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Solvation thermodynamics in a van der Waals liquid
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Abstract

The expression of the chemical potential of a solute in a solvent is derived exploiting the van der Waals model of liquids
using a statistical thermodynamical approach. Then the solvation thermodynamics is determined, and discussed in detail for
the case of an infinitely dilute solution. The analysis shows that the definitions introduced by Ben-Naim are exact and need
no corrections. Moreover, the results obtained are in line with the theoretical approach devised by Lee to rationalize the
experimental thermodynamic data of solvation.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

There is a general and strong interest in trying to
reach a better understanding of solute–solvent interac-
tions [1–8]. However, a great deal of confusion does
exist among scientists working in the field also for
the definition of solvation[9,10]. Ben-Naim[11–14],
in a series of important works, has shown that the
physically correct definition of solvation refers to
the transfer of a solute molecule from a fixed posi-
tion in the ideal gas phase to a fixed position in the
liquid, at constant temperature and pressure. The cor-
responding Ben-Naim standard Gibbs energy change
reflects only the coupling work of the solute with the
surrounding solvent molecules and does not contain
contributions from the difference in the molar volume
available in the two phases, in the assumption that the
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internal partition function of the solute molecule—
rotational, vibrational, electronic and nuclear degrees
of freedom—is not affected by the transfer process.
In addition, this quantity is directly related to the ratio
of the molar concentrations of the solute in the gas
and liquid phases at equilibrium[14]. However, some
authors[15–22]have claimed that a correction should
be added to the Ben-Naim standard Gibbs energy
change.

Honig and co-workers[15–17] advocated that the
mixing entropy, accounting also for the different mo-
lar volumes of the chemical species involved, has
to be subtracted from the Ben-Naim standard Gibbs
energy change. But, as pointed out by Lee[23],
such a correction represents the mixing entropy of
a system consisting of ideal gases, not that of the
real system. The latter, as for the usual liquid solu-
tions, is a crowded assembly of finite size particles,
and its entropy is greatly reduced with respect to an
ideal gas system by both excluded volume effects
and attractive interactions among particles. On the
other hand, Chan and Dill[19,20] claimed that the
Flory–Huggins interaction parameter, the so-called
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contact free energy, is the physical quantity that has
to be extracted from solubility measurement data in
order to estimate the solute–solvent interactions. Ac-
tually, the Flory–Huggins theory[24], being entirely
based on a rigid lattice model of the liquid state, is
not able to properly account for the excluded volume
effects[25]. The latter, however, play a major role in
both pure liquids and solutions and cannot be under-
estimated.

Recently, Vitha and Carr[26], starting from the
van der Waals equation of state, claimed that both
the transfer Gibbs energies based on the molar con-
centration scale and those based on the mole fraction
scale do not “purely reflect attractive solute–solvent
interactions free from volume entropy effects”. In or-
der to avoid these problems, they suggested that the
solute concentration has to be based on the so-called
free volume, not the total volume of the system
[26].

In the present article, we would like to disprove
the claim by Vitha and Carr and to confirm the
general validity of the analysis by Ben-Naim, using
the same van der Waals model of liquids. The van
der Waals equation of state provides a simple but
non-trivial and insightful model of liquids because it
considers that each particle occupies a finite volume
and interacts with all the others. In fact, the success-
ful Weeks–Chandler–Andersen theory confirms the
qualitative correctness of the van der Waals picture
for liquids [27]. We start with the derivation of the
chemical potential of a solute in a van der Waals
liquid. Then the thermodynamics of transfer from
ideal gas to the van der Waals liquid is determined
and discussed in detail for the case of an infinitely
dilute solution. As a result, the analysis performed
by Ben-Naim proves to be correct, and a simplified
version of the theoretical approach devised by Lee
[28–30] to rationalize the solvation thermodynamics
emerges.

2. Chemical potential of van der Waals fluids

The canonical partition function for a monoatomic
van der Waals fluid is reported in several textbooks of
statistical mechanics[31–33]. The canonical partition
function for a binary mixture of monoatomic van der
Waals fluids is an extension of the former and can be

written in the following manner:

Q(N1, N2, V , T )

=
[

V N1+N2

N1!Λ3N1
1 N2!Λ3N2

2

]

×
[
V − (b1N1 + b2N2)

V

]N1+N2

× exp

[
(a1N1 + a2N2)

2

kTV

]
(1)

whereV is the volume of the system;Ni the number of
moleculesi;Λi ≡ h/(2πmikT)1/2 the momentum par-
tition function or the thermal de Broglie wavelength of
moleculesi; parameterbi the measure of the size and
so of the short-range repulsive interactions; parameter
ai the measure of the long-range attractive interactions
of moleculesi (note thatai andbi are positive and tem-
perature independent);k the Boltzmann constant and
T is the absolute temperature. It is well known that in
the van der Waals model each molecule moves in the
free volume [V− (b1N1 + b2N2)], where the average
attractive potential energy corresponds to−(a1N1 +
a2N2)

