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Abstract

Mathematical models for the thermal system of the modulated temperature differential scanning calorimeter were studied
paying attention to the high frequency region. We took account of the thermal resistance between the pan and the base plate,
deviation from the symmetric thermal system and time lag between the temperature of the base plate just below the pan and the
measured temperature. Two types of equations for data analysis using only the temperature difference between the sample and
reference sides are presented. The upper limit of the sample thickness for meaningful measurement was critically studied using
thermal diffusion equation with proper boundary conditions. Results of the calculation were in good agreement with
experimental results by the light heating modulated temperature differential scanning calorimetry (LMDSC).
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1. Introduction

Modulated temperature differential scanning calori-
metry (MTDSC) has been used as a new and useful
technique to study thermal properties of materials. The
conventional differential scanning calorimetry (DSC)
instrument can be used as MTDSC by replacing the
software for machine operation and data processing. A
new method of data analysis to calculate the heat
capacity was proposed by Wunderlich et al. [1].
Wunderlich’s method was used in the data processing
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software of the commercial instruments. Wunderlich’s
equation is based on the typical model for the con-
ventional DSC instrument regarding the sample mate-
rial, the pan, the lid and the detector as one body
without temperature distribution in it. Hatta [2] pro-
posed an improved method of experiment and data
analysis, which can be used by the commercial
machine and software, taking account of the thermal
resistance between the pan and the base plate.
Saruyama and coworkers [3,4] constructed another
type of MTDSC, called light heating modulated tem-
perature differential scanning calorimeter (LMDSC),
using light energy to generate temperature modula-
tion. In LMDSC the light with modulated intensity
irradiates the upper surface of the sample cell directly.
Therefore, LMDSC can be operated at higher frequen-
cies (0.01-1 Hz) than typical commercial instruments
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(<0.1 Hz). As frequency becomes higher the model
used for Wunderlich’s equation becomes insufficient
because the time required for heat exchange between,
e.g. the pan and the base plate becomes comparable to
the modulation period. Saruyama [5,6] has used dif-
ferent methods from Wunderlich’s equation to analyze
the data obtained by LMDSC. Saruyama’s equations
were successfully used but systematic studies starting
from proper models have not been made and limitation
of applicability has not been investigated in detail.

In this work, we carried out detailed calculation to
elucidate the mathematical relationship between the
heat capacity of the sample and the observed signal at
high frequencies. In this paper, two models are stu-
died. Model 1 that is similar to the model used by
Wunderlich is studied for comparison with model 2. In
model 2, we take account of the thermal resistance
between the pan and the base plate and the time lag
between the temperature of the base plate just below
the pan and the measured temperature. In both models,
we do not assume that the thermal system composed of
the sample chamber, the base plate and the pans is
symmetric for the sample and reference sides. Sample
thickness that becomes critical at high frequencies is
investigated on the basis of the model 2. Results from
the model 2 are compared with experimental results
at frequencies higher than 0.1 Hz using LMDSC.
Methods of data analysis suitable for the model 2
are presented.

2. Models and basic equations
2.1. Model 1

Fig. 1 shows a simple model in which the sample
or reference material, the pan, the lid and the detector
are considered as one body without temperature dis-
tribution in it. The ‘“‘detector” means the area of the
base plate just below the pan. “Sample (or reference)
material” means the integrated “one body” in this
section. We take account of heat exchange between the
sample/reference material and the wall of the sample
chamber and between the sample and reference mate-
rials. The basic equations for model 1 are given as
follows:

iCOCSTS :LfM]TS +M2TrfBlTS +Bsz (1)
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Fig. 1. Model 1 of the thermal system of MTDSC. The sample
material, the pan, the lid and the detector are regarded as one body
without temperature distribution.

ioCT; = L' — M{T, + MyT, — B\T; + BT, (2)

where C; and C; are the heat capacity of the sample
and reference materials, respectively. In this paper, the
quasi-isothermal condition is considered. Therefore,
only the periodic temperature change around a fixed
value is considered. We use expression by complex
number for the periodic temperature change such as
A exp(iot), where A, w and t are complex amplitude,
angular frequency of the modulation and time, respec-
tively. T, T, and T}, are the complex amplitudes of the
temperatures of the sample material, the reference
material and the heat bath (the wall of the sample
chamber), respectively. Time derivative is replaced
with i on the left-hand side of Egs. (1) and (2). L and
L' are the complex amplitudes of energy flow of the
light irradiating the sample and reference materials in
LMDSC, respectively. In the case of LMDSC T;, can
be set to be 0 because the temperature of the wall of the
sample chamber is not modulated by the light energy.
On the other hand, L and L’ are 0 in the commercial
instruments. Accordingly, Egs. (1) and (2) are applic-
able both to LMDSC and the commercial instruments.

