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Abstract

Various cell surface proteins, such as the B cell receptor (BCR) or immunoglobulin E bound to the membrane Type I
Fcε receptor, possess two or more binding sites for soluble ligands which in turn have valences of three or more. We have
devised an equilibrium model to calculate sizes and structures of cell surface aggregates formed between such species in
two-dimensional systems directly from solution ligand concentration. The model explicitly treats differing ligand valences
for different types of receptor-binding, monogamous bivalent binding of ligand-to-receptor and two-dimensional gelation of
receptor–ligand aggregates. Of particular interest is that thermodynamic parameters reasonable for cell biological situations
predict that two-dimensional receptor gelation can occur. This is the appearance of large aggregates (gel) in equilibrium with
appreciable amounts of finite-sized aggregates (sol). Calculations also suggest (1) the amount of bound ligand increases with
ligand concentration or ligand valence below the gel point, (2) the average number of receptors per finite aggregate increases
with ligand concentration below the gel point, (3) finite aggregates generally involve less than two ligand molecules, (4)
above the gel point, finite aggregate size remains approximately constant and bound ligand enters the gel-phase. Predicted
gelation is also consistent with experiment. Polyvalent dinitrophenyl (DNP) antigens can aggregate bivalent DNP-specific
BCR on cell or liposome surfaces. We have used the laser-microscopic method of fluorescence photobleaching recovery to
examine the mobility of such protein aggregates both on B cells bearing DNP-specific BCR and on liposomal models. When
either the DNP-antigen solution concentration or the number of DNP groups per antigen molecule exceeds a critical value, a
fraction of the normally mobile bound antigen becomes immobile. At the same time, cells become resistant to antigenic and
mitogenic stimulation. This suggests that two-dimensional gelation of antigen and BCR occurs with inhibition of subsequent
BCR function. We discuss possible mechanisms by which large, immobile protein aggregates might inhibit cellular signaling
systems, for example by slowing translocation of liganded receptor to lipid rafts.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Various cell surface proteins, such as the B cell
receptor (BCR) or immunoglobulin E bound to mem-
brane Fcεreceptors, possess two or more binding sites
for soluble ligands which in turn have valences of three
or more. The binding of ligands—antigens, allergens,
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Nomenclature

C molar concentration of ligand
molecules in solution

C∗ vK1C

Ckij cell surface concentration of
aggregates involvingk ligand
molecules andi receptors,j of which
are bound monogamous bivalently

f number of determinants per ligand
molecule capable of simultaneously
binding to receptors not bound to
other ligand molecules

h number of determinants per ligand
molecule capable of simultaneous
involvement in inter-ligand crosslinks
by receptors

K1 binding constant for the interaction of
a site on a free receptor with a
determinant on an ligand molecule
free in solution

K2 binding constant for a ligand
determinant, on a ligand already
attached to the cell surface,
binding to a receptor site

K3 binding constant for the interaction of
a site on a receptor molecule, already
bound to ligand at its other site, with
an ligand determinant on a
different ligand molecule

K4 binding constant for the interaction of
a site on a receptor molecule already
bound to ligand at its other site with
a ligand determinant on the
same molecule

r K3/K2
Rkij number of waysi receptors can

be employed to joink ligand
molecules and then bind remaining
available ligand sites

S concentration of free cell surface
receptors

S∗ 2K2S
v number of determinants per ligand

molecule capable ofinitial attachment
to a cell surface receptor

Wk number of waysk ligand molecules
can be assembled into an aggregate

Wkij number of ways an aggregate ofk
ligands andi receptors, of whichj
are bound monogamous bivalently,
can be formed

etc.—to such cell surface receptors is thus the primary
event in triggering several significant classes of bi-
ological responses. The sizes of receptor–ligand
complexes formed under various conditions has long
been recognized as a determinant of the type and
magnitude of cellular responses resulting from ligand
encounter.

The equilibrium thermodynamics of such complex
aggregating systems have been examined theoretically
and experimentally over many years. In studying poly-
merization reactions, Stockmayer[1] developed many
of the combinatoric tools need for modeling such
processes, proceeding from a formalism developed by
Mayer and Mayer[2]. Goldberg specifically examined
the case of antibody–antigen aggregation in solution
[3]. A common feature of both these studies was the
recognition of gelation in aggregating systems, namely
the sudden appearance of an arbitrarily large aggre-
gate in equilibrium with finite-sized species. More
recently, individuals such as Perelson[4], DeLisi [5],
Baird et al. [6] and Goldstein et al.[7] have exam-
ined the interaction of rigid, polyvalent antigen with
cell surface receptors. These various treatments have
considered, with enormous sophistication, factors
affecting aspects of aggregation, measures of recep-
tor crosslinking, kinetic approaches to equilibrium,
monogamous bivalent binding of receptors to individ-
ual ligands and possibilities for critical phenomena
like gelation. However, these treatments have gener-
ally not been suited to predicting experimental results
directly from model parameters and experimental
conditions.

This paper develops a computational model for
the equilibrium binding of a rigid polyvalent ligand
to divalent cell surface receptors in terms of total
external ligand concentrations. The model explicitly
treats differing ligand valences for different types of
receptor-binding, monogamous bivalent binding of
ligand-to-receptor and two-dimensional gelation of
receptor–ligand aggregates.
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While the model presented is applicable to any
divalent receptor and polyvalent ligand, we will fre-
quently refer to the one particular system, namely the
binding of DNP–POL antigen to DNP-specific recep-
tors on B lymphocytes. Antigen concentration effects
both on the in vitro antigenicity of DNP–flagellin
and on lateral mobilities of receptor–antigen ag-
gregates demonstrate a complex dependence of
antigen–receptor aggregate structure on antigen con-
centration and valence. This suggests that structure
of receptor–antigen aggregates formed under differ-
ent conditions can vary widely and that aggregate
structure is a strong determinant of biological effect.
Moreover, both cell and model systems give clear
indication of the appearance of a gel-phase under
some but not all conditions associated with cellular
function.

Together with measured or estimated thermody-
namic parameters for such aggregation processes,
the model is used to calculate various parameters of
receptor aggregation phenomena under specific exper-
imental conditions examined for DNP–POL antigen
binding to DNP-specific receptors on B lymphocytes
examined in studies previously noted[8–11]. Quan-
titative predictions of the model are compared with
various biophysical data obtained on these actual cell
surface aggregation processes.

Fig. 1. Modes of interaction between multivalent ligand and bivalent cell surface receptors. The number of ligand sites capable of interacting
through the first mode, i.e. initial attachment, isv. Interaction through the second mode, i.e. a free receptor plus an already bound ligand,
is possible atf sites. Inter-ligand crosslinking is possible ath sites. Solution ligand concentration affects only the first binding step.

2. Theory

2.1. Derivation of the model

The question at hand is as follows: given bivalent
receptors confined to a cell surface and rigid, polyva-
lent ligand molecules, such as antigen or allergen, in
solution, what receptor–ligand complexes are present
on the cell surface at equilibrium? A suitable form of
answer is per-cell concentrationCkij of aggregates in-
volving i molecules of receptor andk molecules of
ligand. In general, there may be some monogamous
binding of receptors to the same ligand molecule.j ≤
i − k + 1 denotes the number of receptors so bound.
Such problems can be treated by Stockmayer’s com-
binatoric methods[1] or by probabilistic approaches
derived subsequently to circumvent various difficul-
ties [12]. We choose the first approach because of its
greater conceptual simplicity.

