

Thermochimica Acta 400 (2003) 69-77

thermochimica acta

www.elsevier.com/locate/tca

# Excess molar enthalpies of the ternary mixtures: (diisopropyl ether or 2-methyltetrahydrofuran) + cyclohexane + *n*-heptane at 298.15 K

Zhaohui Wang, George C. Benson\*, Benjamin C.-Y. Lu

Department of Chemical Engineering, University of Ottawa, Ottawa, Ont., Canada K1N 6N5

Received 27 June 2002; received in revised form 10 September 2002; accepted 10 September 2002

#### Abstract

Microcalorimetric measurements of excess molar enthalpies, at 298.15 K, are reported for the two ternary systems formed by mixing either diisopropyl ether or 2-methyltetrahydrofuran with binary mixtures of cyclohexane and *n*-heptane. Smooth representations of the results are presented and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. It is shown that useful estimates of the ternary enthalpies can be obtained from the Liebermann and Fried model, using only the physical properties of the components and their binary mixtures.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Diisopropyl ether; Cyclohexane; 2-Methyltetrahyrdrofuran; n-Heptane; Excess molar enthalpy; Ternary system; Liebermann–Fried model

#### 1. Introduction

A recent paper [1], from our laboratory, reported excess molar enthalpies at 298.15 K for the ternary systems consisting of either diisopropyl ether (DIPE) or 2-methyltetrahydrofuran (MTHF), together with *n*-hexane (nC6) and *n*-hexadecane (nC16). As an extension of that investigation, similar measurements have been made for the analogous systems, in which the nC6 and nC16 were replaced by cyclohexane (cC6) and *n*-heptane (nC7), respectively.

\* Corresponding author. Tel.: +1-613-562-5800/6118; fax: +1-613-562-5172.

## 2. Experimental

The DIPE and MTHF used for the present measurements, were obtained from Aldrich and had stated purities >99 mol%. The cC6 (HPLC grade) with purity >99.9% was also obtained from Aldrich. The nC7, obtained from Phillips, was research grade and had a purity of at least 99 mol%. Apart from partial degassing, all of the components were used as received from the manufacturer. Densities, measured at 298.15 K in an Anton–Paar digital densimeter, were 718.87, 848.10, 773.94 and 680.21 kg m<sup>-3</sup> for DIPE, MTHF, cC6 and nC7, respectively. These are in reasonable agreement with values in the literature [2–4].

An LKB flow microcalorimeter (model 10700-1), maintained at 298.150  $\pm$  0.003 K, was used to measure the excess molar enthalpies  $H_{\rm m}^{\rm E}$ . Details of the

0040-6031/03/\$ – see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0040-6031(02)00479-3

E-mail address: gbenson@eng.uottawa.ca (G.C. Benson).

equipment and the operating procedure have been described previously [5,6].

For the ternary systems  $x_1(C_6H_{14}O \text{ or } C_5H_{10}O) + x_2C_6H_{12} + x_3C_7H_{16}$ , the excess molar enthalpy  $H_{m,1+23}^E$  was determined for several pseudo-binary systems in which DIPE or MTHF was added to a binary mixture of components 2 and 3, having a fixed mole ratio  $x_2/x_3$ . For this purpose, binary mixtures with  $x_2/x_3 \approx 0.3$ , 1.0 and 3.0 were prepared by weighing. The excess molar enthalpy of the ternary system was obtained from the relation

$$H_{m,123}^{\rm E} = H_{m,1+23}^{\rm E} + (1-x_1)H_{m,23}^{\rm E}$$
(1)

where  $H_{m,23}^{E}$  is the excess molar enthalpy of the particular binary mixture of cC6 and nC7. Over most of the mole fraction range of component 1, the errors of  $H_{m,1+23}^{E}$  are estimated to be less than 0.5%. Errors in the mole fractions of the final ternary mixtures are estimated to be less than  $5 \times 10^{-4}$ .

