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Abstract

A useful relationship, ln(Tg) = ln(Tg,∞)−m[η]−ν , between intrinsic viscosity and glass transition temperature for a series
of homologous polymers was obtained by combining the Mark–Houwink–Kuhn–Sakurada (MHKS) relation for intrinsic
viscosity and molecular mass, and the Fox–Flory equation for glass transition temperature and number-average molecular
mass. This relationship was applied to poly(2,6-dimethylphenylmethacrylate) (PDMPh) in a variety of solvents (ideal to
good) such as toluene, tetrahydrofuran/water, tetrahydrofuran, and chlorobenzene systems. The parameterα estimated by this
procedure in toluene, tetrahydrofuran/water, tetrahydrofuran, and chlorobenzene systems are 0.506, 0.511, 0.567, and 0.673,
respectively which are in agreement with those of Mark–Houwink–Kuhn–Sakurada values by less than 5% differences. The
Tg,∞ quantity estimated from this equation also is within the standard deviation of that obtained from the Fox–Flory method.
The m quantity is increasing as the thermodynamic quality of the solvent improves, therefore,m may be considered as an
indicator of coil conformations in a given solvent.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The aims of this work are to:

(a) investigate the relationship betweenTg, and [η],
for the homologous poly(2,6-dimethylphenyl-
methacrylate) (PDMPh) series;

(b) estimate theTg,∞ using Tg and [η] relationship
and comparing with that of the Fox–Flory method
[27];

(c) estimateα values fromEq. (5)and compare with
the reported values[3];
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(d) interpretm as a factor related to the conformation
of the polymeric chain in the solution.

The intrinsic viscosity of macromolecules in dilute
solutions is a measure of their hydrodynamic average
size, form, and shape in the solution[1–10]. Many
studies could be found that explore empirical relation-
ships between coil dimensions of synthetic polymers
with their intrinsic viscosity[1–15]. The most fre-
quently used relationship between intrinsic viscosity,
[η], and the weight-average molecular weight,〈Mw〉, is
Mark–Houwink–Kuhn–Sakurada (MHKS) equation:

[η] = Kα 〈Mw〉α (1)

where the parameterα is a measure of thermodynamic
power of solvent andKα a measure of coil volume for
an unperturbed condition or ideal solvent.
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Numerous researchers[1–12] have demonstrated
the validity of MHKS equation applied to random
coiled polymers for molecular weights ranging several
orders of magnitude. By increasing thermodynamic
strengths of solvents, the magnitude of coefficient
α would increase while the magnitude ofKα would
decrease. Generally for random coil flexible polymer
molecules, the value ofα would be between 0.50 and
0.80. For non-flexible and rigid (worm- or rod-like)
macromolecules higher values ofα, larger than or
equal to unity has been observed. Thus the numerical
value ofα provides information concerning polymer
conformation as well[1–14].

The validity of the Fox–Flory relationship between
glass transition temperature,Tg, and number-average
molecular weight,〈Mn〉, for a homologous series of
polymers has also been confirmed by a large number
of investigators[16–29]. The well-known Fox–Flory
equation (Eq. (2)) and its approximated form, (Eq. (3))
are the most frequently used relationships to relate the
glass transition temperature with the number-average
molar mass of a homologous series of a polymeric
chain[17,18]:

Tg = Tg,∞ e−b/〈Mn〉 (2)

whereb is a constant related to apparent energy of ac-
tivation for a viscous fluid, proportional to exponent
of the Fox–Flory equation forET [17] and indepen-
dent of molecular weight of polymer. For simplicity,
instead ofEq. (2)normallyEq. (3) is used:

Tg = Tg,∞ − k

〈Mn〉 (3)

wherek is a constant related to the nature of the poly-
mer andTg,∞ represents the glass transition tempera-
ture obtained by extrapolation of〈Mn〉 to infinity.

The nature of the glass transition temperature ac-
cording to Cowie is a subject for considerable con-
troversy and speculation. The phenomenon is rather
a complex process to analyze. Most experimental
evidences, however, tend to support the idea thatTg
represents an iso-free volume state, with the free vol-
ume contribution atTg. The available free volume
can be altered either by addition of diluents or by
increasing the number of chain ends in the system,
each chain end presumably creates more free volume
than a segment in the interior of the chain[16].