Our system involves four types of ligand–receptor
bonds (Fig. 1) and the ligand exhibits three valences,
each appropriate to various bond types. The first type
of bond, denoted by subscript 1, is the initial binding
of ligand to the cell surface. If the ligand hasv reactive
groups (antigenic determinants) present on its surface,
each is potentially capable of forming this first bond to
a cell surface receptor. The intrinsic binding constant
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and free energy of this interaction areK1 andε1. Once
a ligand is anchored to the cell surface, onlyf ≤ v

functional groups can bind receptors at the same time.
In particular, some groups may extend away from the
cell surface and thus be unavailable for surface re-
ceptor interactions. The intrinsic binding constant and
free energy of these bonds areK2 andε2. Next, h ≤
f groups on a bound ligand are capable of bridging
via a bivalent receptor to another bound ligand. Such
binding has an intrinsic equilibrium constant and free
energyK3 andε3. Finally, if a sIg bound to one site on
the antigen binds monogamously to a second site on
the same antigen molecule, the intrinsic binding con-
stant and free energy for this interaction areK4 andε4,
respectively. Consider the formation of a mole ofkijth
aggregate fromk moles ligand in solution andi moles
of free cell surface receptor. This process involves the
formation ofk bonds of the first type,i − k bonds of
the second type,k − 1 bonds of the third type andj
bonds of the fourth type. The standard molar free en-
ergy	G◦

kij of the process is given by

	G◦
kij = kε1 + (i− k)ε2 + (k − 1)ε3 + jε4

−RT �n

(
Wkij

k!i!

)
(1)

whereWkij is the number of ways thek ligands and
i receptors can be arranged to form thekijth aggre-
gate. The equilibrium constantKkij for the reaction is
therefore

Kkij = exp

(
−	Gkij

RT

)
= Kk

1K
k−1
3 Ki−k

2 K
j

4
Wkij

k!i!
(2)

The per-cell concentrationCkij of the kijth species
is then given by

Ckij = KkijC
kSi (3)

whereC and S are, respectively, the free ligand and
free receptor concentrations.

Appendix A shows howWkij can be evaluated in
analogy with the procedures of Goldberg[3] and of
DeLisi and Perelson[12]. The result is given as

Wkij = η i! 2ivk
(hk − k)!

(hk − 2k + 2)!

(n− j)!

j!(n − 2j)!

× (n− 2j)!

q!(n − 2j − q)!
(4)

where η is approximated by (h− 1)/(f − 1), n =
fk−2k+2 is the number of antigen sitesnot involved
in the k − 1 inter-antigen bridges andq = i − k +
1 − j is the number of singly-bound receptors. It is
convenient to definer = K3/K2 and to replaceK3
by rK2. CombiningEqs. (3) and (4)and making the
indicated substitution, we get

Ckij = ηk−1
2 (vK1C)

krk−1(2K2S)
iK

j

4

× (hk − k)!

k!(hk − 2k + 2)!

(n− j)!

j!(n − 2j)!

× (n− 2j)!

q!(n − 2j − q)!
(5)

If S0 denotes the total number of receptors on
the cell surface, then conservation of receptors is
expressed by the equation

S0 =
∑

iCkij + S. (6)

2.2. Summation of the distribution function

The problem remaining is to find practical meth-
ods of evaluating the distribution functionCkij and its
derivatives with respect tok, i andj. These quantities
permitEq. (6)to be solved forS when a value ofC is
specified. The distribution of speciesCkij can then be
calculated.

If we sumEq. (5) over all possible values ofk, i,
andj, we obtain

∑
Ckij = η

rK2S∗

∞∑
k=1

(hk − k)!

k!(hk − 2k + 2)!
(rC∗S∗)k

×
int(n/2)∑
j=0

(n− j)!

j!(n − 2j)!
(K4S

∗)j

×
n−2j∑
q=0

(n− 2j)!

q!(n − 2j − q)!
(S∗)q (7)

whereC∗ = vK1C andS∗ = 2K2S. This sum includes
C100 = C, the free ligand concentration in solution.
Since this species is not bound to the cell surface,
we will not want to consider it in estimating average
properties of bound aggregates. Rather than attempting
to change the limits of summation, we will henceforth
subtractC from all sums where the term appears at
the time of use.



B. George Barisas / Thermochimica Acta 400 (2003) 1–20 5

The sum overq is simply evaluated by the binomial
theorem:

∑
Ckij = η

rK2S∗

∞∑
k=1

(hk − k)!

k!(hk − 2k + 2)!
(rC∗S∗)k

×(1 + S∗)fk−2k+2
int(n/2)∑
j=0

(n− j)!

j!(h − 2j)!

×
[

K4S
∗

(1 + S∗)2

]j
= η(1 + S∗)2

rK2S∗

∞∑
k=1

× (hk − k)!

k!(hk − 2k − 2)
[rC∗S∗(1 + S∗)f−2]k

int(n/2)∑
j=0

(n− j)!

j!(h − 2j)!

K4S
∗

(1 + S∗)2
(8)

The sum overj can also be evaluated in closed form
using a known combinatoric relation[13]:

int(n/2)∑
j=0

(n− j)!

j!(n − 2j)!
zj = ξn/2

1 + (−1)nζn

1 + ζ
(9)

where

z = K4S
∗

(1 + S∗)2
(9a)

x = 1 + 2z+ (1 + 4z)1/2 (9b)

ξ = 1
2x (9c)

ζ = 2z

x
(9d)

Since 0≤ ζ < 1 this formulation of the sum is
extremely well-behaved for computational purposes.
The main sum then becomes

∑
Ckij = (1 + S∗)2

rK2S∗

[
ξ

1 + ζ

∞∑
k=1

(hk − k)!

k!(hk − 2k + 2)!
yk0

+ ξζ3

1 + ζ

∞∑
k=1

(hk − k)!

k!(hk − 2k + 2)!
yk1

]
(10)

where

y0 = rC∗S∗[ξ1/2(1 + S∗)]f−2 (10a)

y1 = rC∗S∗[−ξ1/2ζ(1 + S∗)]f−2 (10b)

The above sums are of a type evaluated by Stock-
mayer some years ago[1]. If one defines

Ti =
∞∑
k=1

ki
(hk − k)!

k!(hk − 2k + 2)!
yk (i = 0, 1) (11)

Then

T0 = α(1 − αh/2)

(1 − α)2h
(12)

and

T1 = α

(1 − α)2h
(13)

In the previous equations,α is defined implicitly as
the smallest positive root of

y = α(1 − α)h−2 (14)

The computational formula for
∑

Ckij thus becomes

∑
Ckij = η(1 + S∗)2

rK2S∗

×
[

ξ

1 + ζ
T0(y0)+ ξζ3

1 + ζ
T0(y1)

]
(15)

It is now clear how
∑

Ckij is to be computed. When
S∗ is known or assumed, the power series variables
y0 and y1 may be calculated from the definitions of
Eqs. (10a) and (10b).Eq. (14) is then solved forα0
andα1, the solutions corresponding toy0 andy1. In-
sertion of these quantities intoEq. (10)yields T0(y0)
and T0(y1) and Ckij stands explicitly evaluated from
Eq. (15).