2/V, and is practically independent of the others.
It has to be noted that, according to van der Waals

[34], its equation of state can be applied to binary
mixtures by considering that the parametersa and b
vary in the following manner with composition:

a = a11x
2
1 + 2a12x1x2 + a22x

2
2 (2)

b = b11x
2
1 + 2b12x1x2 + b22x

2
2 (3)

where thexi are the mole fractions of the compo-
nents;aii andbii are just the parameters for the pure
components; thea12 andb12 parameters characterize
the interactions between unlike molecules. The canon-
ical partition function ofEq. (1) corresponds to the
prescription by van der Waals ifaii = a2

i , bii = bi ,
a12 = a1a2 and b12 = (b1 + b2)/2. The latter con-
ditions practically correspond to the commonly used
Lorentz–Berthelot combining rules for passing from
the parameters characterizing the interactions between
like molecules to those characterizing the interactions
between unlike molecules[31–33]. Therefore,Eq. (1)
has to be considered of general validity.

The Helmholtz free energy of the system is read-
ily obtained from the general statistical mechanical
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relationA = −kT lnQ. Then, it is possible to calculate
the chemical potential of component 2 in the mixture:

µ2 ≡
(
∂A

∂N2

)
T ,V,N1

(4)

Performing the derivative, one obtains

µ2 = kT ln ρ2Λ
3
2 − kT ln

×
[
V − (b1N1 + b2N2)

V

]

+ kT

{
(N1 +N2)b2

[V − (b1N1 + b2N2)]

}

+
{−2a2(a1N1 + a2N2)

V

}
(5)

whereρ2 = N2/V is the number density of component
2. Eq. (5) is the complete expression of the chemi-
cal potential of component 2 in a binary mixture of
monoatomic van der Waals fluids. According to the
analysis by Ben-Naim[14], Eq. (5)can be rewritten as

µ2 = µ2
• + kT ln ρ2Λ

3
2 (6)

whereµ2
• is the so-called Ben-Naim standard chem-

ical potential (Ben-Naim standard quantities are de-
noted by a superscript (•)). As emphasized byEq. (5),
this quantity accounts for all the interactions of the
component 2 in the liquid phase, except for the clas-
sical translational degrees of freedom. Actually, the
quantityµ2

•, also referred to as the coupling work of
the solute molecule to the system[14], is the average
free energy of interaction of the solute molecule, fixed
at any position in the solution, with its entire surround-
ings, with no restriction on the solute concentration
in the system (i.e. since the liquid phase is considered
to be homogeneous and isotropic, the solute molecule
can be placed at any point in the system). It has to
be noted that: (a) this interpretation comes directly
from the statistical mechanical derivation; (b) there
is no need to define any standard state, in contrast to
what happens in the framework of thermodynamics;
(c) the quantityµ2

• depends upon the composition
of the solution, because the coupling work depends
upon such variable (this is a fundamental property to
correctly address the role of solvation in fundamen-
tal biochemical processes, such as protein folding,
protein–protein and protein–DNA associations).

On the other hand, it is well known that the chemical
potential of the monoatomic component 2 in the ideal
gas phase is[31–33]:

µ2 = kT ln ρ2Λ
3
2 (7)

In fact, since there are no interactions among particles
in the ideal gas phase, only the classical translational
degrees of freedom contribute toµ2 and soµ2

• =
0. Eqs. (6) and (7)show that according to statistical
thermodynamics, the natural concentration unit to be
used in expressing the chemical potential is the number
density.

3. Thermodynamics of solvation

3.1. Gibbs energy change

Knowing the chemical potential of component 2 in
the ideal gas phase and in a van der Waals fluid, we
can study the transfer of component 2 from the ideal
gas phase to the van der Waals fluid at constant tem-
perature and pressure (i.e. the solvation process, if the
van der Waals fluid is considered a model of the liq-
uid state). The thermodynamic equilibrium condition
is [14]

µ2(ig) = µ2(vdW) (8)

where ig stands for ideal gas and vdW for van der
Waals. By insertingEqs. (6) and (7)into Eq. (8), one
obtains

kT ln ρ2(ig)Λ
3
2=µ2

•(vdW)+ kT ln ρ2(vdW)Λ3
2 (9)

Clearly, since the contribution from the momentum
partition function is identical in the two phases and
cancels out,Eq. (9) is readily transformed in

�G• = µ2
•(vdW) = kT ln

[
ρ2(ig)

ρ2(vdW)

]
(10)

where�G• is the Ben-Naim standard Gibbs energy
change associated with the solvation process; and
according to the first equality on the right-hand side
of Eq. (10),�G• corresponds to the solute–solvent
coupling work. Moreover, according to the second
equality on the right-hand side ofEq. (10), as advo-
cated by Ben-Naim[11–14], the direct application of
statistical thermodynamics indicates that the ratio of
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the molar concentrations of component 2 in the two
phases allows the evaluation of the standard Gibbs
energy change associated with the transfer from a
fixed position in the ideal gas to a fixed position in the
liquid, at constant temperature and pressure (i.e.�G•
values are readily obtained from experimental data).

