considered as
connected in series, in other words the total transfer
function is the product of the transfer function of the
DSC itself and the transfer function of the sample. The
simplest component is a RC-element with a certain
thermal resistance Ry, and a certain heat capacity C,,
this is in general a suitable model for a (not too big)
sample and its thermal connection to the DSC. For the
(complex) transfer function of the RC-element see
Egs. (1)-(3).
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Because of the thermal behavior, the effective heat
capacity of a sample, measured in a TMDSC, depends
always on frequency. To get the correct heat capacity,
we have to divide the measured heat capacity (at a
certain frequency) with the value at that frequency of
the transfer function of the TMDSC used. In case of
“multi-frequency” TMDSC measurements, we get
the effective complex heat capacity not only at one
frequency but as a series of values at the base fre-
quency and its higher harmonics or as a continuous
function C,, meas. (w) which should be divided by the
transfer function to get the correct complex heat
capacity of the sample.

Division of complex functions means division of the
(real valued) magnitudes and subtraction of the phase
angles (i.e. the respective Bode plots of the complex
functions have to be subtracted). Thus, we get the
corrected heat capacity:

Cpmeas. (@)

c* ((U) __ p,meas.

p,corT. P(O)) (10)

and with the well-known relation for a complex
quantity C; (@) = Cp(w) e, we find:

_ Cp,meas.(w)
Cp.corn((l)) = m and
DPeorr. = Pmeas. — Arg(P(w)) (11)

for the magnitude (absolute value) and the phase angle
shift, respectively.

Calibration means to determine the transfer func-
tion of the TMDSC in question including the sample
and to correct the measured effective heat capacity
properly. The calibration function for this correction is
identical with the reciprocal transfer function of the
apparatus (including the control and evaluation hard-
and software).

The TMDSC method allows to measure the (real
valued) static heat capacity as well as the complex heat
capacity in case of (time dependent) dynamic pro-
cesses. For many applications, it is sufficient to mea-
sure only the absolute value of the apparent heat
capacity and disregard the phase angle, that is why
we firstly describe the calibration of the magnitude
only and proceed to the more complete calibration of
the complex heat capacity later.

Some general remarks concerning the TMDSC
measurements should be included:

We recommend to perform zeroline correction gen-
erally for TMDSC measurements to exclude the influ-
ence of possible asymmetry of the DSC instrument.
Simple subtraction of the zeroline heat flow (got with
empty pans of same type and mass) from the sample
heat flow in time domain before evaluation is suffi-
cient in most cases. Zeroline correction can appreci-
ably improve the accuracy of the measurements as
long as the temperature time profile is the same for
both measurements.

One should even bear in mind that software filter-
ing, used sometimes to reduce the noise-level, leads to
additional “‘smearing” of the heat flow signal and
changes the transfer function distinctly.

With this background, we can start to discuss the
calibration methods in what follows.

3.1. Simple heat capacity calibration

This method corresponds to the common heat flow
rate calibration of standard DSC which uses the known
heat capacity of reference materials (as sapphire) to
calibrate the calorimeter. In principle this well-known
procedure could even be used with TMDSC, but, as
the temperature-modulated measurements are very sen-
sitive to the heat transfer conditions to the sample and
the heat conductivity within the sample itself, this
method may give incorrect results, because the heat
conductivity of the normally used reference material
(sapphire) is in principle different from the heat con-
ductivity of the sample (e.g. a polymer). The resulting
error is larger the difference and larger the frequency of
the temperature modulation used. This way the advan-
tage of the very precise heat capacity values of the
reference materials is lost and we can refrain from this
calibration method and come to a simpler one.

Often the (static) heat capacity of the sample mate-
rial itself is known, or can be found in literature, and
we can use this knowledge for an in situ calibration.
The procedure is easy: we have to measure the heat
capacity with the TMDSC at a certain frequency in a
temperature region well outside of any transition or
reaction of the sample and compare the result with the
literature value. This yields a correction factor for
the frequency (and temperature) in question which
enables a proper calibration. This method can be used
in scanning as well as in quasi-isothermal mode. If the
temperature dependence of the heat capacity of the
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sample is known we can get the calibration function
(for that frequency) in dependence of temperature
too. The method is already widely used in TMDSC
because of the simple straight forward handling. The
accuracy is determined by the accuracy of the TMDSC
evaluation and, of course, the accuracy of the literature
values of the heat capacity of the sample.