The sum representing the amount of bound lig-
and

∑
kCkij can be computed without additional

effort. Consideration ofEqs. (10), (11) and (13)
shows that

∑
kCkij = η(1 + S∗)2

rK2S∗

×
[

ξ

1 + ζ
T1(y0)+ ξζ3

1 + ζ
T1(y1)

]
(16)

Onceα0 andα1 are known,T1(y0) andT1(y1) follow
trivially from Eq. (13).

As was stated earlier, the fundamental problem
of this computation is to evaluate the free recep-
tor concentrations given a fixed value for the solu-
tion ligand concentrationC. The desired value of



6 B. George Barisas / Thermochimica Acta 400 (2003) 1–20

S is that which solvesEq. (6). For such a solution,∑
iCkij must be evaluated andEq. (5) in turn shows

that

∑
iCkij = S∗ d

∑
Ckij

dS∗ (17)

One should note that the sum includes only ligand
bound receptors since the sum begins atk = 1. Thus,
the average number of receptors〈i〉 per aggregate and
the average number of monogamous bivalently bound
receptors〈j〉 refer to ligand-binding receptors only.
The preceding differentiation could clearly be accom-
plished numerically. However, in the interest of accu-
racy, it is advantageous to evaluate the sum exactly
by analytically differentiatingEq. (10) and reapply-
ing Stockmayer’s formulae. The considerable algebra
involved is set down inAppendix B. It matters here
only that

∑
iCkij can be evaluated explicitly for an

assumed value ofS.
If one examinesEq. (5) and considers the sum∑
iCkij, it is clear without the necessity of formal

proof that the sum is a monotonically increasing
function of S. This fact permitsEq. (6) to be solved
readily by successive approximations. A value may
be assumed forS and the implied valueS′

0 for the
total receptor concentration evaluated fromEq. (6):

S′
0 =

∑
iCkij + S (18)

If S′
0 exceedsS0, S must be reduced andS′

0 recom-
puted. IfS′

0 is less thanS0, S must be increased before
the next iteration. An interval bisection method is
most efficient for the actual computation. If the initial
value assumed forS is S0, then log2(S/S0) iterations
are required to establish the magnitude ofS andm ad-
ditional iterations suffice to evaluateS to a precision
of one part in 2m.

2.3. Properties of the distribution function

The main interest in the distribution function lies in
various averages which can be calculated. The average
number〈i〉 of receptors per aggregate can easily be
evaluated as

〈i〉 =
∑

iCkij∑
Ckij − C

(19)

Here, we must subtract theC100 = C term from the
total species sum. The average number〈k〉 of antigens
per aggregate is similarly evaluated as

〈k〉 =
∑

kCkij − C∑
Ckij − C

(20)

The
∑

kCkij term is evaluated using Stockmayer’s
T1 sum given inEq. (13). Finally, the average number
〈k〉 of receptors bound monogamous bivalently given
by

〈j〉 =
∑

jCkij∑
Ckij − C

(21)

where

∑
jCkij = d

∑
Ckij

d�nZ

This sum is accompanied by considerable algebraic
complexity; but, like the sum weighted byi, no new
techniques are involved. The details of this differenti-
ation are given inAppendix C. One should note that
this particular sum cannot readily be evaluated by nu-
merical differentiation of

∑
Ckij.

The fundamental quantity obtained from fluores-
cence photobleaching recovery measurements of lig-
ands bound to antigen-specific receptors on cells and
liposomes[8–11] is the diffusion coefficient of bound
ligand. For an extended aggregate, i.e. free draining
with respect to other membrane species, the diffusion
coefficient is inversely proportional to the number of
receptors anchoring the aggregate to the membrane.
Thus, the diffusion coefficient of a single receptor,
divided by the diffusion coefficient of an aggregate,
which we call the “mobility reduction index”M can
be considered to approximate the number of receptors
aggregated[14]. Limitations of this extremely simpli-
fied treatment, especially as it might apply to cells
rather than liposomes, have been discussed elsewhere
[15]. Since signals in photobleaching are weighted by
the number of labeled ligands in an aggregate, this
quantity is calculated from the model as

M = 〈ki〉
〈k〉 (22)

The average〈ki〉 is obtained by numerical differentia-
tion of 〈k〉 with respect to�n S∗.
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2.4. Gelation

The question of when, if ever, two-dimensional
gelation occurs on the cell surface is of considerable
interest. For trivalent ligands only, the matter has been
examined in detail by Goldstein and Perelson[16].
Our generalized approach derives from Stockmayer’s
observation[1] that the sumsT0 andT1 include only
species present in finite-sized (sol-phase) aggregates.
When a gel-phase namely an arbitrarily large aggre-
gate, appears, it thus proves impossible to find a value
of S which will make

∑
iCkij + S as large asS0. This

situation arises becausey0 andy1 both have a maxi-
mum valueyc of (h− 2)h−2/(h− 1)h−1. This critical
value limits the number of sol-phase receptors which
are enumerated byT0. When no gel is present,Eq. (6)
rapidly converges to a free receptor concentration
which correctly predicts the total, i.e. bound and free,
receptor concentration. Precisely at the onset of gela-
tion, y0, which is strictly larger thany1, first becomes
equal toyc; nonetheless,Eq. (6)can satisfactorily be
solved. Above the gel point,y0 can still not exceedyc.
The minimum discrepancy betweenS′

0 andS0 results
from a value ofS which makesy0 equalyc. The value
of S′

0 at this time equals the numberSs of sol-phase
receptors:

Ss =
∑

iCkij + S (23)

The number of gel-phase receptorSg is given simply
by

Sg = S0 − Ss (24)

Finally, the fraction of receptorsgr in the gel-phase
is given by

gr = Sg

S0
(25)

It is somewhat more difficult to resolve the relative
amounts of antigen in the sol and the gel. The amount
Cs of sol-phase bound ligand is easily obtained as

Cs =
∑

kCkij − C (26)

The amount of gel-phase bound ligand is evaluated
by considering the receptor–ligand ratio in aggregates
with arbitrarily large values ofk. In the limit of k →
∞, this must approach the receptor–ligand ratioSg/Cg

in the gel. The result is given as

Sg

Cg
= 1 + (f + 2)

[
S∗

1 + S∗ + ξ′

2ξ

]
(27)

Since Sg is already known, this definesCg. The
total bound ligandCb is of considerable experimental
interest and is given by

Cb = Cs + Cg (28)

The fractiongg of ligand in the gel is given by

g� = Cg

Cb
. (29)

2.5. Two-dimensional constraints on aggregate
structures

The above treatment of ligand–receptor aggregation
cannot be directly applied to receptor aggregates with
rigid, linear ligands constrained to a two-dimensional
system. This is because Goldberg’s combinatorics
permit one antigen to be crosslinked via a recep-
tor to another antigen at any points on each antigen
molecule. In particular, two such linear ligands could
be crosslinked from the middle of one to the middle
of another. For a rigid antigen like DNP–POL, this is
physically impossible in a two-dimensional system.
A POL rod is about 120 Å in diameter[17], a dimen-
sion comparable to the diameter of a BCR complex.
Thus, it is unlikely that two non-parallel ligands can
be crosslinked middle to middle by a receptor which
would have to be removed from the membrane to
accomplish this. Thus, crosslinking can presumably
occur only when theend of one rod abuts another
rod at an arbitrary location. In other words, a valid
branching point for the antigen lattice must involve
at least one antigen rod end. This situation can be
approximated numerically as follows. If an antigen
has, among its valences accessible for crosslinking, a
fraction fe on ends, what is the probability thattwo
crosslinked antigens are bridged with at least one
end valence being used? This is simply one minus
the probability that two medial valences are involved.
Thus, fork ligands,k− 1 crosslinks are involved and,
to a first approximation, the probabilityPk that an
aggregate exists in three dimensions can also exist in
the plane is simply given by

Pk = [1 − (1 − fe)
2]k−1 = [2fe − f 2

e ]k−1 (30)
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To use this result in our calculation, we can sim-
ply define a new variabler′ = P2r to replacer
in Eq. (5). The approximation used in this calcula-
tion should be reasonably accurate provided that too
much receptor–ligand branching does not occur. As
will be shown later, this seems to be the case in all
physically-realistic situations.