Given that the quantity�G• is not based on any
standard state and there is no restriction regarding the
concentration of the solute in the two phases[14],
Eq. (10) is valid over the whole range of concentra-
tions. There is no need to add a correction, as incor-
rectly claimed by Honig and co-workers. This fact has
already pointed out and discussed by various authors
using different arguments and routes[9,23,25,35–40].

Now, we specialize the analysis by considering an
infinitely dilute solution of the component 2 in the van
der Waals fluid 1, in order to reach a better physical
understanding. In this case, the expression of�G• is
readily obtained by taking the limit of the correspond-
ing terms inEq. (5) for N2 → 0, and by considering
that, forN2 → 0, N ∼= N1 andV ∼= N1v1, wherev1
is the molecular volume of component 1. Accordingly,
�G• is given by

�G• =µ2
•(vdW)

= −kT ln

[
v1 − b1

v1

]
+ kT

[
b2

v1 − b1

]
− 2a1a2

v1

(11)

Finally, it is convenient to pass from microscopic to
macroscopic quantities multiplying all the terms by
the Avogadro’s number:

�G• = −RT ln

[
v1 − b1

v1

]
+ RT

[
b2

v1 − b1

]
− 2a1a2

v1

(12)

wherev1 is now the molar volume of component 1,
and the parametersai andbi refer to molar units. In
order to gain physical insight, it is necessary to attach
a reliable meaning to the three terms on the right-hand
side of Eq. (12). The first two should represent the
work to create a cavity suitable to host the molecule
of component 2 in the van der Waals fluid 1:

�Gc = −RT ln

[
v1 − b1

v1

]
+ RT

[
b2

v1 − b1

]
(13)

In principle, they correspond to the first and
fourth terms in the expression of�Gc provided

by the scaled particle theory, SPT[41,42]. In fact,
−RT ln[(v1 − b1)/v1] should correspond to the SPT
term−RT ln(1− ξ1), whereξ1 is the volume packing
density of fluid 1; andRT[b2/(v1−b1)] ∼= P(vdW)b2
should be the pressure–volume work done to intro-
duce a molecule of component 2 in the van der Waals
fluid 1. Actually, Eq. (13) is less accurate than the
expression provided by the scaled particle theory,
because the latter takes explicitly into account the
mutual correlations existing between the positions
occupied by individual molecules, in order to fulfill
the non-overlap requirement operating in real liquids
[41,43].

The existence of these mutual correlations can-
not be accounted for by the van der Waals model
because it handles the excluded volume effect in a
rough manner, by considering only the so-called free
volume (v1 − b1) of the liquid. The latter is a large
quantity in real liquids (50–60% of the total volume),
whereas the volume available to insert a molecular-
sized cavity is significantly smaller (orders of mag-
nitude), because the non-overlap requirement has to
be fulfilled. A very small fraction of the entire free
volume of the liquid is relevant for the insertion of
a real solute (i.e. only the cavities large enough to
accommodate the solute molecule). If the free volume
is not divided to provide cavities whose size is at least
equal to the diameter of the solute to be inserted, all
the free volume proves to be not available to the so-
lute, as it were occupied by solvent molecules. This
reasoning emphasizes that the partitioning of the free
volume is a fundamental property of the liquid that
cannot be accounted for by the van der Waals model.
Computer simulations have provided invaluable infor-
mation on the cavity size distribution in pure liquids
[44–48].

In this respect, it is worth noting that the predictions
of the van der Waals equation of state do not fit the
experimental results, mainly because the expression
accounting for the short-range repulsive interactions
is not correct[49]. Other authors have pointed out and
discussed the limitations of the van der Waals model
for the molecular description of the chemical potential
in the liquid phase[50,51].

