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Abstract

By means of regression analysis, an insight into the limitations of the widely used Freeman and Carroll method is offered,

and it is indicated that the Freeman and Carroll method is essentially unstable for the determination of the reaction order. The

reliabilities of the intercept and slope terms for any one regression equation are also investigated mathematically, suggesting

that the slope term is in general easily to be determined accurately, whereas the intercept term has possibility to be obtained

with great error. Based on these theoretical analyses, a new method to calculate the kinetic parameters for polymer thermal

degradation is proposed, in which the three kinetic parameters are determined from the slopes of three regression equations

described in this paper. The experimental data in the literature are used to verify the proposed method. By comparing the

results from the Freeman and Carroll method and the proposed method respectively with those from the Doyle method, it is

shown that the proposed method can be applied with a much better accuracy than the Freeman and Carroll method. # 1999

Elsevier Science B.V. All rights reserved.
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1. Introduction

During the past several decades, dynamic thermo-

gravimetry, in which changes in weight are measured

as a function of increasing temperature, has been

widely used to study the kinetics of thermal decom-

position reactions. Dynamic thermogravimetry has

attracted widespread interest mainly due to its explicit

advantages over isothermal methods. As pointed out

by Doyle [1], one dynamic mass-loss curve is equiva-

lent to a large number of isothermal mass-loss curves.

Other advantages of dynamic thermogravimetry have

been summarized by Coats and Redfern [2] and

Wendlandt [3]. With the development of different

kinetic analysis methods, dynamic thermogravimetry

has now been playing a very important role in the

®elds such as fuel property, ®re research, fabric

¯ammability, nuclear weapons effects, waste incinera-

tion, and aerospace technology, etc.

It is known that a wide range of practical problems

is associated with the polymer thermal degradation.

For example, the pyrolysis of biomass is related to the
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self-heating of cellulosic materials, the behavior of

wood in ®re, the role of inorganic salts as ®re retardant

for timber, etc. For the polymer thermal degradation,

there has been an ongoing debate in the literature

concerning the global kinetics of polymer pyrolysis.

Global kinetics are of interest in modeling polymer

decomposition in many applications in which trying to

represent the full complexity of the polymer degrada-

tion process makes no sense. In general, the global

kinetics of the pyrolysis are looked on as offering a

clue to the key mechanistic steps in the overall weight

loss process.

In the case of polymer degradation, global kinetic

analysis of thermogravimetric data from a weight loss

curve is based on the formal kinetic equation

d�

dt
� k�1ÿ��n (1)

where � is the fraction of material decomposed at time

t, n is the order of reaction, and k the rate constant.

The combination of this equation and the empiric

Arrhenius expression gives the following relationship:

d�

dt
� Aexp

ÿE

RT

� �
�1ÿ��n (2)

where A is the frequency factor, E is the activation

energy of the reaction, and R the gas constant. Intro-

ducing the heating rate, �,

d�

dT
� A

�
eÿE=RT�1ÿ��n (3)

This is the fundamental expression of analytical

methods to calculate kinetic parameters on the basis of

TG data. Based on this expression, a considerable

number of methods to derive kinetic parameters E, n,

and A from thermogravimetric curves have been

developed. According to the kind of data used, the

methods in general fall into two classes: integral

method and differential method. Integral method uti-

lizes weight loss versus temperature data directly,

while differential method uses the rate of weight loss

versus temperature. The most widely used integral

kinetic methods are those developed by (a) Doyle [1],

(b) Coats and Redfern [4], (c) Zsako [5], (d) Broido

[6], (e) Reich and Stivala [7], and (f) Ozawa et al. [8],

and the differential methods in common use are those

derived by (g) Freeman and Caroll [9], (h) Newkirk

[10], (i) Achar et al. [11], (j) Vachuska and Voboril

[12], and (k) Friedman et al. [13] From their mathe-

matical derivations, it can be concluded that the

methods (a),(b),(c),(e) and (i) can be applied only

when the reaction order is priorly known, while the

methods (d) and (h) may be used only when the

reaction is of ®rst order. In other words, for these

methods the priori knowledge of the reaction mechan-

ism is generally needed for calculating the kinetic

data. However, it is just such a limitation that usually

leads to great trouble in dealing with the thermogravi-

metric curve, because the reaction mechanism is in

general not able to be determined in advance. In fact,

the techniques to obtain the kinetic parameters when

the reaction order (or mechanism) is unknown have

been a subject of much concern over the past several

decades.