3. Results

The calculations required to evaluate the model
numerically were implemented in PowerBasic on
PC-compatible computer. Values ofC, v, f, h, S0, K1,
K2, R and K4 were assumed at the outset of each
calculation. The antigen concentrationC was then
varied from 10−16 to 104 M in half-decade steps. For
each antigen concentration, the quantitiesS, Cb, 〈k〉,
〈i〉, 〈j〉, M, Ss/Cs, Sg/Cg, gT, andgr were evaluated by
the formulae derived previously.

The equilibrium interaction of rigid polyvalent lig-
ands with membrane receptors depends, according to
our model, on nine separate physical parameters of
which six are independent. As a practical matter, it is
therefore, impossible to describe the effects of simul-
taneously varying all of these parameters. Our goal
must therefore be more modest: to first describe the
general features of binding for plausible values of the
adjustable parameters and then to show how varia-
tion of one parameter at a time affects the observable
properties of ligand–receptor interactions. Finally,
we will suggest how the model helps interpret our
photobleaching recovery results on lateral mobility of
BCR–DNP–POL complexes on murine B cells and
liposomes.

3.1. Model parameters relevant to cellular systems

Selection of values for the physical parameters
permits considerable freedom of choice. We restrict
our consideration here to DNP–polymerized flag-
ellin, though the same numbers should be valid for
DNP–dextran as well. In a recent study, polymerized
flagellin exhibited an average length of about 1900 Å,
corresponding to about 180 monomer units[18]. The
maximum total valence of a DNP–POL molecule is
thus about 200 times the epitope density.

We might expect thatf andh would not exceed one-
third the number of DNP groups conjugated onto a
polymer. If the maximum attainable epitope density
of DNP–polymerized flagellin is about 4, then 0< f ,
h < 240. A typical intrinsic binding constant of DNP-
specific BCR for a DNP-protein is 5×105 l mol−1 [18]
and this can be equated toK1. Optimum immunogenic
responses often result from concentrations of about
1�g ml−1 [15] and epitope densities of about 2 DNP
per 40,000 Da flagellin monomer. Thus, in the region
of interest to us,C∗ = vK1C might have a value of
about 0.01. Further, sincev, K1 andC occur only as
the productC∗, we will simply plot this variable as
our single effective concentration parameter.

Perhaps the most problematic quantities areK2
and K3. Theoretical consideration of crosslinking
two bivalent antibodies with intrinsic affinities of
107 l mol−1 by 30–40 Å bivalent haptens predictsK2
of about 10−9 cm2 per molecule[19]. Typical BCR
affinities for DNP are lower than this[18] at about
5 × 105 l mol−1 and assuming 105 BCR per 200�m2

cell leads toK2 ∼ 2. It has been suggested[16], and
indeed seems plausible, thatK3 should be lessK2.

K4 can be estimated given the spacing of ligand va-
lences. From the geometry of POL rods[18], one can
calculate a surface density of 6.2×1012 DNP cm−2 and
an epitope density of 1 DNP per flagellin monomer.
Assuming an intrinsic affinity of 5× 105 l mol−1 and
that the second site of a receptor can explore a hemi-
sphere of 15 Å radius, we estimateK4 at 0.005 for
an epitope density of one and so would not expect
monogamous bivalent attachment to play a large role
in our own experimental data. However, similar ge-
ometric arguments applied to the 15 or more DNP
groups typically attached to bovine serum albumin or
other carrier protein in studies of mast cell degranu-
lation show that for these systems,K4 values substan-
tially larger that unity are to be expected. Thus, while
monogamous bivalent receptor to ligand may not have
strong relevance to our own BCR–DNP–POL experi-
mental data, the phenomenon promises to have clear
importance in other experimental systems to which the
model applies.

3.2. Qualitative predictions of the model

Figs. 2–5demonstrate qualitative aspects of recep-
tor aggregation by ligands using sets of parameters
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Fig. 2. Parameters of receptor aggregation calculated according to model. The parameters generating these data were not intended to
represent a specific cellular situation but rather to demonstrate qualitative features of the model. For the calculation shown,f and h are
both 50, K2 is 0.08, K3 is 0.16 andK4 is 1. The x-axis is the dimensionless reduced concentrationvK1c. The upper panel shows the
fraction of free receptors, the fraction of immobile, i.e. gel-phase, ligand and the fraction of total ligand bound for various reduced ligand
concentrations. The actual limiting value for bound ligand is 2 per receptor. The lower panel shows the average numbers of receptors (〈i〉),
of monogamous bivalently bound receptors (〈j〉) and of ligands (〈k〉).

chosen to demonstrate these features. These param-
eters sets are not intended to necessarily represent
cellular experiments or situations.Fig. 2 shows the
ligand concentration of speciation whileTable 1pro-
vided the corresponding comprehensive tabulated
output. Here,f and h are 50,K2 and K3 have val-
ues of 0.08 and 0.16, respectively and quite strong
monogamous bivalent interaction is permitted (K4 =
1). The upper part of theFig. 2 shows that, as the
ligand concentration increases, the fraction of free
receptors declines, bound ligand increases, and the
average size of receptor–ligand aggregates increases
until the gel or critical point is reached. At this point,
an immobile fraction of bound antigen (and bound
receptors) appears, the average number of receptors
〈i〉 per mobile aggregate decreases slowly, and the
number of antigens〈k〉 per mobile aggregate remains
constant at about 2. Finally, when high enough ligand

concentrations are reached, the gel-phase disappears
and, eventually, the average aggregate consists of
one receptor and two ligands as one would intu-
itively expect.Table 1 shows that both sol and gel
receptor–ligand ratios decrease monotonically with
ligand concentration, the gel always exhibiting the
higher numeric value. At very high ligand concentra-
tions, sol receptor–ligand ratio approaches 0.5 since
two ligand molecule bind each receptor.