The heat flow is assumed to be linear to the tem-
perature change as explained later. We consider, e.g.
heat flow into the sample material due to the tem-
perature change in the reference material. Linearity
means that the time dependence of the heat flow is
expressed by A exp(iwt) and the complex amplitude A
is given by a complex constant times 7,. This corre-
sponds to the third term of the right-hand side of
Eq. (1) in which the complex constant is written as
M,. Since M, is a complex number the initial phase of
the heat flow is different from that of 7. This phase
difference expresses the delay of the heat flow after the
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temperature change. Similarly, M,T; of the second
term expresses the heat flow out of the sample material
due to the temperature change in the sample material.
The coefficients M, and M, are not equal to each other.
An example of calculation of such coefficients is given
in Appendix B for equations presented later. Heat
exchange between the sample material and the wall
of the sample chamber is given by the terms of
coefficients By and B,. Eq. (2) is for the reference
side. Primed parameters are used in Eq. (2) because we
take account of deviation from the symmetric thermal
system.

Egs. (1) and (2) can be solved and T, and 7, are
expressed as follows:

(L + Bsz)(ia)Cr + M/l + Bll) + (L/ + B/sz)MQ
(iwCs + My + By)(ioC: + M| + B}) — MaM},

3)

_ (L' +ByTy)(ioCs + My + By) + (L + By Ty, )M,
" (ioCs + My + By) (ioC; + M| + B,) — MyM)

“

Temperature difference AT = T — T, and the ratio

AT/T; are given by the following equations:
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Fig. 2. Model 2 of the thermal system of MTDSC. Thermal
resistance between the pan and the base plate, and time lag between
the temperature of the base plate just below the pan and the
measured temperature are taken into account.

in many cases [2]. Fig. 2 shows model 2 in which the
thermal resistance between the pan and the base plate
and time lag between the temperature change at the
detector and the measured temperature are considered.
The latter is necessary to be considered because the
measuring point is at the bottom of a small dent at the
center of the detector area. The sample or reference

{—iwAC(L' + B5Ty)

+ (L—l—BlTb)(iwCr +M/1 +B/1 —Mé) — (L/ +B’2Tb)(iwCr + M, + B —Mz)} (&)

AT 1

T, (L+BiTy)(ioC + M, + B)) + (L' + ByTy)M,

x {—ioAC(L' + B,yTy) + (L + B Ty)

x (ioCy + M\ + B} — M5) — (L' + B\ Ty)

x (ioCe +M, + B, — M)} (©6)
where AC = C¢ — C;. It should be noted that the left-
hand side of Eq. (6) is not proportional to AC in
contrast with Wunderlich’s equation [1]. The propor-

tionality holds when the thermal system is symmetric
as assumed in the model used by Wunderlich.

2.2. Model 2

Hatta pointed out that perfect thermal contact
between the pan and the base plate is too simplified

material, the pan and the lid are considered as one
body without temperature distribution in it. The basic
equations for the sample side of the model 2 are given
as follows:

iwCT, = L — K(Ts — Ty) 7
i0CyTy = —K(Tq — Ty) — M Ty + MyT', — By Ty

+ BoTy — Da1Ta + Dan T (3)
i0Cn T = —Dui Tn + Do T )

The thermal resistance between the pan and the base
plate is assumed to follow the Newton’s law. K is the
coefficient of the Newton’s law. C4 and T} are the heat
capacity and the complex amplitude of the tempera-
ture of the detector, respectively.C,, and T;, are those
of the measuring point. D4y, Dg>, Dy and D, are
the coefficients for the heat exchange between the
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detector and the measuring point. AT = Ty, — T}, and
ATIT,, are given by the following equations:

()LLL/ + )ubTb)AC + ,uLL - ﬂ£L/ + ,ubTb
VAC + ¢

E _ ()LLL/ + )ubTb)AC + HLL — 'U,LL, + MbTb

T (L +mpTo)AC + L+ G L+ G Ty

AT =

(10)

(1)

Egs. (10) and (11) show that the light energy and the
heat flow from the wall of the sample chamber play the
same role with each other even at the high frequencies
where the thermal resistance between the pan and the
base plate can not be neglected. Meaning of Greek
letters in Eqs. (10) and (11) are explained in Appendix
A. It should be noted that the Greek letter parameters
are independent of the heat capacity of the sample. The
denominator of the right-hand side of Eq. (11) includes
the term of AC that dose not vanish if the system is
symmetric. For quantitative measurement values of
(il = L'+ o To) /(AL + 2o To), (n L+ To)/
(;LLL/+).bTb) and (QLL — QiLl + CbTb)/()nLL/ +}~bTb)
have to be determined using standard materials. There is
no advantage of data analysis using A7/T, in comparison
with using only AT because the number of values to be
determined using standard materials is same in Eqs. (10)
and (11). This is an essential difference between the
models 1 and 2. It should be noted that signal-to-noise
ratio of AT is better than that of T, since DC component
of the temperature difference is much smaller than that of
the sample temperature. From this viewpoint, data ana-
lysis using only AT is better than using A7/T,.

