

Thermochimica Acta 397 (2003) 97–101

thermochimica acta

www.elsevier.com/locate/tca

Thermodynamic characteristics of compounds in the Sm–Ba–Cu–O system

N.I. Matskevich^{a,∗}, G. Krabbes^b, P. Berasteguie^c

^a *Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia* ^b *Institute of Solid State and Materials Research, P.O. Box 270016, 01171 Dresden, Germany* ^c *Arrhenius Laboratory, Department of Inorganic Chemistry, Stockholm University, S–106 91 Stockholm, Sweden*

Received 19 February 2002; received in revised form 21 February 2002; accepted 21 May 2002

Abstract

Dissolution enthalpies of Sm_2O_3 , BaCO₃, CuO, $SmBa_2Cu_3O_{6.92}$, BaCuO₂ at 323.15 K in 2N HCl were measured by solution calorimetry. On the basis of these data, the enthalpies of the following reactions were obtained: (1) $0.5\text{Sm}_2\text{O}_3$ + $2BaCO₃ + 3CuO + 0.21O₂ = SmBa₂Cu₃O_{6.92} + 2CO₂; (2) 0.5Sm₂O₃ + 2BaO + 3CuO + 0.21O₂ = SmBa₂Cu₃O_{6.92};$ (3) $0.5\text{Sm}_2\text{O}_3 + 2\text{BaCuO}_2 + \text{CuO} + 0.21\text{O}_2 = \text{SmBa}_2\text{Cu}_3O_{6.92}$. It was established that $\text{SmBa}_2\text{Cu}_3\text{O}_{6.92}$ was thermodynamically unstable with respect to the interaction with CO₂ and thermodynamically stable with respect to the mixture including BaCuO₂. The standard formation enthalpy of SmBa₂Cu₃O_{6.92} was calculated as following: $\Delta_f H$ [◦] (SmBa₂Cu₃O_{6.9}, s, 323.15 K) = $-2672.30 \pm 5.01 \text{ kJ/mol}$.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Thermodynamics; Sm–Ba–Cu–O system; Calorimetry; Stability

1. Introduction

At present cuprate systems including high temperature superconductors (HTSC) are widely studied. A good understanding of thermodynamic characteristics of HTSC is essential to optimise synthesis, to determine stability, to create basis for the understanding of the mechanism of high T_c oxide superconductors. The Sm–Ba–Cu–O system is one of the technologically promising systems. Unfortunately, there are lacking thermodynamic data for the compounds of this system in literature.

The aim of the present paper is to determinate the formation enthalpy of $SmBa₂Cu₃O_x$, to measure the

fax: +7-3832-344489.

thermodynamic characteristics of some reactions including $SmBa_2Cu_3O_x$ and to study the stability of this phase. This work continues a series of author's previo[us](#page-3-0) [paper](#page-3-0)s $[1-10]$ on thermodynamic characteristics determination of compounds in the RE–Ba–Cu–O systems ($RE = Y$, Ho, Gd, Nd, Dy).

2. Investigation methods

Solution calorimetry was applied in this investigation. The experiments were performed in an automatic dissolution calorimeter with an isothermal shield. The calorimeter design and the experimental procedure are partially describe[d](#page-4-0) [in](#page-4-0) [pa](#page-4-0)per [11]. The volume of the calorimetric vessel (Dewar vessel) was 200 ml. The temperature of the calorimeter was measured by the thermistor $(R(298.15 \text{ K}) = 33 \text{ k}\Omega)$. The calibration

0040-6031/02/\$ – see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0040-6031(02)00330-1

[∗] Corresponding author. Tel.: +7-3832-341449;

E-mail address: nata@casper.che.nsk.su (N.I. Matskevich).

was carried out after each calorimetric experiment using a heater ($R = 20 \Omega$) mounted on the lid closing the Dewar vessel. The uncertainty of power measurement was $\pm 0.003\%$. The reproducibility of the heat equivalent of the calorimeter with the automatic calibration system amounts to $\pm 0.03\%$. The precision of the calorimeter was checked dissolving KCl as a standard substance. The dissolution heat of KCl (17.529 \pm 0.009 kJ/mol) was found to be in a good agreement with the value recommended in the [litera](#page-4-0)ture [12].