#### 3. Results and discussion

Excess molar enthalpies  $H_{m,ij}^{E}$  (i < j), at T = 298.15 K, for three of the constituent binary systems of present interest, have been reported previously: DIPE(1) + nC7(3) [7], cC6(2) + nC7(3) [8], and MTHF(1) + nC7(3) [9]. The experimental values of  $x_1$  and  $H_{m,12}^{E}$ , measured for DIPE(1) + cC6(2) and MTHF(1) + cC6(2) are listed in Table 1. Coefficients  $h_k$  for the representations of those results by the smoothing function

$$H_{m,ij}^{E}(J \text{ mol}^{-1}) = x_i(1-x_i) \sum_{k=1}^{m} h_k(1-2x_i)^{k-1} \quad (i < j)$$
(2)

are listed in Table 2, along with the standard deviation *s* of the representation. Also included in Table 2 are the representations of  $H_{m,ij}^E$  for the other constituent binaries [7–9].

Since the completion of our measurements, we have become aware of recently reported excess molar enthalpies of MTHF(1) + cC6(2) at 298.15 K, by Lafuente et al. [10]. At  $x_1 = 0.5$  their curve falls above our curve, but the difference (~4 J mol<sup>-1</sup>) is well within the combined uncertainties of the two investigations.

The experimental results for  $H_{m,1+23}^{E}$  and the corresponding values of  $H_{m,123}^{E}$  are summarized in Tables 3 and 4 for  $x_1(C_6H_{14}O \text{ or } C_5H_{10}O) + x_2C_6H_{12} + x_3C_7H_{16}$ , respectively. The results for  $H_{m,1+23}^{E}$  in Table 3 are plotted in Fig. 1 along with the values of  $H_{m,1+23}^{E}$  given in Table 1 for the constituent binary DIPE(1) + cC6(2). The values of  $H_{m,1+23}^{E}$  in Table 4 are plotted in Fig. 2 along with the values of  $H_{m,12}^{E}$ given in Table 1 for the constituent binary MTHF(1) + cC6(2). Also plotted in both figures are curves for the cases  $x_2 = 0$  and  $x_3 = 0$ , calculated from Eq. (2) with the coefficients given in Table 2.

Table 1

Experimental mole fractions  $x_1$  and excess molar enthalpies  $H_{m,12}^E$  for  $x_1C_6H_{14}O + (1-x_1)C_6H_{12}$  and  $x_1C_5H_{10}O + (1-x_1)C_6H_{12}$  binary mixtures at 298.15 K

| <i>x</i> <sub>1</sub>                   | $H_{\mathrm{m,12}}^{\mathrm{E}}$ | <i>x</i> <sub>1</sub> | $H_{m,12}^{E}$ | $\overline{x_1}$ | $H_{\rm m,12}^{\rm E}$ | $\overline{x_1}$ | $H_{\mathrm{m,12}}^{\mathrm{E}}$ |
|-----------------------------------------|----------------------------------|-----------------------|----------------|------------------|------------------------|------------------|----------------------------------|
| $\overline{\text{DIPE}(1) + \text{cC}}$ | 6(2)                             |                       |                |                  |                        |                  |                                  |
| 0.0501                                  | 56.59                            | 0.2487                | 268.53         | 0.4999           | 328.11                 | 0.7499           | 226.58                           |
| 0.1000                                  | 131.21                           | 0.2998                | 295.80         | 0.5496           | 318.26                 | 0.8007           | 188.77                           |
| 0.1501                                  | 188.82                           | 0.3505                | 315.08         | 0.6002           | 303.39                 | 0.8501           | 150.64                           |
| 0.1999                                  | 235.88                           | 0.4007                | 327.07         | 0.6501           | 280.81                 | 0.8999           | 105.14                           |
| 0.2000                                  | 239.18                           | 0.4496                | 330.59         | 0.7003           | 257.40                 | 0.9500           | 56.98                            |
| MTHF(1) + c                             | C6(2)                            |                       |                |                  |                        |                  |                                  |
| 0.0499                                  | 125.00                           | 0.2500                | 460.87         | 0.5001           | 567.34                 | 0.7504           | 404.53                           |
| 0.0999                                  | 233.53                           | 0.2998                | 504.02         | 0.5496           | 555.25                 | 0.8001           | 342.67                           |
| 0.1501                                  | 325.64                           | 0.3502                | 537.96         | 0.5999           | 532.49                 | 0.8500           | 274.85                           |
| 0.2000                                  | 398.29                           | 0.3996                | 559.41         | 0.6500           | 500.07                 | 0.9000           | 189.93                           |
| 0.2001                                  | 399.61                           | 0.4504                | 568.71         | 0.6997           | 457.01                 | 0.9500           | 100.08                           |
|                                         |                                  |                       |                |                  |                        |                  |                                  |