Although often disregarded this method allows a
simple phase angle calibration too; outside a transition
region, where the heat capacity is real valued, the
phase angle should be zero. This makes a simple
correction for the phase angle possible, namely to
connect the measured phase angle outside the transi-
tion properly and subtract this “phase angle-baseline”
from the measured phase angle.

It should be mentioned, that this simple method may
give wrong results, as the thermal resistance often
changes in a unknown manner during transitions (e.g.
glass transition or melting), this would lead to a
correction factor which is different before and after
a transition and, in addition, may not change linearly
during the transition. Furthermore, the sample heat
capacity may change considerably during a transition,
which together with a change of the thermal resistance
result in an often huge change of the transfer function
(and with it the calibration function) during transi-
tions. This means, that a simply interpolated correc-
tion would give a wrong calibration in the region of
such transitions.

3.2. Calibration procedure from multi-frequency
evaluation

Using sawtooth-type or multi-step temperature
modulation with TMDSC enables multi-frequency
evaluation of heat capacity from one single scanning
or quasi-isothermal run. Recently Wunderlich and co-
workers [21,22] have presented a calibration proce-
dure, which uses the advantages of this evaluation
method to get the correct magnitude of the heat
capacity. The idea is to determine the heat capacity
for different frequencies (the higher harmonics of the
basic period) and extrapolate to zero frequency (the
standard case), for which the DSC is assumed to be
calibrated in the normal manner. The authors present a
formula for the heat capacity correction function:

K(w)=vV1+1?0? (12)

which holds at least for lower frequencies [21]. This is
exactly the reciprocal magnitude of the transfer func-
tion of a RC-element (Eq. (2)) with T = R, C, which
—for low frequencies—is a sufficient approximation,
even for the TMDSC [8]. With the correction function
(12), we get:
1 1 2
Czizczi(lJr(rco) ) (13)

p,meas. P,COIT.

Plotting the reciprocal squared measured heat capa-
city versus the squared angular frequency (Fig. 7)
should result in a straight line with R3 the slope,
and the corrected (squared) heat capacity the intercept
with the ordinate at w = 0. This was proved to be
correct for sapphire and polystyrene at frequencies up
to w = 0.4 rad s~ ' [22]. Of course the slope changes
for different materials and different heat capacities,
but this has no influence on the correction method
itself, the intercept at « = 0 gives always the correct
(static) heat capacity (if the DSC has been calibrated
correctly in the standard mode). The method can even
be used in cases, where the simple Eq. (12) doesn’t
hold. In such cases, the extrapolation is non-linear but
comes to the correct value anyway. This procedure is
very accurate and suitable for determination of com-
mon (static) heat capacities but can even be used for
determination of the correct complex heat capacity if
applied in a temperature region where no frequency
dependent processes or transitions occur in the sam-
ple. Any correction of the phase angle is, however, not
possible with this method. The remarks from Section
3.1 concerning the accuracy of the result and the
interpolation in the region of transitions are valid as
well in this case.

Recently Toda et al. [23] have published a calibra-
tion method (based on a DSC model of Hatta and
Muramatsu [24]) which starts from a formula like that
presented in Section 2.3. Determining the unknown
parameters with a proper fit procedure the authors get
an empirical correction function for the calibration
which is more complex than Eq. (12).

3.3. Calibration using the step response
function of the DSC

In this section, we present an easy method to
determine the (complex) transfer function of the
TMDSC including the heat transfer to the sample.
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Our method is based on the transfer theory, valid for
linear behaving equipment, which tells us, that the
transfer function is the Fourier transform of the pulse
response function. The quantity measured in a DSC is
the heat flow rate (HF, Fig. 8). A pulse in heat flow is
equivalent to a step in temperature as “‘input function”
of the DSC. The output function measured on a step-
like temperature change is the searched pulse response

function P(¢) of our TMDSC. This (normalized) func-
tion has to be Fourier transformed to yield the complex
transfer function of the equipment:

P(w) = FP(r) (14)

Fourier transform—nowadays available in almost
every data evaluation program as “‘fast Fourier trans-
form”—normally yields the real and imaginary part of