The 2N HCl solution was used as a solvent. The thermochemical cycle to calculate the $SmBa_2Cu_3O_{6.92}$ formation enthalpy is based on the determination of dissolution enthalpies of $Sm₂O₃$, $BaCO₃$, CuO, $SmBa₂Cu₃O_x$. The sequence of thermochemical reactions is represented by Eqs. (1) – (4) :

$$
0.5\text{Sm}_2\text{O}_3(s) + \text{solution 1} = \text{solution 2},
$$

\n
$$
\Delta_{\text{sol}}H = 0.5\Delta_{\text{sol}}H_1^\circ
$$
 (1)

$$
2BaCO3(s) + solution 2 = solution 3 + 2CO2(g),
$$

$$
\Delta_{sol}H = 2\Delta_{sol}H_2^{\circ}
$$
 (2)

 $3CuO(s) +$ solution 3 = solution 4,

$$
\Delta_{sol} H = 3\Delta_{sol} H_3^\circ \tag{3}
$$

 $SmBa_2Cu_3O_{6.92}(s) + 0.21O_2(g) +$ solution 1

$$
= \text{solution 4}', \quad \Delta_{\text{sol}} H = \Delta_{\text{sol}} H_4^{\circ} \tag{4}
$$

Here: solution 1 is a solution of HCl with concentration of 2N; s: solid; g: gas; $\Delta_{sol}H_{an}^\circ$: the molar enthalpy of solution.

If solution 4 obtained according to reaction (3[\) and](#page-4-0) solution $4'$ obtained according to reaction (4) are assumed to be identical, the following equation can be written:

$$
0.5\text{Sm}_2\text{O}_3(s) + 2\text{BaCO}_3(s) + 3\text{CuO}(s) + 0.21\text{O}_2(g)
$$

= SmBa₂Cu₃O_{6.92}(s) + 2CO₂(g), ΔrH_5° (5)

The corresponding enthalpy $(\Delta_{\rm r} H_{5}^{\circ})$ of reaction (5) can be calculated providing the identity of solutions 4 and 4 :

$$
\Delta_{\rm r}H_5^\circ=0.5\Delta_{\rm sol}H_1^\circ+2\Delta_{\rm sol}H_2^\circ+3\Delta_{\rm sol}H_3^\circ-\Delta_{\rm sol}H_4^\circ
$$

The identity of solutions 4 and 4 , however, needs some proof due to the presence of various oxidation

states of Cu (Cu⁺, Cu²⁺, Cu³⁺) in SmBa₂Cu₃O_x [13]. If $\text{SmBa}_2\text{Cu}_3\text{O}_x$ includes Cu^{3+} , Cl_2 is formed by the interaction wit[h](#page-4-0) [HCl](#page-4-0). In $[14]$, the formation of oxygen instead of chlorine was observed in dissolving $REBa₂Cu₃O_x$ and $REBa₂Cu₃O₈$. In the present study, the electronic spectra of solutions 4 and 4' have been investigated in the range of $(1-3) \times 10^4$ cm⁻¹ in air atmosphere. The spectra of solution 4 became identical to the spectra of solution $4'$ within 10 min after dissolution was completed. This result indicates that the amount of oxygen which is partially dissolved in solution 4' and partially contained in the air interlayer above the calorimeter is sufficient to transfer $Cu⁺$ to Cu^{2+} . Therefore, all calorimetric experiments were performed at 323 K, with the main period time being more than 10 min. At lower temperatures, the rate of $Sm₂O₃$ dissolution is small, resulting in a low precision of the measurements. The masses of substances used were 0.06–0.3 g. The heat evolved in calorimetric experiments was 100–200 J.

3. Sample preparation

The samples used in the calorimetric experiments were pre-treated as follows: $Sm₂O₃$ was kept at 1023 K in air for 10 h; CuO was heated in O_2 atmosphere for 15 h ($T = 900$ K); BaCO₃ was kept at 650 K in air for 4 h. The samples of $SmBa_2Cu_3O_{6.92}$ and $BaCuO_2$ were prepared from $Sm₂O₃$, BaCO₃, CuO by solid state reactions followed by annealing in oxygen at 673 K.