A particularly important quantity is the average
number〈i〉 of receptors per aggregate. As calculated
here and as noted earlier, both〈i〉 and 〈j〉 average
only ligand binding receptors. Thus, at low ligand
concentrations where receptors are bound to single
molecules, the average number of receptors per aggre-
gate is some fraction of the total number of sitesf per
ligand, as determined byK2. At higher ligand con-
centrations, aggregates grow through the recruitment
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Fig. 3. Effects of ligand valence of receptor aggregation. The parameters generating these data were not intended to represent a cellular
situation but rather to demonstrate qualitative features of the model. For the calculation shown,K2 is 0.03,K3 is 0.06 andK4 is 0. The
x-axis is the dimensionless reduced concentrationvK1c. The solid lines in the lower panel show〈i〉 below the gel point for various values
of f or, equally,h as indicated. Dotted lines indicate average size of sol-phase speciesabove the gel point. The upper panel indicates total
cell-bound ligand for the various ligand valences and concentrations.

of more ligands with their bound receptors. The
largest average mobile aggregates occur at the gel
point (Fig. 2) and sizes decrease at higher ligand
concentrations. However, photobleaching recovery
experiments measure signals in proportion to the
number ofligand molecules so that average aggregate
sizes inferred from such experiments are weighted by
k. Thus, our mobility reduction index〈ki〉/〈k〉 most
appropriately relates to photobleaching experiments.

What is most easily measured experimentally are
effects of ligand concentration and valence (or epi-
tope density) on system properties.Fig. 3 shows how
the amount of bound ligand and the average number
of receptors〈i〉 per aggregate vary with these quanti-
ties. The various curves show calculations forf, h =
20, 50, 100, and 200. The value of〈i〉 increases both
with ligand concentration and valence for all ligand

shown. However, for antigens above their gel points,
the variation in〈i〉 with antigen valence is very small
and cannot be seen on the graph. The upper part of
Fig. 3shows the predicted variation in total bound lig-
and with ligand concentration and valence. Both for
cells in the range of physiological interest and for li-
posomal model systems,vK1c ∼ 0.02. In this range,
Fig. 3 shows that the total amount of bound ligand
increases with antigen concentration and valence.

Fig. 4 shows the effect of monogamous bivalency.
The effect of increasingK4 is to increase the avidity
of the antigen for the cell surface so that saturation
of available receptors occurs at lower and lower anti-
gen concentrations and the gel point, indicated by the
peak in the〈i〉 curves, moves to lower and lower lig-
and concentrations. However, monogamous bivalency
opposes multi-antigen aggregate formation so that the
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Fig. 4. Effects of monogamous bivalency on receptor aggregation The parameters generating these data were not intended to represent a
specific cellular situation but rather to demonstrate qualitative features of the model. For the calculation shown,f and h are both 50,K2

is 0.08,K3 is 0.16 andK4 is 1. Thex-axis is the dimensionless reduced concentrationvK1c. The solid lines in the lower panel show〈i〉
below the gel point for various values ofK4. Dotted lines indicate average size of sol-phase speciesabove the gel points. The maximum
amount of gel-phase liganddecreases with increasingK4 and, forK4 = 10, no gel point is observed.

maximum fraction of receptors involved in the gel de-
creases with increasingK4. In the example shown, for
K4 equal to 0, 1 and 5, maximum amounts of 75, 60
and 11% of bound ligand are involved in gel-phase
aggregates, respectively, while a value ofK4 = 10 in-
hibits gelation completely.

The receptor surface densityS0 exerts its effects
only through the productK2S0 so that effect of chang-
ing receptor density is exactly equivalent to a corre-
sponding increase inK2 or K3. Fig. 5 illustrates the
relation between these binding constants and ligand
valence. For large valences, receptor–antigen binding
constantsK2 and K3 and the corresponding antigen
valencesf and h effectively occur only as products
with each other, as can be seen from examination of
Eq. (8). Thus, doubling the ligand valence has almost,
if not quite, the same effect as doubling the relevant
binding constant. A valence of 50 is quite small in this
context, but one can see that increasingf four-fold to
200 and decreasingK2 by a similar factor produced
almost no net change in the location of the critical
point.

Finally, the quantity r = K3/K2 needs to be
considered. This reflects the relative tendency of a
ligand-bound receptor to bind to an available site on
another bound ligand versus the tendency of afree
receptor to attach to a bound ligand. Increasing values
of r, thus, imply increasing tendency to form extended
aggregates with large number of ligand–ligand recep-
tor bridges. One might expect that r to be generally
less than one[16]; however, as will be shown later,
our photobleaching data suggest that this may not
invariably be the case.

3.3. Biophysical results on receptor aggregation
and gelation

Some of the most extensive data on aggregation
of cell surface receptors by polyvalent ligand comes
from immunology. The so-called Type 2 thymus-
independent antigens are large polymers with repeat-
ing antigenic determinants. The biological effect of
these antigens on antigen-specific cells, that is, cells
whose BCR bind the haptenic determinant of the
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Fig. 5. Interrelation off with K2 and h with K3. The parameters generating these data were not intended to represent a specific cellular
situation but rather to demonstrate qualitative features of the model. Expansion of combinatorial expressions shows thatf and K2, like h
and K3, occur mainly as the product with each other. For the upper line,f and h are both 200 andK2 and K3 are 0.02. For the upper
line, the product is the same, withf andh both 50 andK2 andK3 both 0.08. Thex-axis is the dimensionless reduced concentrationvK1c.
Aggregate sizes are grossly similar, the main difference being that the location of the gel point is affected somewhat by the absolute size
of h so that the gel point for thef, h = 200 curve lies to the left of that forf, h = 50.

antigens, depend strongly on the antigen concentra-
tion and epitope density. Low concentrations and anti-
gen valences cause cell differentiation while, for any
given antigen epitope density, concentrations above
some critical concentration cause first diminished cel-
lular responses and then cell unresponsiveness even
to other mitogens[15]. Fig. 6 shows this behavior
for DNP–POL. Curves are labeled with the number
of DNP groups per flagellin monomer. It is apparent
that even a 50% change in antigen valence, from
2.3 to 3.5, produces a qualitative change in cellular
response. Similar results have been observed for the
additional TI-2 antigen DNP–dextran[20].

The B cell–DNP–POL system has been studied by
fluorescence photobleaching recovery to measure lat-
eral diffusion of BCR–antigen complexes for by var-
ious concentrations ands epitope densities of antigen
[15]. In Fig. 7, the diffusion coefficient of a single BCR
divided by the diffusion coefficient of bound antigen is

plotted versus antigen concentration for several anti-
gen epitope densities. As argued earlier[14], the dif-
fusion constant of such aggregates would be inversely
proportional to〈i〉, the number of receptor molecules
in the aggregate. Moreover,〈i〉 could be found by di-
viding the diffusion constant of an isolated receptor
by that of the aggregate. Thus, these data indicate
that the size of mobile receptor–antigen aggregates
increases both with antigen concentration and with
epitope density. For higher epitope density antigens,
when concentration exceeds a critical value, an addi-
tional immobile fraction of bound antigen, indicated
by crosshatching, suddenly appears on the cell surface.
This immobile ligand, coexisting with mobile antigen
species, suggests the presence of a receptor–ligand
gel. Again, DNP–dextran exhibits similar behavior in
photobleaching experiments[20].