On the other hand, according to the physical mean-
ing of the parametersa1 and a2, the third term on
the right-hand side ofEq. (12) should represent the
average interaction energy of component 2 at infinite
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dilution in the van der Waals fluid 1:

�Ga = −2a1a2

v1
(14)

The analysis ofEq. (12) confirms that the solva-
tion process can be correctly decomposed in two
sub-processes having a well defined physical mean-
ing [28–30]: (a) creation of a cavity in the solvent
suitable to host the solute molecule; (b) turning-on
the solute–solvent attractive potential. Therefore, both
the excluded volume effect due to the finite size of
real molecules, and the attractive interactions due to
the charge distribution in real molecules play a role in
solvation and are accounted for by the quantity�G•,
as advocated by Ben-Naim[11–14]. Contrary to the
claim by Vitha and Carr[26], the concept of free vol-
ume inherent in the van der Waals model, even though
qualitatively right and useful, is not quantitatively
correct to account for the excluded volume effect
associated with the insertion of the solute molecule;
therefore, it has not to be used to avoid dangerous
ambiguities.

3.2. Enthalpy and entropy changes

It is useful to calculate the enthalpy and entropy
contributions associated with the two sub-processes
under the constant pressure condition. For the cavity
creation step, one readily obtains

�Hc = −T 2
[
∂(�Gc/T )

∂T

]

= RT2
[

α1

v1 − b1

] {
b1 +

[
v1b2

v1 − b1

]}
(15)

�Sc = −∂ �Gc

∂T

=R ln

[
v1 − b1

v1

]
− R

[
b2

v1 − b1

]
+ �Hc

T

=�Sx + �Hc

T
(16)

where�Sx = −�Gc/T and represents the excluded
volume entropy contribution due to cavity creation;
andα1 is the thermal expansion coefficient of the van
der Waals fluid 1. The solvent undergoes a structural
reorganization as a consequence of cavity creation, but
such contribution, directly proportional toα1, affects

the enthalpy and entropy in an exactly compensating
manner[52]. In other words, the creation of a cavity
under the constant pressure condition causes a change
in the volume of the system, which, in turn, determines
an enthalpy change (remember that the internal energy
of a van der Waals fluid is inversely proportional to the
volume). This enthalpy change has to be ascribed to
solvent reorganization since there is no other source,
and is exactly balanced by a corresponding entropy
contribution. Note that, if the cavity is made under
the constant volume condition, the enthalpy change is
zero, and all the entropy change is due to the excluded
volume effect,�Sc = �Sx .

For the attractive potential turning-on step, one ob-
tains

�Ha = −T 2
(
∂(�Ga/T )

∂T

)
= −2a1a2

v1
(1 + α1T )

(17)

�Sa = −∂ �Ga

∂T
= −2a1a2α1

v1
(18)

where again the solvent structural reorganization
upon turning-on the solute–solvent attractive potential
proves to be directly proportional toα1, and to affect
the enthalpy and entropy in an exactly compensating
manner. The finding that the solvent structural reor-
ganization is proportional to the thermal expansion
coefficient of the solvent is correct from the physical
point of view becauseα is a measure of the ensemble
correlations between enthalpy fluctuations and volume
fluctuations[28,42,53](i.e. α ≡< δH δV > /kT2 <

V >, whereδH = H− < H > and δV = V− <

V > represent the enthalpy and volume fluctuations
with respect to their ensemble average values).

Such results are in line with the general theory de-
vised by Lee[28–30], and with the analysis by Qian
and Hopfield[54] aimed at explaining the occurrence
of enthalpy–entropy compensation in many processes
[55]. These authors showed that the action of a small
perturbation on a thermodynamic system can be dis-
sected into two parts: a direct interaction between the
perturbation and the unperturbed system; and a re-
sponse of the system by means of a redistribution of
its subsystems, which are in thermal equilibrium, ac-
cording to the Le Chatelier principle[54]. Such redis-
tribution is a function of the environmental constraints
applied to the system: the relaxation depends on the
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type of microscopic fluctuations that the thermody-
namic system can do. The latter process proves to be
characterized by a perfect enthalpy–entropy compen-
sation and so the Gibbs energy change is entirely due
to the direct interaction between the perturbation and
the unperturbed system. Clearly, in the case of solva-
tion, the perturbation is represented by the insertion
of the solute molecule at a fixed position into the
solvent. The direct part of the perturbation consists of
both cavity creation and turning on solute–solvent at-
tractive potential; solvent structural reorganization is
the response of the system to the direct perturbation.

4. Conclusion

The van der Waals model of liquids is qualitatively
correct but not quantitatively exact. With respect to
solvation, its fundamental merit is the possibility to
obtain analytical expressions for the thermodynamic
functions associated with the process. We have ex-
ploited such possibility and confirmed the general va-
lidity of the analysis by Ben-Naim. The solute–solvent
coupling work,�G•, is the only quantity that re-
ally accounts for the energetic and entropic contri-
butions arising from both the repulsive and attractive
solute–solvent interactions.
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