All compounds were characterised by X-ray power diffraction (Cu K α radiation) and chemical analysis [9,10]. The sensitivity of X-ray analysis is about $2-3\%$ ac[cordin](#page-4-0)g to $[9]$. The content of copper in the samples was determined by atomic absorption spectrometry in the flame of air–acetylene, whereas the content of barium was determined by photometric method in the flame of nitrogen dioxide–acetylene. The R.S.D. was 0.006–0.007. The content of samarium was determined by the spectrophotometry. The R.S.D. was 0.004–0.005. The stoichiometric coefficient of oxygen was determined by iodometric titration with an accuracy better than ± 0.03 . Within the resolution of the analyses, the involved compounds were found to be single phase. The spectral analysis indicated that the metal impurities were at the level 10^{-3} to 10^{-4} at.%.

Table 1

4. Experimental results

The molar dissolution enthalpies of BaCO₃, CuO, Sm_2O_3 , BaCuO₂, SmBa₂Cu₃O_{6.92} in 2N HCl are given below.

$$
\Delta_{sol}H^{\circ}(\text{BaCO}_3, 323.15 \text{ K}) = 10.42 \pm 1.30 \text{ kJ/mol}
$$

$$
\Delta_{sol}H^{\circ}(\text{CuO}, 323.15 \text{ K}) = 60.84 \pm 0.67 \text{ kJ/mol}
$$

$$
\Delta_{sol}H^{\circ}(\text{Sm}_2\text{O}_3, 323.15 \text{ K}) = 406.66 \pm 2.74 \text{ kJ/mol}
$$

$$
\Delta_{sol}H^{\circ}(\text{SmBa}_2\text{Cu}_3\text{O}_{6.92}, 323.15 \text{ K})
$$

= 774.14 ± 3.52 kJ/mol

 $\Delta_{sol}H^{\circ}$ (BaCuO₂, 323.15 K)=273.26 ± 1.21 kJ/mol

All dissolution enthalpies were calculated as average values of 5–6 calorimetric experiments. The errors were calculated for the 95% confidence interval using the Students coefficient.

The dissolution enthalpies were used to calculate the enthalpy of the following reaction:

$$
0.5\text{Sm}_2\text{O}_3(s) + 2\text{BaCO}_3(s) + 3\text{CuO}(s) + 0.21\text{O}_2(g)
$$

= SmBa₂Cu₃O_{6.92}(s) + 2CO₂(g),

$$
\Delta_{\text{r}}H_5^{\circ}(323.15 \text{ K}) = 367.45 \pm 5.01 \text{ kJ/mol}
$$
 (5)

Since the direction of any chemical transformation is determined by the sign of the Gibbs energy, ΔG° = $\Delta H^{\circ} - T \Delta S^{\circ}$ + *RT* ln *P* the value of the enthalpy change $\Delta_{\rm r}H_5$ is not sufficient to evaluate whether $SmBa_2Cu_3O_x$ is stable or not with respect to reaction (5) at room temperature. Here *P* is a function of the fugacities of volatile components representing the different chemical potentials appearing in the initial and final state, respectively. However, it was [show](#page-3-0)n in $[1,2]$ for a number of cuprate phases that the term $T\Delta S$ was not so large as to change the sign of ΔG (the order is 100 kJ/mol for reaction 5), and the term (−R*T* ln *P* is estimated to be even less for the reaction proceeding in air $(30 \text{ kJ/mol}$ if the CO₂ level at steady state is approximately 10^2 Pa). Ther[efore,](#page-4-0) it can be concluded from the large endothermic heat of reaction (5) that Sm123 is not a thermodynamically stable phase at room temperature with respect to interaction with CO₂.

The formation enthalpy of the $SmBa_2Cu_3O_{6.92}$ phase from binary oxides $(\Delta_{ox}H)$ was calculated

using the enthalpy of reaction (5) and literature data [15] as follows:

$$
\Delta_{ox} H^{\circ}(\text{SmBa}_2\text{Cu}_3\text{O}_{6.92}, \text{ s, } 323.15 \text{ K})
$$

= $\Delta_{r} H_{5}^{\circ} (323.15 \text{ K}) + 2\Delta_{f} H^{\circ} (\text{BaCO}_3, \text{ s, } 323.15 \text{ K})$
- $2\Delta_{f} H^{\circ} (\text{BaO, s, } 323.15 \text{ K})$
- $2\Delta_{f} H^{\circ} (\text{CO}_2 \text{ g, } 323.15 \text{ K})$

The literature data used for calculation are given in [Tab](#page-4-0)le 1 [15]. The value of formation enthalpy from binary oxides is presented below.