Eq. (11) becomes the same form with Eq. (6) if the
following condition is satisfied:

liwAC| < |iwC; + K| (12)

In order to satisfy the condition (12) for a given K, the
modulation frequency and/or AC have to be small.

3. Sample thickness

It is commonly noticed that the sample thickness
has to be sufficiently thin. We studied the upper limit
of the sample thickness for meaningful measurement
starting from the thermal diffusion equation consider-
ing the proper boundary condition on the basis of
the model 2. In order to take account of thermal
diffusion in the sample the following equations are

used instead of Eq. (7).
ioCTy =L — 85T + 5T, (13)
iwC, Ty, = =81 T, + ST — K(Tp, — Tq) (14)

Cy and T are the heat capacity and the complex
amplitude of the temperature modulation of the lid,
respectively. C, and T, are those of the pan. Thermal
diffusion in the sample is expressed by the terms of S,
and S,. From Eqgs. (13) and (14) the following equation
is deduced:

. R\ 25_
l&)((l +2> ﬁ—i_cp + (1 +R)C1)T+
= (1 +R)L—K(T, —Ty) (15)
where
j — K
R— la)(.Cp Cl) + (16)
lCUC] +S+
T + T
T, = L+ 1y a7
2
S =81+8% (18)
S =85-5 (19)

S, and S, are calculated from the thermal diffusion
equation as explained in Appendix B. It is assumed
that the heat capacity per unit length ¢, thermal
conductivity x and the thickness /& of the sample
satisfy the following condition:

2
(, /%h) <1 (20)
K

Then, S, and S_ are expressed by the following
equations:

2K
S, =— 21
=7 (2D
iwch
S_= 22
5 (22)

In most cases, C; and C,, are of the same order with the
heat capacity of the sample that is given by ch. Since
the condition (20) can be rewritten as follows:

wch< = (23)
h
Eq. (16) is approximated by the following equation:

R— K
- 2K/h

(24)
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If the sample is thin enough to satisfy

<1 25
2x/h 25
then, Eq. (15) becomes
io(ch+ C, + C)Ty =L —K(T — Tq) (26)

Eq. (26) is the same form with Eq. (7). Conse-
quently, if the sample thickness satisfies the conditions
(20) and (25) the sample, the lid and the pan can be
regarded as one body of uniform temperature as
assumed in the model 2. Besides, if the sample is
thin enough to satisfy the condition (12) the model 1
can be used.

It should be noted that solution of the one-dimen-
sional thermal diffusion equation for semi-infinite
material shows that temperature in the area of a
thickness sufficiently smaller than the decay distance
given by the inverse of \/wc/2k can be regarded
as being uniform. This seems to suggest that the
sample thickness, h should satisfy the condition
v/ (wc/x)(h < 1). However, the condition (20) is
more moderate than this condition. In the case
of the solution for the semi-infinite material, the
condition (20) allows linear temperature gradient in
the sample. A sample, that does not satisfy the con-
dition +/(wc/x)(h <1), could give meaningful
results.

4. Frequency dependence

Results from model 2 are compared with experi-
mental results obtained by LMDSC. Only the sample
side was irradiated. This allows to set L' = 0. Fre-
quency range investigated was from 0.1 to 1 Hz. In this
frequency range, heat exchange between the sample
and reference sides can be neglected [7], i.e.
My =M, =M, =M, =0. Remembering T, =0
for LMDSC we obtain the following equation from
Eq. (10):

1 (ioCq+ Bi + K/Q) + iwCpy(iCs + K) — K?

AT OLK

27

Since the measuring point of LMDSC is close to the
“detector area” of the base plate, we use the Newton’s

law for the heat exchange between them. Eq. (9) and
(A.15) (Appendix A) are replaced with the following
equations:

i0Cn T = —Kun (T — T) (28)
-1
0= <1 + mii) (29)

where K, is the coefficient of the Newton’s law. We
assume that B; has the same form with S; of Eq. (B.4)
(Appendix B).