Table 2

Coefficients  $h_k$  and standard deviations s for the representations of the excess molar enthalpies  $H_{m,ij}^E$  of the constituent binary mixtures at 298.15 K by Eq. (2)

| Component |         | $h_1$   | $h_2$   | $h_3$  | $h_4$   | $h_5$   | $h_6$   | $s (J \mod^{-1})$ |
|-----------|---------|---------|---------|--------|---------|---------|---------|-------------------|
| i         | j       |         |         |        |         |         |         |                   |
| DIPE      | cC6     | 1305.68 | 207.86  | 157.80 | 345.90  | -263.39 | -676.10 | 2.61              |
| DIPE      | nC7 [7] | 1016.36 | 1.09    | 28.44  |         |         |         | 0.81              |
| cC6       | nC7 [8] | 964.88  | -243.31 | 115.14 | -139.02 |         |         | 1.03              |
| MTHF      | cC6     | 2268.58 | 289.20  | 146.20 |         |         |         | 1.08              |
| MTHF      | nC7 [9] | 2298.97 | -80.17  | 109.24 |         |         |         | 2.18              |

For both systems, the maximum values of  $H_{m,1+23}^{E}$ and  $H_{m,123}^{E}$  occur near  $x_1 = 0.5$ . However, in both the figures, the values of  $H_{m,1+23}^{E}$  fall below the curves for the two constituent binaries and at constant  $x_1$ ,  $H_{m,1+23}^{E}$  does not change monotonically with changes in  $x_2/x_3$ . Representation of the values of  $H_{m,1+23}^E$  was based on the relation

$$H_{m,1+23}^{E} = \left(\frac{x_2}{1-x_1}\right) H_{m,12}^{E} + \left(\frac{x_3}{1-x_1}\right) H_{m,13}^{E} + H_{m,T}^{E}$$
(3)

Table 3

Experimental excess molar enthalpies  $H_{m,1+23}^{E}$  at 298.15 K for the addition of DIPE to a binary mixture of cC6 and nC7 to form  $x_1C_6H_{14}O + x_2C_6H_{12} + x_3C_7H_{16}$ , and values of  $H_{m,123}^{E}$  calculated from Eq. (1) using  $H_{m,23}^{E}$  obtained from Eq. (2) with coefficients from Table 2