HFin mW

T T T T T T 141.0
140.5
\'
1400 =
S
139.5
T v T T 139.0
20 30 40 50
tins

Fig. 8. Temperature step response function of a PerkinElmer Instruments DSC-7 containing a sapphire sample (25 mg).
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the complex function. From these, one can easily
calculate the magnitude and phase angle of the transfer
function:

Abs(P()) = /R (P(0)) + Im}(P(w)) and
_1 Im(P(w))

Re(P(w)) )

Arg(P(w)) = tan
which are used then for correction of the measured
apparent heat capacity by means of Eq. (11). The
realization of this calibration method is as follows.
With the sample mounted, the DSC has to be pro-
grammed to a temperature where no transitions nor
reactions occur in the sample. After equilibration, a
temperature step of 0.5 K is programmed at maximum
heating rate and the heat flow response is measured
(time dependent) in isothermal mode. (Remark: the
temperature step should be distinctly faster than the
time constant of the DSC to give a correct result. If that,
for certain DSCs, is not possible the more sophisticated
method presented in Section 3.4 must be used for
calibration.) The same procedure should be done with
empty pans of same type and weight to get the zeroline
which (as usual) must be subtracted from the sample
curve to compensate for eventual asymmetries of the
apparatus. The resulting differential curve is normal-
ized and Fourier transformed yielding the transfer

function P(w), normalized as well (i.e. it is 1 for low
frequencies). This function can be used then for correc-
tion of the measured apparent heat capacity with
Eq. (11). To test the applicability of the method for a
commercial DSC, we performed measurements of the
apparent heat capacity (magnitude and phase angle) of
a sapphire sample in quasi-isothermal mode at 140 °C
at seven discrete frequencies. The magnitude was
divided by the true heat capacity (Eq. (11)) and
included in Fig. 9 (squares) together with the measured
phase angle (triangles). Obviously the change of mag-
nitude and phase angle of the heat capacity with
frequency coincides with the transfer function (solid
lines) calculated from the pulse response at 140 °C
(Fig. 9). This supports the usability of this method
and shows the accuracy of the correction as well.
(To demonstrate the error one makes if the zeroline
is not subtracted from the sample step response function
before Fourier transform, such a curve has been added
in Fig. 9 too).

Obviously, the step response method yields a more
precise transfer function, than every DSC model does
(compare Fig. 6), therefore it offers the possibility
for a fast and simple heat capacity calibration method.
It is of course possible to perform the step response
method at different temperatures (before and after
transitions) to test whether the transfer function and
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Fig. 9. Fourier transformed step response function from Fig. 8 (transfer function, solid lines) together with measured heat capacity
(normalized to the value at zero frequency) of the same sample at different frequencies (symbols). The dashed line gives the magnitude of the

transfer function from non zeroline corrected step response.
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with it the calibration changes or not. It should be born
in mind, that all remarks from Section 3.1 concerning
the interpolation of the transfer or calibration function
through a region of transition or reaction of the sample
are still valid even with this method. Of course a
correct heat flow calibration of the DSC in common
scanning mode is a necessary prerequisite even with
this method. Furthermore it should be emphasized,
that this method yields the total transfer function
including all heat transfer within the apparatus as well
as to and within the sample, it therefore yields the
correct calibration function even for thicker polymer
samples, at least outside of transition regions. Differ-
ent samples influence this total transfer function sig-
nificantly, as can be seen in Fig. 3, all these influences
are automatically covered using the step response
method to get the calibration function.

3.4. Advanced calibration procedure

In what follows, we distinguish between the transfer
behavior of the DSC instrument and that of the sample.
The advantage is obvious, because the transfer beha-
vior of the apparatus is normally the same for all
measurements and it is sufficient to determine it once
and use it for all further corrections. The sample part
(heat transfer from the sample support to the pan and
inside the sample) is, of course, different for every
sample and the transfer function must be determined
separately. As mentioned in Section 2 the total transfer
function is the product of the apparatus part and the
sample part, this means both parts are additive in the
Bode plot. In Figs. 3 and 4, this is shown for Al-
samples (discs) of different masses. Now the question
arises how we can find the transfer function of the
instrument itself (the thick solid line in Fig. 3).