One might wonder whether such behavior could
arise from specific phenomena peculiar to cell
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Table 1
Sample parameters of divalent cell surface receptor aggregation by polyvalent liganda,b

log10 C∗ S/S0 Cb 〈k〉 〈i〉 〈j〉 M gs gg Sg/S0 Cg/Cb

−7 0.954 0.005 1.11 10.85 4.68 10.84 9.8 10.39 0 0
−6.5 0.899 0.011 1.26 11.98 5.14 12.66 9.49 10.03 0 0
−6 0.82 0.02 1.56 14.12 6.02 15.6 9.03 9.48 0 0
−5.5 0.727 0.032 2.04 17.22 7.27 18.57 8.43 8.79 0.01 0.037

5 0.634 0.047 2.04 15.69 6.66 17.96 7.68 8.05 0.101 0.268
−4.5 0.546 0.064 2.04 14.13 6.02 17.29 6.92 7.3 0.187 0.399
−4 0.462 0.085 2.04 12.55 5.35 16.56 6.14 6.54 0.267 0.481
−3.5 0.383 0.111 2.04 10.96 4.66 15.74 5.36 5.76 0.341 0.535
−3 0.309 0.144 2.05 9.39 3.96 14.86 4.58 4.98 0.409 0.571
−2.5 0.24 0.188 2.06 7.87 3.26 13.91 3.81 4.21 0.468 0.593
−2 0.178 0.248 2.1 6.47 2.6 12.94 3.08 3.46 0.517 0.602
−1.5 0.122 0.336 2.17 5.25 1.99 12.02 2.42 2.75 0.549 0.596
−1 0.076 0.463 2.34 4.32 1.46 11.29 1.84 2.11 0.552 0.564
−0.5 0.041 0.643 2.7 3.75 1.01 10.85 1.39 1.61 0.489 0.473

0 0.018 0.876 3.31 3.56 0.62 10.71 1.08 1.27 0.249 0.223
0.5 0.007 1.18 3.03 2.55 0.26 5.62 0.84 1.1 0 0
1 0.002 1.51 2.43 1.6 0.09 2.18 0.66 1.03 0 0
1.5 0 1.77 2.16 1.22 0.03 1.36 0.56 1 0 0
2 0 1.912 2.06 1.08 0.01 1.12 0.52 1 0 0

a Calculations providing data plotted inFig. 2, namely forf = h = 50, K2 = 0.08, r = 2 andK4 = 1.
b Abbreviations:C∗, reduced ligand concentration (vK1C); S/S0, fraction free receptors;Cb, ligand bound per receptor;〈k〉, average

ligands per sol-phase aggregate;〈i〉, average receptors per sol-phase aggregate;〈j〉, average monogamous-bivalently bound receptors per
sol-phase aggregate;M, mobility reduction index (〈ki〉/〈k〉);gs, receptor–ligand ratio in sol;gg, receptor–ligand ratio in gel;Sg/S0, immobile
(gel) fraction receptors;Cg/Cb, immobile (gel) fraction ligand.

membrane or internal cellular apparatus like cytoskele-
ton. Similar studies were conducted on cell-sized large
unilamellar vesicles (LUV) into whose membranes
were inserted approximately 150,000 DNP-specific
monoclonal immunoglobulin molecules[10]. In this
completely passive system, exactly the same photo-
bleaching behavior was observed as with lymphocytes
(Fig. 8). Aggregate sizes increased with increasing
antigen concentration and epitope density for all sys-
tems studied. Most importantly, crosshatched areas
indicate the observation of an immobile fraction of
bound antigen coexisting with mobile species. It is
important to note that this verification of gel forma-
tion is vividly apparent in the raw data and is not a
product of data analysis.

This sudden appearance of immobile aggregates on
completely fluid, homogeneous liposome surfaces is
strikingly visible to the eye on photobleaching traces
[10]. Fig. 9shows FPR data of receptor complexes on
liposomes with DNP–POL antigen of epitope density
3.5. Such liposomes are extremely fluid and devoid of
calorimetric melting transitions. Thus, only by being

anchored to a large number of membrane receptors
could bound antigen appear immobile. The left-hand
data trace shows 30% of immobile bound antigen in
equilibrium with 70% of bound Ag diffusing freely
with a diffusion coefficient of 1×10−11 cm2 s−1. Sec-
ond and third bleaches at the same site (middle and
right traces) eliminate the fluorescence contribution
from immobile antigen so that the mobility of the dif-
fusible species can more accurately be measured.

One can summarize by observing that optimum dif-
ferentiation responses in B cells are induced by antigen
treatment where bound antigen diffuses 6–15 times
more slowly than individual BCR. However, high anti-
gen concentrations and/or epitope densities induce for-
mation of immobile bound antigen, the presence of
which reduces or eliminates cell responses that would
otherwise be expected. ComparingFigs. 6 and 7sug-
gest that optimum cell responses occur near the con-
dition where immobile antigen first appears.

We must now ask whetherany single set of model
parameters can predict the sorts of aggregative phe-
nomena observed or inferred from photobleaching
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Fig. 6. In vitro immunogenicity for DNP–POL antigens as mea-
sured by direct hemolytic plaque assay. Cultures in the experi-
ments consisted of 3,000,000 unfractionated mouse lymphocytes.
Antibody forming cells are counted after 96 h stimulation. Epitope
densities, i.e. DNP groups per 40,000 Da, are indicated beside each
curve. Cells treated with concentrations of DNP2.3–POL above
1�g ml−1 and all concentrations of DNP3.5–POL were largely in-
sensitive to subsequent antigenic or mitogenic challenge. Adapted
from [15].

Fig. 7. Photobleaching recovery measurement of fluorescent DNP–POL antigen lateral diffusion on antigen-specific B cells. Mobility
reduction indices (see text) for various epitope densities are plotted vs. antigen concentration. Shaded areas and percentile numbers indicate
the presence and amount of an antigen-induced immobile fraction of BCR–antigen complexesbeyond the immobile fraction normally
observed for the BCR. Adapted from[15].

studies? An important and difficult constraint is that,
at low antigen concentrations, bound antigen moves at
a rate similar to individual BCR. This diffusion then
slows at higher concentrations or epitope densities.
This has strong implication for model parameters.
Most simply, it means the productK2f cannot be
large. Otherwise antigen bound under any conditions
will be attached to several receptors (seeFig. 1).
However, gel formation, and indeed any substantial
increase in aggregate size with ligand concentra-
tion such as we observe, requires a minimum ligand
valence of 3. Thus,K2 must be small. However,
concentration-dependent increases in aggregate sizes
require a substantial value forK3. Thus, a value ofr
exceeding 1 seems inevitable.

If these steps are taken, then very attractive agree-
ment between theory and experiment results. It seems
plausible that, for geometric reasons, the actual va-
lencesf andh are fixed, for example, by lymphocyte
surface irregularity. As the antigen epitope density
increases, then the effect would be to correspondingly
increaseK2 and hence alsoK3. Fig. 10shows the re-
sults of a calculation forf = h = 3, r = 10,K4 = 0
and various values ofK2 covering a 10-fold range as
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Fig. 8. Photobleaching recovery measurement of fluorescent DNP–POL antigen lateral diffusion on lymphocyte-sized liposomes bearing
150,000 DNP-specific artificial receptors. Mobility reduction indices (see text) for various epitope densities are plotted vs. antigen
concentration. Shaded areas and percentile numbers indicate the presence and amount of an antigen-induced immobile fraction of artificial
receptors. In the absence of polyvalent ligands, artificial receptors are 100% mobile. Adapted from[10].