Replacing〈Mw〉 = I 〈Mn〉 in Eq. (1), rearranging for
〈Mn〉, substituting the〈Mn〉 value intoEq. (2), taking
the logarithm and rearranging one obtains:

ln(Tg) = ln(Tg,∞) − IbK1/α[η]−1/α (4)

Rewriting m = IbK1/α and ν = 1/α in Eq. (4), one
obtainsEq. (5)which represents a linear relationship
between ln(Tg) and [η]−ν for a set of homologous
polymer series:

ln(Tg) = ln(Tg,∞) − m[η]−ν (5)

2. Experimental

The monomer 2,6-dimethylphenylmethacrylate
was synthesized by the reaction of methacryloyl
chloride with corresponding phenol in the presence
of triethylamine in benzene solution. The monomer
was purified by several redistillations at reduced
pressures. The PDMPh was obtained by radical poly-
merization of a 10% solution of monomer in benzene
using 2,2′-azobisisobutyronitrile as a radical initiator
at 333 K. The crud polymer was purified by precipi-
tation in methanol. The narrow fractions of polymer
were obtained by fractionation using toluene as a sol-
vent and methanol as a precipitant. The number- and
weight-average molecular masses were determined
by size exclusion chromatography. The efflux time of
the polymer solution and solvent was measured by
a Desreux–Bischoff dilution capillary viscometer at
298 K. The intrinsic viscosities of the samples were
determined through Huggins and Kraemer methods.
A Perkin-Elmer differential scanning calorimeter,
DSC-7, was used to determine the glass transition
temperature of the samples. The samples were pre-
heated under nitrogen to have the same thermal his-
tory. Table 1 summarizes the experimental data for
five selected fractions of the PDMPh that are used in
this work.

3. Results and discussions

3.1. Ideal solvent

Under the theta (θ) conditions[1–4] in which there
are no excluded volume effects,Eq. (1) could be
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Table 1
Physical characteristics of five selected fractions of PDMPh for
the study of the relationship between glass transition temperatures
and intrinsic viscosity in various solvents

〈Mw〉
(kg/mol)

〈Mn〉
(kg/mol)

Tg (K) [η ] (dl/g)

Toluene THF/
water

THF CB

332 289 449.0 0.452 0.348 0.605 0.692
106 85 434.0 0.251 0.238 0.300 0.420
57 43 425.0 0.187 0.164 0.207 0.270
34 30 420.0 0.150 0.134 0.150 0.160
19 13 388.0 0.112 0.099 0.110 0.113

written as:

[η]θ = Kθ 〈M〉1/2 (6)

where [η]θ is the intrinsic viscosity under theta-condi-
tions. It has been confirmed by numerous investigators
[1–11] that the intrinsic viscosity, [η], is proportional
to the square root of the average molar mass,〈M〉1/2,
over several decades of molar mass.

Under ideal conditionsEq. (5)can be written as,

ln(Tg) = ln(Tg,∞) − m[η]−2
θ (7)

Based onEq. (7), a graph of the ln(Tg) versus [η]−2
θ

yields the numerical values of ln(Tg,∞), andm = IbK2
θ

Fig. 1. Variation of ln(Tg) vs. [η]−2
θ for PDMPh in ideal solvents: toluene (�); and THF/water (�).

Table 2
Tg,∞, andm from Eq. (7) in the indicated theta-solvents systems,
calculatedm = bK2

θ , and theTg,∞ values from the Fox–Flory
method[27] for PDMPh

Systems Property

Eq. (7) Calculatedm
(dl/g)1/2

Fox–Flory
Tg,∞ (K)

Tg,∞ (K) m

Toluene 451 13 12 450
THF/water 450 11 11

as the intercept and the slope, respectively. Also, the
slope m = bK2

θ could be obtained from the graph
of ln(Tg) versusI [η]−2

θ . The plots of ln(Tg) against
I [η]−2

θ for PDMPh in toluene (a single theta-solvent)
and THF/water (a binary theta-mixture systems) is pre-
sented inFig. 1.

The quantities ofm from the slopes, the calculated
m = bK2

θ , andTg,∞ estimated from the intercept of
Fig. 1 along with theTg,∞ values obtained from the
Fox–Flory relationship are tabulated inTable 2. The
last value is reported from reference[27] for compar-
ison of the results. The values ofTg,∞ from the in-
tercept agrees with that of the Fox–Flory (Eq. (2)or
Eq. (3)) andm from the slope of the lines agree with
calculated values (m= bK2

θ ).
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Fig. 2. Judicious numerical variation ofSr vs. suggested values ofν for PDMPh in toluene (�), THF/water (�), THF (�), and CB (×).