For samples like a thin aluminum disc with high
thermal conductivity one can neglect any temperature
gradient inside the sample for frequencies relevant in
TMDSC (f < 1 Hz). In such a case the sample itself
can be considered as a simple RC-element (see Section
2.1) and the apparent (complex) heat capacity C};(a))
of the sample (as it would be measured with an ideal
TMDSC without thermal relaxation) at given fre-
quency o reads (see Eq. (1) and [25]):

C

Ci=——r
P71 — (i0Cy /Kop)

(16)

where C, the (static) heat capacity of the sample disc
and K,, = 1/Ry, the effective thermal contact between
the sample and the heater (the thermal resistance of the
sample itself is neglected). The measured (effective)
heat capacity, which in frequency domain is calculated
with:

Cnlw) = 2212 _ 93(0) )
—ioTi(0)  T,()

(¢s(w)) complex heat flow amplitude, Tx(w) com-
plex temperature amplitude, TZ(w) complex heating
rate amplitude, w frequency) is normally different
from the apparent heat capacity of the sample. The
relation between both quantities can be expressed in
the frequency domain, using a complex calibration
factor, in the following form:

Ceir(@)B3 (@) = Cy(w) (18)

e

The dynamic (frequency depending) calibration
factor Bj(w) (for the reciprocal transfer function
see Eq. (10)) includes all instrumental contributions
(like thermal paths, feedback control circuits, filtering,
software influences, etc.) which have an influence on
the phase angle and the magnitude of the measured
heat flow signals. We assume that B}(w) does not
contain influences from the sample being measured.
How can this function be determined?

Normally Cg(w) of the sample disc with known heat
capacity C, is unknown because we do not know the
actual value of the thermal contact K,, between the
sample disc and the support. B5(w) can nevertheless
be determined by measuring (at least) two different
discs (say disc ‘a’ and ‘b’) in the following way.

Combining Egs. (16) and (18) for disc ‘a’ yields:

Cﬁ,a(w) = et‘fﬁa(w)BZ(w) = 1 e or

— (i0Cpa/Kopa)
_ Cp.,a/ C;ff,a(w)
1 — (iwCpa/Kopa)

By ()

19)

where C; () is measured and C,, , is known. There-
fore, the function B;(w) depends only on K, ,. For the
other disc ‘b’, we get:

Chp(®) = Cige () B5 ()
_ Ctrp(@) Cra

= 20
Ciara(@) 1= (i0Cpa/Kopa) 0
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Since Cl;,(w) is measured as well, the function

Ciirp (@) Cra
Chp(@) = == 2 @1
po aira(@) 1 = (i0Cpa/Kopa)
depends on K, , only. On the other hand sample ‘b’ is
assumed a RC-element (Eq. (16)):

1 — (Z'G)vab /Kop,b)

This means that in a Polar plot in complex plane (Cole—
Cole plot) the position of the points Re(Cj,(w) and
Im(Cj,()) calculated with Eq. (22), depending on
frequency @ and thermal contact Ky, lie on a
semicircle with a radius which is 1/2 of C,}, (see
Fig. 2), where C,} is the known heat capacity of
sample disc ‘b’. The same Cj,(w) is described with
Eq. (21), in other words, even this function—which
contains measured and known quantities beside the
unknown K, ,—should be a semicircle too. What
must be done is to vary K, , until we get a semicircle
in the Cole—Cole plot (Fig. 10). Here the advantage of
the Cole—Cole plot becomes obvious. After K, , has
been determined this way we are able to determine
Bj(w) using Eq. (19) which contains only known
quantities now.

The concept of Eq. (18) requires that B}(w) should
not depend on the measured particular sample and its

Cpp(@)B; (@) (22)

—%— 42 mWK"
——40 mwWK”'
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Re(c,(«)) in J g'K’ 4

Fig. 10. Cole-Cole plot of calculated values of Cj(w) for
different thermal contacts. The true values must lie on a half circle.
This gives the best value: Kopy = 42 mW K™! (sample ‘a’ and ‘b’:
Al discs of 155 and 77 mg, respectively). PerkinElmer Instruments
Pyris-1 DSC.

thermal properties. This has been proved in the case of
a PerkinElmer instruments Pyris-1 DSC by measuring
different aluminum discs with masses ranging from 16
to 155 mg and K,, ranging from 20 (dry thermal
contact) to 80 mW K~ (wetted with silicon oil).
B;(w) was found to be independent on the sample
in question (within the limit of experimental uncer-
tainties). In Fig. 3, these measurements are presented,
the solid line represents the reciprocal of Bj(w), the
transfer function of the DSC without sample. It is
almost the same for all Al discs of the measured series.
Subtracting the instrument curve (solid line) from the
measured curves (symbols) results in the transfer
functions of the samples which are plotted in Fig. 4
(symbols) together with the fit functions (solid lines)
to prove the validity of Eq. (16). The fit parameter is
T = Cy/K,, with always the same K, but different
heat capacities of the respective Al discs.