| $x_1$         | $H_{\mathrm{m},1+23}^{\mathrm{E}}$ a   | $H_{\rm m,123}^{\rm E}$ | <i>x</i> <sub>1</sub> | $H_{\mathrm{m},1+23}^{\mathrm{E}}$ <sup>a</sup> | $H_{\mathrm{m.123}}^{\mathrm{E}}$ | $x_1$  | $H_{\mathrm{m},1+23}^{\mathrm{E}}$ <sup>a</sup> | $H_{\mathrm{m},123}^{\mathrm{E}}$ |
|---------------|----------------------------------------|-------------------------|-----------------------|-------------------------------------------------|-----------------------------------|--------|-------------------------------------------------|-----------------------------------|
|               | $(J \text{ mol}^{-1})$                 | $(J \text{ mol}^{-1})$  |                       | $(J  mol^{-1})$                                 | $(J \text{ mol}^{-1})$            |        | $(J \text{ mol}^{-1})$                          | $(J  mol^{-1})$                   |
| $x_2/x_3 = 0$ | 0.3332, $H_{\rm m}^{\rm E}_{23}$ (J mo | $(pl^{-1}) = 160.21$    |                       |                                                 |                                   |        |                                                 |                                   |
| 0.0500        | 37.87                                  | 190.07                  | 0.3998                | 215.49                                          | 311.65                            | 0.6997 | 188.68                                          | 236.79                            |
| 0.1000        | 78.91                                  | 223.10                  | 0.4501                | 220.75                                          | 308.85                            | 0.7498 | 168.61                                          | 208.69                            |
| 0.1500        | ) 114.15                               | 250.33                  | 0.5000                | 225.42                                          | 305.52                            | 0.8001 | 144.56                                          | 176.58                            |
| 0.2000        | ) 144.51                               | 272.68                  | 0.5498                | 220.16                                          | 292.29                            | 0.8504 | 116.57                                          | 140.55                            |
| 0.2501        | 168.21                                 | 288.35                  | 0.6001                | 214.42                                          | 278.48                            | 0.9000 | 81.42                                           | 97.44                             |
| 0.2999        | 189.12                                 | 301.28                  | 0.6501                | 203.91                                          | 259.96                            | 0.9500 | 45.26                                           | 53.27                             |
| 0.3506        | 204.75                                 | 308.79                  |                       |                                                 |                                   |        |                                                 |                                   |
| $x_2/x_3 = 0$ | 0.9996, $H_{\rm m}^{\rm E}_{23}$ (J mo | $(pl^{-1}) = 241.21$    |                       |                                                 |                                   |        |                                                 |                                   |
| 0.0500        | 39.78                                  | 268.93                  | 0.4001                | 207.72                                          | 352.42                            | 0.7004 | 177.53                                          | 249.80                            |
| 0.1000        | 79.32                                  | 296.41                  | 0.4497                | 213.45                                          | 346.19                            | 0.7502 | 157.67                                          | 217.92                            |
| 0.1500        | 113.67                                 | 318.70                  | 0.4996                | 214.60                                          | 335.30                            | 0.8000 | 134.46                                          | 182.71                            |
| 0.2000        | 142.08                                 | 335.05                  | 0.5502                | 211.37                                          | 319.86                            | 0.8501 | 108.26                                          | 144.42                            |
| 0.2498        | 163.93                                 | 344.89                  | 0.6002                | 204.93                                          | 301.36                            | 0.9000 | 75.63                                           | 99.74                             |
| 0.2996        | 5 183.05                               | 352.00                  | 0.6502                | 193.03                                          | 277.41                            | 0.9500 | 39.99                                           | 52.05                             |
| 0.3504        | 197.48                                 | 354.17                  |                       |                                                 |                                   |        |                                                 |                                   |
| $x_2/x_3 = 2$ | 2.9989, $H_{m,23}^{E}$ (J mo           | $(pl^{-1}) = 212.41$    |                       |                                                 |                                   |        |                                                 |                                   |
| 0.0500        | 47.86                                  | 249.66                  | 0.4001                | 232.09                                          | 359.51                            | 0.7002 | 192.67                                          | 256.36                            |
| 0.0999        | 93.06                                  | 284.24                  | 0.4501                | 237.29                                          | 354.09                            | 0.7495 | 170.85                                          | 224.05                            |
| 0.1498        | 3 130.07                               | 310.67                  | 0.5001                | 237.70                                          | 343.88                            | 0.7998 | 144.83                                          | 187.35                            |
| 0.2000        | 161.86                                 | 331.79                  | 0.5498                | 233.17                                          | 328.79                            | 0.8500 | 114.81                                          | 146.66                            |
| 0.2498        | 8 186.62                               | 345.97                  | 0.6001                | 224.11                                          | 309.06                            | 0.9000 | 81.00                                           | 102.23                            |
| 0.3002        | 207.02                                 | 355.65                  | 0.6496                | 210.87                                          | 285.29                            | 0.9500 | 42.47                                           | 53.09                             |
| 0.3500        | 221.89                                 | 359.95                  |                       |                                                 |                                   |        |                                                 |                                   |

<sup>a</sup> Ternary term for representing  $H_{m,1+23}^{E}$  by Eqs. (3) and (4):  $H_{m,T}^{E}(J \text{ mol}^{-1}) = x_1 x_2 x_3 (-1930.05 - 2523.87 x_1 + 4356.04 x_2 + 19368.54 x_1^2 - 13455.65 x_1 x_2 - 3984.93 x_2^2 - 25763.37 x_1^3)$ ; s (J mol<sup>-1</sup>) = 3.23.