3.2. Non-ideal conditions

A plot of Eq. (5)could be a useful tool for estimat-
ing α, m andTg,∞ values for non-ideal systems, that
mean, moderately good or good solvents, in which
the quantity ofα is not known. Supposing that there
is a linear relationship between ln(Tg) and [η]−ν , and
with the knowledge that 0.5 < α = (1/ν) < 0.8
for a random flexible polymers such as PDMPh; a

Table 3
KMHS’ viscometeric parameters (presented for comparisons[3]), and calculatedm = bK1/α

α ; α parameters estimated fromEq. (5) using
minimum of Sr versusν, and maximum ofR2 versusν; and finallym andTg,∞ values fromEq. (5) with/without polydispersity correction
for PDMPh in the indicated systems

Method Parameter Solvent

Toluene THF/water THF CB

KMHS [3] 104Kα 7.80 7.50 3.31 1.84
α 0.50 0.50 0.59 0.65
104bK1/α 12 11 24 34

Eq. (5) α (minimum of Sr) 0.506 0.511 0.567 0.673

α (maximum ofR2) 0.506 0.511 0.567 0.673

104Im 19 16 29 53
104m 14 11 20 38
Tg,∞ 451 450 444 447
Tg,∞a 448 448 447 446

a Corrections made by polydispersity.

solution could be achieved by employing the method
of least-squares, seeking the best straight line be-
tween experimental points of ln(Tg) versus [η]−ν by
judicious numerical approximation and reiteration
methods. In order to fit a straight line to a set of ex-
perimental data, based onEq. (5), for each suggested
quantity of ν, only one standard deviation about re-
gression (Sr) value exists. A smaller value of theSr
is indicative of a better fit of data to a straight line.
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Fig. 3. Judicious numerical variation of suggested values ofν vs. R2 for PDMPh in toluene (�), THF/water (�), THF (�), and CB (×).

A plot of Sr, against reiteratedν values would reach
a minimum as can be seen inFig. 2. The minimum
corresponds to the best value ofα and would generate
the best line when ln(Tg) is plotted against [η]−ν (Fig.
4). The estimated values ofα are tabulated inTable 3.
Also, the values ofα from KMHS equation are shown
for comparisons[3]. As Table 3indicates, these values
are in agreement with those of MHKS within 5%.

One can also use the square of correlation coef-
ficient (R2) as a criterion for the fitting of a straight
line into a given set of data. A higher value of the
R2 indicates a better fit of data to a straight line.

Fig. 4. ln(Tg) vs. I[η]−1/α for PDMPh in toluene (�), THF/water (�), THF (�), and CB (×) systems.

Fig. 3 represents the judicious numerical variation of
R2 versus suggestedν values based on theEq. (5).
The maximum of each curve yields the bestν value
that fits to the straight line corresponding to exper-
imental data of ln(Tg) against [η]−ν . The value of
α = 1/ν from this maximum may be considered as
the best-estimated value of the MHKS’α as tabulated
in Table 3. The correspondingα from this method is
identical with the value from the previous method (Sr
againstν).

Once the value ofα is estimated, a graph of
ln(Tg) versusI[η]−1/α will yield Tg,∞ andm values.
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Fig. 4 represents such a graph for PDMPh in toluene,
THF/water, THF, and chlorobenzene (CB) systems.

ObservingFig. 4, one may assume that all sys-
tems would reach to a common intercept. Indeed, the
least-square calculation also confirms the common
intercept within the standard deviation as shown in
theTable 3.

4. Conclusions

The units of slopem, based onEq. (5), must
be (volume/mass)ν , hence,mα = volume/mass and
equal to the specific volume of the segmental poly-
meric coil. It is an established fact that a random
coil polymer expands more in a better solvent. There-
fore, when the value ofm increases by improving the
quality of a solvent from poor to good one, this may
indicate the expansion of the polymeric random coil.
Them andα quantities are in agreement with respect
to the thermodynamic quality of solvent. As the ther-
modynamic quality of the solvent improves, the value
of α increases, andm also increases, indicating the
expansion of the polymeric coil in a better solvent.

Hence, the parameterα and Tg,∞ estimated from
Eqs. (5) and (7)agree with those of Mark–Houwink–
Kuhn–Sakurada and the Fox–Flory equation.
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