KB (1 n ichhB

By =—
! /’ZB 3KB

) = Blr + iCOBli (30)

where cg, kg and hg correspond to ¢, k and h of
Eq. (B.4), respectively. Substituting Egs. (27) and (30)
the following equations are deduced:

Re(XEN —_ o2 ((cysByrc, (145 4+ B) ¢
e AT =—w d 1i m K. K. s

K
+K—Cm(Cd +Bli)> + B,K 31
1, (KLY _ o (Cot Bi)CaG
w AT K.
Cs Blr Cm Blr
K =Z(1+==)+21+=F
()2 (1)
Ci Cn By
Ca L B 2
+K+K+K) (32)

Eqgs. (31) and (32) show that Re (KL/AT) and 1/w
Im(KL/AT) are linear to the square of the frequency. It
can be seen from Eq. (32) that the value of 1/w Im(KL/
AT) is independent of Cs at the frequency satisfying
the following equation:

Bi m
,wZMJFKJFB“:o (33)
Kn

Fig. 3(a) and (b) show the graph of Re (KL/AL) and
/oo Im(KL/AL), respectively, plotted against square
of the frequency. In Fig. 3, the magnitude of KL was
set to be unity. The pans containing 0, 1 and 2 lids were
used as the sample materials. Very small amount of
grease was painted on the lids to reduce the thermal
resistance. Straight lines could be fitted sufficiently
well to the experimental results obtained from various
heat capacities of the sample. In Fig. 3(b), the coin-
cidence point where all lines meet can be clearly
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Fig. 3. Experimental results of Eqs. (31) and (32) are plotted
against square of the frequency in (a) and (b), respectively.
Modulation period was 1, 1.25, 1.6, 2, 4, 7 and 10s. Circles,
triangles and squares show the results from the pan containing 0, 1
and 2 lids, respectively. Measurement of the open symbols was
made firstly. After pressing the lid lightly measurement of the solid
symbols was made. Straight lines were fitted to the data excepting
1 Hz.

observed. The earlier results strongly support the
applicability of the model 2 to LMDSC. At present,
the same experiment can not be done using the
commercial instruments because of two reasons.
Firstly, the commercial instruments can not be oper-
ated at the high frequencies as this experiments.

Secondly, temperature modulation only on the sample
side can not be made. However, LMDSC was con-
structed using a commercial heat flux type DSC and
the basic design of most of the commercial heat flux
type DSC is similar to each other. It seems reasonable
to consider that the model 2 will be applicable to the
commercial type MTDSC when high frequency mea-
surement becomes possible.

5. Data analysis based on the model 2

Two methods of data analysis based on Eq. (10) of
the model 2 are presented. Same equations with these
methods were used in data analysis of LMDSC [5,6]
but those were deduced starting from simplified mod-
els and systematic explanation has not been given. In
method 1, both the sample and reference sides are
irradiated and in method 2 only the sample side is
irradiated. In both the methods, only AT is used.

5.1. Method 1

Deviation from the symmetric thermal system is
expressed by ¢ defined by the following equation:
e=w L — L'+ Ty (34)
Eq. (10) is rewritten as

€ AL+ 2Ty) —v(e/E))AC
AL S ELCL) )
AC can be calculated by the following equation:
1 (1/ATx) — (1/AT,) (L_ 1 >+ 1
AC, AC, AC,
(36)

AC, ~ “(1/ATy) — (1/AT,)

where

:<((1/ATX —#)/¢) — ((1/AT, — 8)/5))/
1/((AT, —0)/&) — (1/AT, = 8)/2
(1/ATy) — (1/AT,)

Subscripts x, a and b means the unknown sample and
the standard samples a and b, respectively. Values of
the correction factor o are calculated as shown in
Table 1 assuming that AT, =10, AT, =20 and
¢/& = 1. Difference from unity is less than a few
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Table 1

Calculated values of the correction factor

AT, 20 19 18 17

o 1 1.003 1.006 1.009

16 15 14 21 25
1.013 1.018 1.023 0.997 0.990

percent within the calculated values of AT,. Results
that are good enough for practical purposes can be
obtained assuming that oo = 1.

5.2. Method 2

Deviation from the symmetric condition is not
necessary to be considered in this model. The system
is essentially asymmetric because only the sample side
is irradiated. We put L' = 0 and T}, = 0 in Eq. (10).

L

AT =——F—— 38
VAC + ¢ %)
The following equation is obtained:
p L1 ¢
AC="—"F——= 39
v AT v (39)

Eq. (39) shows that 1/AT plays a similar role to the
conventional DSC signal. This proposes a convenient
method to detect anomalous behavior of the heat
capacity as can be done by the conventional DSC.
Quantitative measurement can be done using the
standard materials, a and b.