$$
0.5\text{Sm}_2\text{O}_3(s) + 2\text{BaO}(s) + 3\text{CuO}(s) + 0.21\text{O}_2(g)
$$

= SmBa₂Cu3O6.92(s),

$$
\Delta_{ox}H^{\circ}(323.15\,\text{K}) = -177.35 \pm 5.01\,\text{kJ/mol}
$$
 (6)

The formation enthalpy of the Sm123 phase from Sm(s), Ba(s), Cu(s), O₂(g) ($T = 323.15$ K) was calculated as follows:

$$
\Delta_{\rm f} H^{\circ}(\text{SmBa}_2\text{Cu}_3\text{O}_{6.92}, \text{ s, } 323.15 \text{ K})
$$
\n
$$
= \Delta_{\rm r} H_5^{\circ} (323.15 \text{ K}) + 2 \Delta_{\rm f} H^{\circ} (\text{BaCO}_3, \text{ s, } 323.15 \text{ K})
$$
\n
$$
- 2 \Delta_{\rm f} H^{\circ} (\text{CO}_2, \text{ g, } 323.15 \text{ K})
$$
\n
$$
+ 0.5 \Delta_{\rm f} H^{\circ}(\text{Sm}_2\text{O}_3 \text{ s, } 323.15 \text{ K})
$$
\n
$$
+ 3 \Delta_{\rm f} H^{\circ}(\text{CuO, s, } 323.15 \text{ K})
$$

The values used for calculation are given in Table 1 [15].

Acc[ording](#page-3-0) to [1,2] the formation enthalpies of a number of $REBa₂Cu₃O_x$ phases do not significantly depend on temperature. Therefore, the standard formation enthalpy

 $[\Delta_f H^{\circ}(\text{SmBa}_2\text{Cu}_3\text{O}_{6.92}, s, 298.15 \text{K}]$ can be assumed to be equal to the formation enthalpy

Table 2 Literature and estimated data on entropies used for calculation of reaction enthalpies

Compound	S^{o} (J/(K mol)) (T = 323.15 K)
$BaCuO2$ (s)	125.3 ± 0.6
BaO(s)	75.82
CuO(s)	46.21
Sm ₂ O ₃ (s)	155.5
$O_2(g)$	207.4
$SmBa_2Cu_3O_69_2(s)$	368.0

 $[\Delta_f H^{\circ}$ (SmBa₂Cu₃O_{6.92}, s, 323.15 K)] calculated at 323.15 K:

 $\Delta_f H^{\circ}(\text{SmBa}_2\text{Cu}_3\text{O}_{6.9}, \text{ s}, 323.15 \text{ K})$

 $= -2672.30 \pm 5.01 \text{ kJ/mol}$

Then, the enthalpy of the decomposition reaction of the $SmBa₂Cu₃O_{6.92}$ phase on the mixture including barium cuprate was calculated as follows.

 $0.5 \text{Sm}_2\text{O}_3(s) + 2\text{BaCuO}_2(s) + \text{CuO}(s) + 0.21\text{O}_2(s)$ $=$ SmBa2Cu3O_{6.92}(s) $\Delta_{\rm r}H^{\circ}(323.15\,{\rm K}) = -36.55 \pm 5.01 \,{\rm kJ/mol}$

To understand whether the $SmBa₂Cu₃O_x$ phase decomposes to the $0.5 \text{ Sm}_2\text{O}_3 + 2\text{BaCuO}_2 + \text{CuO}$ mixture it is necessary to know the Gibbs energy. The values of entropies used for the calculation are given in Table 2. Entropies of $Sm₂O₃$, BaO, CuO, O₂ were t[aken](#page-4-0) [f](#page-4-0)rom [15]. We measured the entropy of $BaCuO₂$ [3] using low-temperature adiabatic calorimetry and used this value for the Gibbs energy calculation. $S(BaCuO₂, s, 323.15 K) = 125.3 \pm 0.6 J/K$ mol) [3].

There is no entropy of the $SmBa₂Cu₃O_x$ phase in literature. This value was estimated using entropies of $Sm₂O₃$, BaO, CuO (see Table 2).

 S° (Sm123, s, 323.15 K) = 368.0 J/(K mol).