The apparatus calibration function Bj(w) got this
way should even be the same for samples with a very
different heat conductivity (as polymers). This has not
been proved in detail yet, but first experiments support
this assumption. It should be mentioned that the
method allows to determine thermal conductivity of
polymer samples correctly [26], this supports the
correctness of the assumptions.

We have determined Bj(w) for DSCs of different
type (available in our lab) using the presented algo-
rithm. For calculations, we used whenever possible the
measured temperature instead of the program tem-
perature. All software filtering was turned off if pos-
sible. The measured heat flow rate was always zeroline
corrected. The magnitude and phase angle of the
reciprocal Bj(w), i.e. the transfer function of the
respective apparatus, are shown in Fig. 11. It is inter-
esting to recognize, that the Pyris-1 DSC has a faster
response than the DSC-2, though both calorimeters
have basically the same measuring head. The reason
for that is, that the DSC-2 cannot measure the sample
temperature, so one has to use the program tempera-
ture for evaluation. Obviously, using the sample tem-
perature makes the TMDSC faster. Therefore, the user
is encouraged to use the sample temperature rather
than the program temperature whenever possible.
From Fig. 11 follows, that all types of DSC behave
like a low-pass filter, i.e. the higher the frequency, the
larger the “damping” of the heat flow rate and the
larger the correction.
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Fig. 11. Magnitude (a, Bode plot) and phase angle (b) of apparatus
transfer function (1/B>(w)) for different DSC calorimeters,
determined at a temperature of about 50 °C. The particular position
of the respective curve may depend on block temperature,
measuring temperature and the direction of the temperature steps
(heating or cooling).

With the measured C};(w) and the known appara-
tus calibration function Bj(w) we are able to deter-
mine the true (apparent) heat capacity of the sample
using Eqgs. (16) and (18). The only parameter we have
to know is Ky, i.e. the thermal contact between DSC
and the sample in question. For a certain moment (or
temperature) during the run, this quantity can be
considered as independent of frequency for a given
sample, consequently it can be determined from the
measured quantities at different frequencies by proper
evaluation. Of course the thermal contact may change
during a run, especially in the transition region, but the

multi-frequency measuring methods enable such an
evaluation for every moment or temperature if needed
[2].

To sum up, the advantage of this somewhat labor-
ious method comes from the possibility to distinguish
between the sample influence and the apparatus influ-
ence on the measured quantity and correct it sepa-
rately. This allows to get more insight in material
properties (as thermal conductivity) and control both
the apparatus and the sample concerning its thermal
transfer behavior. It should be mentioned that one can
use any method of heat capacity determination with
TMDSC, single as well as multi-frequency methods,
to get the functions Cly(w) which then has to be
corrected to yield the apparent (complex) heat capa-
city of the sample.

4. Conclusions

After giving an overview of the fundamentals of
heat transfer in a TMDSC and the tools of linear
response theory, we have presented a number of
methods for calibration of the complex heat capacity.
Calibration means in this sense to determine the
(complex) function which corrects for the influence
of the heat transfer within the TMDSC and to the
sample and to multiply the effective heat capacity
measured in the TMDSC with that correction function
in frequency domain. It was shown that the (recipro-
cal) transfer function is a suitable correction function.
We can get the real transfer function of the DSC with
the methods of linear response used in transfer theory.
A rather easy and successful method is to measure the
step response signal of the DSC (including the sam-
ple), which after Fourier transform and normalization,
yields the transfer function of the measuring setup and
thus the correction function for the measured heat flow
rate (or heat capacity) in dependence on frequency.
With a more advanced method the transfer function of
the apparatus alone (without sample) can be deter-
mined and the influence of the sample can be studied
separately. With multi-step procedures, it is possible to
determine the transfer function at every moment of the
run. This allows to calibrate the TMDSC for all
temperatures or even during transitions using proper
interpolation procedures. How to do that in practice of
the different calibration procedures will be presented
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in the second part of this paper [2]. However, certainty
and reproducibility of the results should be tested
carefully in every case. This is in particular true if
the transfer function of the apparatus is determined
separately and one wants to use it for correction of the
measurements with very different types of samples
(e.g. sapphire, metal and polymers). In this case it is
absolute necessary to verify that the determined trans-
fer function of the TMDSC is surely not influenced by
the sample in question.