Table 4

Experimental excess molar enthalpies  $H_{m,1+23}^E$  at 298.15 K for the addition of MTHF to a binary mixture of cC6 and nC7 to form  $x_1C_5H_{10}O + x_2C_6H_{12} + x_3C_7H_{16}$ , and values of  $H_{m,123}^E$  calculated from Eq. (1) using  $H_{m,23}^E$  obtained from Eq. (2) with coefficients from Table 2

| <i>x</i> <sub>1</sub> | $H_{m,1+23}^{E}^{a}$<br>(J mol <sup>-1</sup> ) | $H_{m,123}^{E}$<br>(J mol <sup>-1</sup> ) | <i>x</i> <sub>1</sub> | $\frac{H_{\mathrm{m},1+23}^{\mathrm{E}}}{(\mathrm{J}\mathrm{mol}^{-1})}$ | $H_{m,123}^{E}$<br>(J mol <sup>-1</sup> ) | $\overline{x_1}$ | $H_{m,1+23}^{E}^{a}$<br>(J mol <sup>-1</sup> ) | $\frac{H_{m,123}^{E}}{(J \text{ mol}^{-1})}$ |
|-----------------------|------------------------------------------------|-------------------------------------------|-----------------------|--------------------------------------------------------------------------|-------------------------------------------|------------------|------------------------------------------------|----------------------------------------------|
| $x_2/x_3 = 0.3$       | 332, $H_{\rm m}^{\rm E}_{23}$ (J mc            | $(1^{-1}) = 160.21$                       |                       |                                                                          |                                           |                  |                                                |                                              |
| 0.0499                | 99.93                                          | 252.14                                    | 0.4008                | 514.89                                                                   | 610.89                                    | 0.7005           | 452.77                                         | 500.75                                       |
| 0.1011                | 200.24                                         | 344.25                                    | 0.4549                | 531.49                                                                   | 618.82                                    | 0.7501           | 405.90                                         | 445.93                                       |
| 0.1499                | 280.93                                         | 417.12                                    | 0.5009                | 536.58                                                                   | 616.54                                    | 0.8000           | 348.13                                         | 380.18                                       |
| 0.2001                | 351.90                                         | 480.05                                    | 0.5498                | 531.28                                                                   | 603.41                                    | 0.8500           | 279.08                                         | 303.11                                       |
| 0.2501                | 409.38                                         | 529.52                                    | 0.6003                | 515.62                                                                   | 579.66                                    | 0.9000           | 199.40                                         | 215.42                                       |
| 0.2998                | 456.34                                         | 568.52                                    | 0.6503                | 489.49                                                                   | 545.51                                    | 0.9500           | 106.55                                         | 114.56                                       |
| 0.3525                | 490.24                                         | 593.97                                    |                       |                                                                          |                                           |                  |                                                |                                              |
| $x_2/x_3 = 0.9$       | 996, $H_{\rm m}^{\rm E}_{23}$ (J mc            | $(1^{-1}) = 241.21$                       |                       |                                                                          |                                           |                  |                                                |                                              |
| 0.0499                | 104.93                                         | 334.10                                    | 0.4003                | 489.14                                                                   | 633.80                                    | 0.6997           | 421.92                                         | 494.35                                       |
| 0.1000                | 191.62                                         | 408.71                                    | 0.4503                | 502.65                                                                   | 635.24                                    | 0.7504           | 376.37                                         | 436.58                                       |
| 0.1500                | 268.63                                         | 473.65                                    | 0.5002                | 505.45                                                                   | 626.00                                    | 0.8000           | 322.02                                         | 370.25                                       |
| 0.2001                | 336.66                                         | 529.61                                    | 0.5498                | 499.58                                                                   | 608.17                                    | 0.8500           | 256.71                                         | 292.88                                       |
| 0.2500                | 390.70                                         | 571.61                                    | 0.5999                | 482.92                                                                   | 579.44                                    | 0.9001           | 181.69                                         | 205.79                                       |
| 0.2995                | 431.80                                         | 600.76                                    | 0.6497                | 457.30                                                                   | 541.80                                    | 0.9500           | 96.66                                          | 108.73                                       |
| 0.3499                | 466.15                                         | 622.97                                    |                       |                                                                          |                                           |                  |                                                |                                              |
| $x_2/x_3 = 2.9$       | 989, $H_{\rm m}^{\rm E}_{23}$ (J mc            | $(l^{-1}) = 212.41$                       |                       |                                                                          |                                           |                  |                                                |                                              |
| 0.0500                | 102.21                                         | 304.00                                    | 0.4014                | 488.47                                                                   | 615.61                                    | 0.7003           | 412.85                                         | 476.51                                       |
| 0.1000                | 190.15                                         | 381.31                                    | 0.4511                | 500.74                                                                   | 617.34                                    | 0.7498           | 367.59                                         | 420.73                                       |
| 0.1500                | 274.89                                         | 455.44                                    | 0.5001                | 502.11                                                                   | 608.29                                    | 0.7999           | 313.01                                         | 355.52                                       |
| 0.2001                | 340.23                                         | 510.14                                    | 0.5494                | 493.05                                                                   | 588.75                                    | 0.8503           | 248.59                                         | 280.40                                       |
| 0.2499                | 395.04                                         | 554.37                                    | 0.6007                | 475.93                                                                   | 560.74                                    | 0.9000           | 175.36                                         | 196.61                                       |
| 0.2997                | 432.69                                         | 581.44                                    | 0.6503                | 448.69                                                                   | 522.97                                    | 0.9500           | 92.42                                          | 103.04                                       |
| 0.3498                | 465.91                                         | 604.01                                    |                       |                                                                          |                                           |                  |                                                |                                              |