Fig. 9. Appearance of an immobile fraction of bound antigen on liposome bearing 150,000 DNP-specific artificial receptors and treated
with 30�g ml−1 of DNP–4.0POL. Three sequential photobleaching traces of the same spot are shown. Each point is 200 ms; additional
experimental details are give in[10]. The first bleach (left panel) shows >30% immobile antigen. By the third bleach (right panel), immobile
antigen has been removed and fluorescence recovery is now 100% with same half-time as that exhibited by the mobile component at the
start of the experiment.

did to our experimental data on DNP-specific B
cells. The mobility reduction index〈ki〉/〈k〉 is plotted
over the range ofC∗ corresponding to these photo-
bleaching experiments. What we see is that mobility
reduction indices predicting photobleaching results
and reflecting aggregate sizes increase with antigen
concentration. These increases occur at the same

ligand concentrations and to the same approximate
values inferred from both our cellular and our model
liposome experiments. Critically, a gel-phase appears
for the two higher epitope density antigens within the
experimental range, but no gel appears for the lower
epitope density antigens at any concentration, again
as was observed experimentally. With the quantities
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Fig. 10. Plots of mobility reduction indices vs. reduced antigen
concentration calculated using parameters to give reasonable agree-
ment with cellular (Fig. 7) and liposomal (Fig. 8) photobleach-
ing recovery results. The model as presented here suggests that
sol-phase aggregate sizes decrease slowly above the gel point (line
marked “gel theory”). However, antigen heterogeneity such as def-
initely occurs with POL antigens would allow sol-phase species to
grow above the gel point as shown by the dotted lines forK2 = 1
andK2 = 2 in a way corresponding to the crosshatched regions
of Figs. 7 and 8.

used to generateFig. 10, one sees that the theoretical
gel point depends onK2 in a way comparable to the
dependence on epitope density shown inFigs. 6 and
7. According to our model, sol-phase aggregate sizes
should remain approximately constant in size above
the gel point. However, in a system with polydisperse
antigen such as we certainly have[18], sol-phase
aggregates would be expected to grow in size above
the gel point as we observe experimentally and as the
dotted lines above the gel points inFig. 10suggest.

4. Discussion

The computational technique described above pro-
vides a satisfactory method for calculating aggregate
distributions produced by polyvalent ligands interact-
ing with bivalent cell surface receptors. The principal
point for discussion is the degree to which the model
satisfactorily explains aspects of receptor aggregation
which are observable on cell surfaces.

Generally, the model must be deemed success-
ful. It predicts, for plausible values of the physical
constants involved, a number of features observed

experimentally. First, (mobile) aggregates involving
relatively small numbers of receptors should form
at low antigen concentration and epitope density as
is observed in photobleaching studies on cells and
liposomes. Second, arbitrarily large (gel-phase) ag-
gregates should form at high antigen concentration
and epitope density as is also observed clearly on
liposomes. Third, total bound antigen is predicted
to increase with antigen concentration and epitope
density as is shown by flow cytometry. Fourth, the av-
erage mobile aggregate cannot involve more than two
antigen molecules, thus, explaining the photobleach-
ing observation that there is always a clear distinction
between the mobile aggregates and the immobile
fraction of gel-phase species. Finally, the step can be
taken of fixing ligand valencesf and h at small val-
ues and allowingr to exceed one, thus, encouraging
ligand crosslinking of receptors. Once this is done,
then something approaching quantitative agreement
between photobleaching results and theory obtains
(cf. Figs. 7 and 10).

Nonetheless, one can enumerate several points on
which the model must necessarily break down to a
greater or lesser degree. To assess how much any of
these factors impacts on the physical realities of the
systems studied is much more difficult. One problem
is the existence of cyclic structures. These were ex-
plicitly excluded at the outset; however, this was for
computational convenience and there is no a priori
reasons why such entities should not exist. On the
other hand, Goldberg has argued[3] that the contri-
bution of cyclic aggregates should be small in the
three-dimensional case. Since steric constraints are
more severe in a two-dimensional system, it seems
that cyclic aggregates on cell surfaces should be even
less frequent. In any case, cyclic aggregate formation,
like monogamous bivalency, competes with aggregate
growth by branching and so reduces the numbers of
ways by which gel-phase structures can form. This
effect should increase strongly with ligand valence.
As such, proper account of cyclization might reduce
the overly strong ligand valence dependence of lig-
and concentration effects which the model currently
predicts.

A second difficulty concerns the finiteness of the
systems studied. While the mathematics assumes an
infinite number of receptors, cells and liposomal mod-
els rarely express more than 105 copies of a given
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receptor. This means that the hypothetical single huge
aggregate which comprises the gel-phase cannot really
exist. This also introduces the third way in which the
model diverges from physical reality—the assumption
of thermodynamic equilibrium. An arbitrarily large
receptor–antigen aggregate would require an infinite
time to form, simply from kinetic limitations on rates
of receptor lateral diffusion. Both these factors should
operate to favor smaller aggregates over gel under
experimental conditions. Such effects are, however,
difficult to gauge quantitatively. System finiteness
might be dealt with by altering limits on the sums in
the distribution function, but evaluation of the model
under such constraints would be a major computa-
tional task. The kinetic question would be even more
difficult to approach. The fact that photobleaching re-
sults on receptor-bearing liposomes do not vary with
time of incubation with antigen[10] suggests that a
state near equilibrium may be obtained with reason-
able rapidity. On the other hand, Cohen and Benedek
[21] have argued that kinetically-stable situations
far from equilibrium can arise in systems capable
of gelation. Thus, further investigation of this issue
seems indicated.

The final difficulty with the model is the absence
of allowance for polydispersity of antigen valence.
Logically, one would expect the number of haptenic
groups on a T-independent antigenic polymer to obey
something approximating a Poisson distribution, so
that antigen of any nominal valence would contain
appreciable amounts of higher-valent material. Be-
cause the higher avidity of this fraction of antigen, it
should be preferentially bound at equilibrium. Con-
sidered in a hypothetical limiting case, two epitope
densities of antigen at the same concentration might
be expected to behave as differing concentrations
of the highest-valent material present in appreciable
quantities. This would have the result of changing
valence effects on the location of, say, critical points
into concentration effects and, thus, diminishing the
sensitivity of these locations to ligand valence. It is
presently difficult to assess which if any of the above
factors contribute to such quantitative discrepancies
between theory and experiment as were noted at the
beginning ofSection 4.

In summary, we would suggest that gelation of
B cell surface receptors under specific conditions of
antigen concentration and valence is predicted by

theory and demonstrated by experiment on both cell
and model systems. It is known that conditions pro-
ducing receptor ligand gel also produce a cellular
state unresponsive to other antigenic and mitogenic
challenge[15]. One can speculate how the such neg-
ative signals might be delivered by such extended
receptor–ligand aggregates or “superaggregates” in
the terminology of Goldstein and Perelson[16]. Ex-
tended aggregates might alter physical properties of
the cell surface, non-specifically inhibiting receptor
function. Alternatively, large structures might se-
quester accessory proteins essential to signaling by
smaller, immmunogenic aggregates. Immobilized re-
ceptors mightexcessively activate some cell system,
e.g. a protein kinase activity. Alternatively, we now
know that BCR aggregates must translocate into lipid
rafts to initiate their signaling cascade[22]. Give
the extended nature of gel-phase aggregates, perhaps
such large extensive structures might mechanically
inhibit translocation of receptor-containing smaller
aggregates to lipid rafts.
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Appendix A. Derivation of Wkij

Wkij is the number of ways thati bivalent recep-
tors andk polyvalent ligands can be assembled into
a non-cyclic aggregate wherej receptors are bound
monogamous bivalently by both their valences to
the same antigen molecule. The molecules and their
combining sites are distinguishable and equivalent.
The method of solving this problem in the absence of
monogamous bivalency was put forward by Goldberg
[3]. The following discussion represents an adaptation
of his discussion, except that we have three ligand
valencesv, f, and h rather than just one, and the
reader is referred to that article for additional detail.
The ligands are taken to be “frames”, which can be
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visualized as strips of sheet metal perforated byv

holes in a line. Indistinguishable bolts long enough
to penetrate two frames hold the frames together and
also occupy all other holes. These latter bolts have a
free end.