Using the formation enthalpy of reaction (5) and data of Table 2 the Gibbs energy for the process (7) was estimated:

 $\Delta_{\rm r}G^{\circ}$ (323.15 K) = -21.03 ± 5.01 kJ/mol

On the basis of this value, it is concluded that the $SmBa₂Cu₃O_{6.92}$ phase is thermodynamically stable with respect to a decomposition according to

reaction (7) at room temperature. Investigations performed by the authors $[1,2,13]$ for 1:2:3 phases in the $RE-Ba-Cu-O$ ($RE = Y$, Gd, Ho, Nd) systems showed that only phases with Gd and Nd are stable with respect to decomposition products including $BaCuO₂$ in contradiction to the 1:2:3 phases of Y and Ho.

5. Conclusion

The solution enthalpies of $Sm₂O₃$, BaCO₃, CuO, $SmBa₂Cu₃O_{6.92}$, BaCuO₂ at 323.15 K in 2N HCl were measured by solution calorimetry. On the basis of these data the following values were calculated:

- (1) the enthalpy of the reaction $0.5Sm₂O₃ + 2BaCO₃$ $+ 3CuO + 0.21O₂ = SmBa₂Cu₃O_{6.92} + 2CO₂;$
- (2) the formation enthalpy of the $SmBa_2Cu_3O_{6.92}$ phase from binary oxide;
- (3) the SmBa₂Cu₃O_{6.92} phase standard formation enthalpy;
- (4) the reactive enthalpy and Gibbs energy of reaction $0.5\,\text{Sm}_2\text{O}_3 + 2\,\text{BaCuO}_2 + \text{CuO} + 0.21\text{O}_2 =$ $SmBa₂Cu₃O_{6.92}$.

Acknowledgements

This work is supported by Russian fund of fundamental investigation (Project No. 02-03-32514) and the Ministry of Industry, Science and Technology of the Russian Federation, Government Contract No. 40.012.1.1.11.46 (Fundamental basis of searching, synthesis and studying of superconductors).

References

- [1] N.I. Matskevich, T.L. Popova, L.-J. Johansson, P. Berastegui, Thermochim. Acta 320 (1998) 39.
- [2] N.I. Matskevich, R.W. McCallum, Thermochim. Acta 342 (1999) 41.
- [3] Yu.F. Minenkov, N.I. Matskevich, Yu.G. Stenin, P.P. Samoilov, Thermochim. Acta 278 (1996) 1.
- [4] N.I. Matskevich, Thermochim. Acta 343 (2000) 7.
- [5] G. Krabbes, W. Bieger, P. Schätzle, U. Wiesner, Curr. Topics Crystal Growth Res. 2 (1995) 359.
- [6] G. Krabbes, W. Bieger, P. Schätzle, G. Fuchs, J. Thomas, Adv. Solid State Phys. 39 (1999) 384.
- [7] G. Krabbes, W. Bieger, P. Schätzle, U. Wiesner, Supercond. Sci. Technol. 11 (1998) 144.
- [8] G. Krabbes, W. Bieger, U. Wiesner, A. Teresiak, J. Solid State Chem. 103 (1993) 420.
- [9] N.I. Matskevich, T.L. Popova, F.A. Kuznetsov, V.S. Kravchenko, V.A. Titov, V.P. Shaburova, O.G. Potapova, Mendeleev Commun. 1 (1993) 29.
- [10] V.E. Fedorov, N.G. Naumov, P.P. Samoilov, N.F. Zakharchuk, N.I. Matskevich, U.-H. Paek, Bull. Korean Chem. Soc. 6 (1995) 484.
- [11] N.I. Matskevich, T.L. Popova, E.S. Zolotova, M.A. Starikov, Thermochim. Acta 254 (1995) 41.
- [12] Yu.N. Matyushin, T.S. Konkova, A.V. Vorob'ev, Yu.A. Lebedev, in: Proceedings of the 10th All-Union Conference On Calorimetery And Chemistry Thermodynamics, Institute of Chemical Physics of the Russian Academy of Science Press, Chernogolovka, Russia, 1984, pp. 601–603.
- [13] L.R. Morss, S.E. Dorris, T.B. Lindemer, N. Naito, Eur. J. Solid State Inorg. Chem. 27 (1990) 327.
- [14] D.S. Harris, J. Hewston, J. Solid State Chem. 69 (1987) 182.
- [15] L.V. Gurvich, Thermodynamical Properties of Individual Substances, Vols.1–4, Nauka, Moscow, 1982–1987.