<sup>a</sup> Ternary term for representing  $H_{m,1+23}^{E}$  by Eqs. (3) and (4):  $H_{m,T}^{E}(J \text{ mol}^{-1}) = x_1 x_2 x_3 (-145.83 - 10623.46 x_1 + 605.86 x_2 + 36045.75 x_1^2 + 6582.74 x_1 x_2 - 4276.90 x_2^2 - 35570.98 x_1^3 - 30255.85 x_1^2 x_2)$ ; s (J mol<sup>-1</sup>) = 3.85.

which consists of a sum of binary contributions [11], and an added ternary term  $H_{m,T}^{E}$ . The form

$$H_{m,T}^{E} = x_{1}x_{2}x_{3}(c_{0} + c_{1}x_{1} + c_{2}x_{2} + c_{3}x_{1}^{2} + c_{4}x_{1}x_{2} + c_{5}x_{2}^{2} + \cdots)$$
(4)

which was adopted for the latter is similar to the form used by Morris et al. [12]. The values of the coefficients  $c_j$  were adjusted by least-squares analyses in which Eqs. (3) and (4) were fitted to the values of  $H_{m,ij}^E$  in Tables 3 and 4. In doing this, the values of  $H_{m,ij}^E$  for the binary contributions were calculated from Eq. (2) using the appropriate coefficients from Table 2. The resulting forms for  $H_{m,T}^E$  are given in the footnotes of Tables 3 and 4, along with the standard deviation *s* for the representation of the values of  $H_{m,1+23}^E$ . The solid curves in Figs. 1 and 2 were calculated from Eq. (3) using values of  $H_{m,T}^{E}$  given by the formulae in the footnotes of Tables 3 and 4. It is evident from these, that the representation of the experimental results is quite good.

Some constant  $H_{m,123}^{E}$  contours, calculated from Eqs. (1)–(4), are plotted on the Roozeboom diagrams in Figs. 3a and 4a. In both the figures, there is an internal maximum, which amounts to 361.1 and 637.5 J mol<sup>-1</sup> for the DIPE and MTHF systems, respectively.