Wkij is the product of two terms: the number of
waysWk thek frames can be bolted together to using
k − 1 receptors to form an aggregate and the number
of ways Rkij the remainingi − k + 1 receptors can
bind available ligand sites,j receptors being bound
monogamous bivalently:

Wkij = WkRkij (A.1)

Each of thek ligands must first bind a single recep-
tor. This represent forming bonds of the first type and
so can be done in

P = vk (A.2)

ways. These receptor-binding ligands are crosslinked
into an aggregate for which onlyk − 1 receptor are
actually required. Any given final structure can be
formed with the extra receptor located in any ligand
valence not used to hold the final aggregate together.
Thus, theP possible initial arrangements are actually
D-fold degenerate in terms of generating specific ag-
gregate structures where

D = fk − k + 1 (A.3)

The relevant valence here isf since the Goldberg argu-
ment definingN actually discusses single ligands with
all possible locations binding free receptors except one
so thatf is the correct valence for this situation. Finally,
the k ligands with their initial receptors in place can
be joined together inQ ways to give distinct aggregate
structures plus one free receptor. This quantity is

Q = hk − k + 1

hk − 2k + 2
(A.4)

The final expression forWk thus becomes

Wk = PQ

D
= vk

fk − k + 1

(hk − k + 1)!

(hk − 2k + 2)!

= η(f, h, k)vk
(hk − k)!

(hk − 2k + 2)!
(A.5)

The introduction ofη = (hk−k+1)/(fk−k+1) is
necessary for practical summation of the distribution

function. An approximation to this quantity satisfac-
tory for most circumstances, namelyf = h, f � 1 or
h � 1, is (h− 1)/(f − 1). Evaluation ofRkij follows
straightforward combinatorial procedures. The partic-
ular method for treating monogamous bivalency of re-
ceptors was introduced by DeLisi and Perelson[12].
Of thei total receptors,k−1 are used to crosslink anti-
gen molecules. The remainingi− k+ 1 receptors are
divided into two groups,q = i − k + 1 − j receptors
singly-bound to antigen andj receptors monogamous
bivalently bound to antigen. Theq singly-bound re-
ceptors are to be distributed amongfk − 2k + 2 − 2j
sites which remain free after thej monogamous biva-
lently bound receptors are located. This can be done
in Nq ways where

Nq =
(

fk − 2k + 2 − 2j
fk − 2k + 2 − 2j − q

)
(A.6)

The j monogamous bivalently bound receptors can
be located infk − 2k + 2 − j possible locations, an
arrangement possible inNj ways where

Nj =
(

fk − 2k + 2 − j

j

)
(A.7)

The distribution of thei receptors among the vari-
ous binding sites can take place ini! ways. Because
each receptor has two distinguishable valences, thei
receptors can be attached in 2i ways.Rkij is thus given
by the expression

Rkij = 2i i!
(fk − 2k + 2 − 2j)!

(i− k + 1 − j)!(fk − k + 1 − j − i)!

× (fk − 2k + 2 − j)!

j!(fk − 2k + 2 − 2j)
(A.8)

Replacingi− k + 1 − j by q andfk − 2k + 2 by n
yields the final value forWkij

Wkij = η i! vk 2i
(hk − k)!

(hk − 2k + 2)!

(n− j)!

j!(n − 2j)!

× (n− 2j)!

q!(n − 2j − q)!
(A.9)

This quantity can be substituted intoEq. (3)to yield
the desired equilibrium constantKkij.
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Appendix B. Formula for
∑

iCkij

Evaluation of the sum is accomplished by differen-
tiation of Eq. (15):

∑
iCkij = S∗ d

dS∗
∑

Ckij = ηS∗

rK2
[p′w0T0(y0)

+pw′
0T0(y1)+ pw0T

′
0(y0)+ p′w1T0(y1)

+pw′
1T0(y1)+ pw1T

′
0(y1)] (B.1)

wherep = (1 + S∗)2/S∗, w0 = ξ/(1 + ζ), andw1 =
ξζ3/(1+ ζ). In each case, the prime denotes differen-
tiation with respect toS∗. Three of the derivatives are
simply evaluated:

p′ =
(

1

S∗
S∗ − 1

S∗ + 1

)
p (B.2)

w′
0 =

(
ξ′

ξ
− ζ′

1 + ζ

)
w0 (B.3)

w′
1 =

(
ξ′

ξ
+ 3ζ′

ζ
− ζ′

1 + ζ

)
w1 (B.4)

where the intermediate quantitiesξ′ and ζ′ being
defined by

ξ′ =
[
1 + 1

(1 + 4z)1/2

]
z′ (B.5)

ζ′ = z′ξ − ξ′z
ξ2

(B.6)

Derivatives of the sums overk are evaluated by the
chain rule. For example,

dT0(y0)

dS∗ = dT0

dα0

dα0

dy0

dy0

dS∗ (B.7)

Thus, the derivatives of the sums becomes:

T ′
0(y0) = 1

h(1 − α0)h

×
[

1 + S∗(f − 1)

S∗(1 + S∗)
+ f − 2

2

ξ′

ξ

]
y0 (B.8)

T ′
0(y1) = 1

h(1 − α1)h

×
[

1+S∗(f − 1)

S∗(1+S∗)
+f − 2

2

(
ξ′

ξ
+ 2ζ′

ζ

)]
y1

(B.9)

These formulae, together with those in the text,
provide complete information for the evaluation of∑

iCkij from Eq. (B.2). One must note that this sum,
beginning atk = 1, doesnot include free receptors.

Appendix C. Formula for
∑

jCkij

Evaluation of the sum is accomplished by differen-
tiation of Eq. (8):

∑
jCkij = η(1 + S∗)2

rK2S∗

∞∑
k=1

(hk − k)!

k!(hk − 2k + 2)!

×[rC∗S∗(1 + S∗)f−2]kz
d

dz

×
int(n/2)∑
j=0

(n− j)!

j!(n − 2j)!
zj (C.1)

When the inner sum is written in closed form and
differentiated as indicated, there results will be as
follows:

∑
jCkij = z

(
dz

dS∗

)−1
η(1 + S∗)2

(rK2S∗)[
f − 2

2

ξ′

1 + ζ
T1(y0)+ (1 + ζ)ξ′ − ξζ′

(1 + ζ)2

×T0(y0)+ f − 2

2

ζ3ξ′ + 2ξζ2ζ′

1 + ζ
T1(y1)

+ (1 + ζ)ζ3ξ′ + ζξ2(3 + 2ζ)ζ′

(1 + ζ)2
T0(y1)

]
(C.2)

All the terms occurring in this equation have been
defined either in the text or in the previousAppendices
A and B.
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