(1/ATy) — (1/AT,)

AC = (1/ATy) = (1/AT,)

(ACb — ACa) + AC,
(40)

Eq. (40) has an advantage of being free from the
effects of asymmetry comparing with Eq. (36) but
the method 2 is not the differential measurement.

6. Conclusions

Two models for the thermal system of MTDSC
were studied. In the model 1 the sample, the lid,
the pan and the “‘detector are of the base plate” were
regarded as one body without temperature distribu-
tion. This model is suitable for the low frequency
measurement. In the model 2, thermal resistance
between the pan and the base plate and time lag

between the temperature change at the detector
and the measured temperature were taken into
account. These two factors can not be neglected at
high frequencies. In both the models, the effects of
deviation from the symmetric thermal system was
considered. Results from the model 1 showed that AC
was proportional to AT/T as in the case of Wunder-
lich’s equation only if deviation from the symmetric
thermal system was negligible. Results from the
model 2 showed that proportionality between AC
and AT/T,, did not hold if deviation from the sym-
metric system was negligible. The upper limit of
the sample thickness was calculated based on the
model 2. It was found that the upper limit could be
larger than the thickness of the area in the semi-
infinite material where temperature gradient could
be neglected. Frequency dependence measured by
LMDSC was in good agreement with the results from
the model 2. Two methods of data analysis that use
only AT were proposed. These method were consid-
ered to be better than the method to use AT/T,, from
the viewpoint of the signal-to-noise ratio.

Appendix A

The instrumental parameters appeared in Eqgs. (10)
and (11) are given as follows:

K/
L =—(PQ — MzQ)miw (A1)
Ap = — ((PQ, - M0) — (P'Q - M;0)
K’ / /.
o r X Q> B2l (A2
/ ! / K/ !

" — (PO — MO — — =
L (Q 2056+ iwC; + K’

(A4)

K N ioC +K
7ke)
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K/
w=((ro-me i gre)s:
K
- <PQ’ — M0 - mKQ’>B’2)
x (ioC; + K) (A.5)

K/
T

K/
—(iwC+K) (P - —F K
¢=(iwG+ )<( iwC; + K )

K
P-— 2 k) - MM, A7
x( iwCr—i-K) 2 2) (A7)
K/
—(m,—2 o A.
nL <2iwCr+K/)Qlw (A.8)

K/
r

(A.9)
K/
_ /o !
CL—(P iwCH_K/K)KQ (A.10)
K/
"= (ioC,+K)————M A.ll
b= (10G+ K)o M0 (A-1D)
K/
=P —————K'|By + M)B:
% <( inC, + K’ >2+ 22)
x (ioC; +K)Q (A.12)

In the previous equations, the following symbols are
used:

P=iwCqy+ M, + B, + K+ Dg; —DgpQO (A.13)
=iwCy+ M| + B, + K + D}, —D),0' (A.14)
Do
= A.15
Q 10Ciy + Dy ( )
Appendix B

The coefficients S, and S, in Egs. (13) and (14) are
calculated from the thermal diffusion equation assum-
ing a uniform material. We consider only the tem-
perature change in the thickness direction of the
sample. Following the ordinary method we obtain

the following solution:

exp(y/ (iwc/x) )T1 — T,

exp(y/(iwc/Kx) h) — exp(—+/(iwc/x) h)

( iwc )
xexp| —1/ —x
K

—exp(—+y/(iowc/Kk)h)T + T,
exp(y/(iwc/Kk) h) — exp(—+/(iwc/x) h)

X exp(y/ lw%x) (B.1)

where x is the distance measured from the top surface
of the sample. Time dependence is omitted in
Eq. (B.1). Eq. (B.1) satisfies the boundary conditions,
T(0) = Ty and T(h) = T),. Since S;T; and —S,T,, give
the heat flow into the sample at x = 0 accompanying
changes in 7; and T}, respectively, S; and S, are given
by the following equations:

T(x) =

o KdT(x=0,T,=0)
=7 ™
I s (v/(iwc/K)h) +exp (—/(iwc/K) h)
exp (y/(iwc/K)h) —exp (—+/(iwc/K) h)
(B.2)
S2 B %dT(x :é);Tl = 0)
=V iwck 2
exp(y/(iwc/K) h) —exp(—+/(iwc/x) h)
(B.3)

To the second-order approximation for \/ iw ¢/k the
following equations can be obtained from Eqgs. (B.2)
and (B.3):

Lioch?
S, = ( e > (B.4)
Liooch®
s, =X ( e > (B.5)
h
iwch 1 iwch?
Si— 8= <1E - > (B.6)
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