In our earlier work [1] on the enthalpies of the analogous systems containing nC6 and nC16 in place of cC6 and nC7, it was found that the Liebermann–Fried model [13,14] could provide useful estimates of the ternary enthalpies using only the properties of the pure components and interaction parameters derived



Fig. 1. Excess molar enthalpies,  $H_{m,1+23}^{E}$ , for  $x_1C_6H_{14}O + x_2C_6H_{12} + x_3C_7H_{16}$  mixtures at 298.15 K. Experimental results:  $(\nabla) x_2/x_3 = 0.3332$ ;  $(\bigcirc) x_2/x_3 = 0.9996$ ;  $(\bigtriangleup) x_2/x_3 = 2.9989$ ;  $(\diamondsuit) x_3 = 0$ . Curves: (—) calculated from Eq. (3) with  $H_{m,T}^{E}$  from the footnote of Table 3;  $(\cdots) x_2 = 0$  and  $(-\cdots) x_3 = 0$  calculated with Eq. (2) using the coefficients in Table 2; (--) estimated by the Liebermann–Fried model. (a)  $x_2/x_3 = 0.3332$ , (b)  $x_2/x_3 = 0.9996$ , (c)  $x_2/x_3 = 2.9989$ .

from analyses of the excess enthalpies of their constituent binaries. This approach was investigated for the present systems. Reference can be made to the work of Wang et al. [15] for the equations used in this application.

The values of the Liebermann–Fried interaction parameters  $A_{ij}$  and  $A_{ji}$  for the constituent binaries are given in Table 5. These were obtained by fitting the Liebermann–Fried formula for  $H_{m,ij}^E$  to the primary experimental data for the excess molar enthalpies, as given in Table 1and [7–9]. Also included in the table are values of the standard deviation *s* achieved in the fitting process, and values of the isobaric expansivity

 $\alpha_p$  [2,3,16,17], used in evaluating the contributions due to different sizes of the molecules.

Estimates of  $H_{m,1+23}^{E}$ , derived from the Liebermann–Fried model, are shown as dashed curves in Figs. 1 and 2. It can be seen that, although the fits of the constituent binaries are reasonable, as indicated by the standard deviations in Table 5, the model over-estimates  $H_{m,1+23}^{E}$  for the ternary mixtures. For the 57 points in each of Tables 3 and 4, the root mean square deviations are 19.4 and 33.9 J mol<sup>-1</sup>, respectively.

Constant  $H_{m,123}^{E}$  contours, estimated on the basis of the model, are shown on the Roozeboom diagrams in



Fig. 2. Excess molar enthalpies,  $H_{m,1+23}^{E}$ , for  $x_1C_5H_{10}O + x_2C_6H_{12} + x_3C_7H_{16}$  mixtures at 298.15 K. Experimental results: ( $\triangle$ )  $x_2/x_3 = 0.3332$ ; ( $\bigcirc$ )  $x_2/x_3 = 0.9996$ ; ( $\bigtriangledown$ )  $x_2/x_3 = 2.9989$ ; ( $\diamondsuit$ )  $x_3 = 0$ . Curves: ( $\frown$ ) calculated from Eq. (3) with  $H_{m,T}^{E}$  from the footnote of Table 4; ( $\cdots$ )  $x_2 = 0$  and ( $-\cdots$ )  $x_3 = 0$  calculated with Eq. (2) using the coefficients in Table 2; (--) estimated by the Liebermann–Fried model. (a)  $x_2/x_3 = 0.3332$ , (b)  $x_2/x_3 = 0.9996$ , (c)  $x_2/x_3 = 2.9989$ .

Table 5

Values of the interaction parameters  $A_{ij}$  and  $A_{ji}$ , standard deviation s and the isobaric thermal expansivity  $\alpha_p$  at 298.15 K, for Liebermann–Fried model calculations

| Component |     | A <sub>ij</sub> | A <sub>ji</sub> | $s (J \text{ mol}^{-1})$ | $\alpha_p/1000 \text{ K}$ |            |
|-----------|-----|-----------------|-----------------|--------------------------|---------------------------|------------|
| i j       |     |                 |                 |                          | i                         | j          |
| DIPE      | cC6 | 0.7510          | 1.0569          | 4.63                     | 1.455 [2]                 | 1.220 [16] |
| DIPE      | nC7 | 0.9088          | 0.9106          | 1.07                     | 1.455 [2]                 | 1.256 [17] |
| cC6       | nC7 | 1.2327          | 0.6762          | 2.66                     | 1.220 [16]                | 1.256 [17] |
| MTHF      | cC6 | 0.7230          | 0.9370          | 2.20                     | 1.215 [3]                 | 1.220 [16] |
| MTHF      | nC7 | 0.8515          | 0.7946          | 2.62                     | 1.215 [3]                 | 1.256 [17] |