Acknowledgements

This research was supported by the German Science
Foundation (Grant DFG Schi-331/5-1).

References

[1] S.M. Sarge, W. Hemminger, E. Gmelin, G.W.H. Hohne, H.K.
Cammenga, W. Eysel, J. Therm. Anal. 49 (1997) 1125-1134.

[2] M. Merzlyakov, G.W.H. Hohne, C. Schick, Calibration of
Magnitude and Phase of TMDSC. Thermochim. Acta 391
(2002) 69-80.

[3] EW. Wilburn, J.R. Hesford, J.R. Flower, Anal. Chem. 40
(1968) 777-788.

[4] G.W.H. Hohne, J.E.K. Schawe, Thermochim. Acta 229
(1993) 27-36.

[5] J.E.K. Schawe, C. Schick, G.W.H. Hohne, Thermochim. Acta
229 (1993) 37-52.

[6] G.W.H. Hohne, Thermochim. Acta 69 (1983) 175-197.

[71 G.W.H. Hohne, W. Hemminger, H.J. Flammersheim, Differ-
ential Scanning Calorimetry, Springer, Berlin, 1996.
[8] G.W.H. Hohne, Thermochim. Acta 330 (1999) 45-54.
[9] T. Ozawa, K. Kanari, Thermochim. Acta 288 (1996) 39-51.
[10] T. Ozawa, K. Kanari, J. Thermal Anal. 54 (1998) 521-534.
[11] 1. Hatta, N. Katayama, J. Thermal Anal. 54 (1998) 577-
584.

[12] S.X. Xu, Y. Li, Y.P. Feng, Thermochim. Acta 360 (2000)
157-168.

[13] H. Hoff, Thermochim. Acta 187 (1991) 293-307.

[14] J.E.K. Schawe, W. Winter, Thermochim. Acta 298 (1997)
9-16.

[15] A.A. Lacey, C. Nikolopoulos, M. Reading, J. Thermal Anal.
50 (1997) 279-333.

[16] G.W.H. Hohne, N.B. Shenogina, Thermochim. Acta 310
(1998) 47-51.

[17] B. Schenker, F. Stidger, Thermochim. Acta 304/305 (1997)
219-228.

[18] E.U. Buehler, C.J. Martin, J.C. Seferis, J. Thermal Anal. 54
(1998) 501-519.

[19] EU. Buehler, J.C. Seferis, Thermochim. Acta 334 (1999)
49-55.

[20] I. Hatta, A.A. Minakov, Thermochim. Acta 330 (1999)
39-44.

[21] R. Androsch, B. Wunderlich, Thermochim. Acta 333 (1999)
27-32.

[22] R. Androsch, I. Moon, S. Kreitmeier, B. Wunderlich,
Thermochim. Acta 357 (2000) 267-278.

[23] A. Toda, T. Arita, C. Tomita, M. Hikosaka, Polymer 41
(2000) 8941-8951.

[24] I. Hatta, S. Muramatsu, Jpn. J. Appl. Phys. 35 (1996) 858-
860.

[25] M. Merzlyakov, C. Schick, Thermochim. Acta 330 (1999)
65-73.

[26] M. Merzlyakov, C. Schick, Thermochim. Acta 377 (2001)
183-191.



	Calibration of magnitude and phase angle of TMDSCPart1: basic considerations
	Introduction
	Components of a DSC model
	The RC-element
	RC-element networks
	A simple DSC model
	Electronics and data processing
	Thermal waves
	Conclusions concerning the behavior of the TMDSC

	Calibration procedures
	Simple heat capacity calibration
	Calibration procedure from multi-frequency evaluation
	Calibration using the step response function of the DSC
	Advanced calibration procedure

	Conclusions
	Acknowledgements
	References