Fig. 3. Contours for constant values of  $H_{m,123}^{E}$  (J mol<sup>-1</sup>) for  $x_1C_6H_{14}O + x_2C_6H_{12} + x_3C_7H_{16}$  mixtures at 298.15 K: (a) calculated from the representation of the experimental results by Eqs. (1)–(4) with  $H_{m,T}^{E}$  from the footnote of Table 3; (b) estimated by the Liebermann–Fried model.



Fig. 4. Contours for constant values of  $H_{m,123}^{E}$  (J mol<sup>-1</sup>) for  $x_1C_5H_{10}O + x_2C_6H_{12} + x_3C_7H_{16}$  mixtures at 298.15 K: (a) calculated from the representation of the experimental results by Eqs. (1)–(4) with  $H_{m,T}^{E}$  from the footnote of Table 4; (b) estimated by the Liebermann–Fried model.

Figs. 3b and 4b. In both of these, the model predicts an internal maximum, which is considerably higher than that in part (a). However, despite the differences between parts (a) and (b) in these figures, it is clear that the Liebermann–Fried model provides useful predictions of the behavior of  $H_{m,123}^E$  for both of the present systems, without requiring the study of any ternary mixtures.

# Acknowledgements

The authors are indebted to the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support of this work. They also would like to thank Mr. Louis Tremblay for his continuing technical support of our investigations.

### References

- Z. Wang, G.C. Benson, B.C.-Y. Lu, J. Chem. Eng. Data 47 (2002) 1030.
- [2] M. Obama, Y. Oodera, N. Kohama, T. Yanase, Y. Saito, K. Kusano, J. Chem. Eng. Data 30 (1985) 1.
- [3] L. De Lorenzi, M. Fermeglia, G. Torriano, J. Chem. Eng. Data 41 (1996) 1121.

- [4] Loose-leaf data sheets 23-2-[1.10100]-a, page 1, 30 April 1995, and 23-2-[3.1110]-a, 30 April 1956, TRC Thermodynamic Tables—Hydrocarbons, Thermodynamic Research Center, The Texas A&M University System, College Station, TX 77843-311, 1996.
- [5] R. Tanaka, P.J. D'Arcy, G.C. Benson, Thermochim. Acta 11 (1975) 163.
- [6] F. Kimura, G.C. Benson, C.J. Halpin, Fluid Phase Equilib. 11 (1983) 245.
- [7] Z. Wang, Y. Horikawa, G.C. Benson, B.C.-Y. Lu, Fluid Phase Equilib. 181 (2001) 215.
- [8] G.W. Lundberg, J. Chem. Eng. Data 9 (1964) 193.
- [9] Z. Wang, G.C. Benson, B.C.-Y. Lu, J. Chem. Eng. Data 46 (2001) 1188.
- [10] C. Lafuente, P. Cea, M. Domínguez, F.M. Royo, J.S. Urieta, J. Solution Chem. 30 (2001) 795.
- [11] C.C. Tsao, J.M. Smith, Chem. Eng. Prog. Symp. Ser. 49 (7) (1953) 107.
- [12] J.W. Morris, P.J. Mulvey, M.M. Abbott, H.C. Van Ness, J. Chem. Eng. Data 20 (1975) 403.
- [13] E. Liebermann, V. Fried, Ind. Eng. Chem. Fundam. 11 (1972) 350.
- [14] E. Liebermann, V. Fried, Ind. Eng. Chem. Fundam. 11 (1972) 354.
- [15] Z. Wang, D.-Y. Peng, G.C. Benson, B.C.-Y. Lu, J. Chem. Thermodyn. 33 (2001) 1181.
- [16] J.A. Riddick, W.B. Bunger, T.K. Sakano, Techniques of Chemistry, vol. II, 4th ed., Organic Solvents, Wiley, New York, 1986, p. 90.
- [17] G.C. Benson, B. Luo, B.C.-Y. Lu, Can. J. Chem. 66 (1988) 531.