The method (j) developed by Vachuska and Voboril

[12] can be used to determine the kinetic parameters E

and n simultaneously. However, this method involves

the determination of d2�/dt2, which cannot be

obtained readily and accurately from the weight loss

curve. Actually, such a disadvantage strongly weakens

the accuracy of this method, and few applications of it

can be found in literature. The methods (f) and (k)

developed respectively by Ozawa and Friedman have

been successfully used to study polymer thermal

decomposition kinetics, without any priori knowledge

of the reaction mechanism. The common disadvantage

of the two methods is the requirement of several

experiments with different heating rates.

Besides the Ozawa method and the Friedman

method, the method developed by Freeman and Car-

roll (FC) [9] is another one widely used without any

priori knowledge of the reaction order. The reaction

order n (or mechanism) and the activation energy E

can be determined from the equation

ÿ�E=R�D�1=T�
Dln �1ÿ�� � Dln �d�=dt�

Dln �1ÿ�� ÿn (4)

It is apparent that by plotting a graph of Dln (d�/dt)/

Dln (1ÿ�) versus DTÿ1/Dln (1ÿ�), the parameters E

and n can be calculated respectively from the intercept

and the slope of the regression line (in what follows we

call it the FC regression line). However, in most

practical instances it was found that there is consider-

able dif®culty in obtaining a reliable value of the

reaction order n by the FC regression line [2]. By
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means of the thermal decomposition of calcium car-

bonate, Sharp and Ventworth [14] also proved the

invalidation of the FC method in determining the

reaction order n. During their investigations it was

found that the obtained reaction order values sensi-

tively ¯uctuated with the number of the points selected

for ®tting the straight line. When the number of points

was eight, the obtained reaction order was +0.55,

whereas when 14 points were used, the reaction order

was obtained to be ÿ0.17. In addition, the FC method

cannot be used directly to determine the pre-exponen-

tial factor A. These evidences hint that the FC method

can only be used to determine the activation energy of

the reaction accurately.

With the above limitations of the FC method in

mind, this study seeks to develop a new method for

deriving the kinetic data E, n, and A accurately, with-

out any priori knowledge of the reaction mechanism.

We begin with a theoretical attempt to understand the

reason for the limitations of the FC method in Section

2. Based on the theoretical analysis, in Section 3 we

formally describe three equations which make up the

new method. One of the equations is just the Eq. (4)

derived by Freeman and Carroll. The parameters E, n,

and A can be determined accurately from the

slopes, rather than the intercepts, of the regression

lines according to the three equations respectively.

The veri®cation of the proposed method appears in

Section 4, and Section 5 is a summary and conclusion

section.

2. Insight into the limitations of the FC method

As pointed out in the last section, there exists lack of

consistency in calculating the reaction order n from

the intercept of the FC regression line. In the literature,

this disadvantage has been considered to arise mainly

due to the random error in the slope evaluation ¯uc-

tuation [15]. However, no insight was offered into the

sensitivity of the resulted reaction order value to the

slope evaluation ¯uctuation until now, and it has been

presumed that the FC method can be accurate on

condition that the slope is determined with satisfactory

accuracy. By contrast, this section seeks to indicate in

terms of theoretical analysis that the regression Eq. (4)

is in nature unstable for determining its intercept

value. Due to this instability, a small error of the slope

estimator may lead to a great error of the intercept

evaluation, so that the reaction order cannot be deter-

mined accurately by the FC method in essence, so long

as any experimental ¯uctuation exists.

For convenience in the present discussion, we begin

with a brief derivation of the FC method. Taking

logarithms of both sides of Eq. (3), we have

ln
d�

dT

� �
� ln

A

�
ÿ E

RT
� nln �1ÿ�� (5)

Suppose another temperature, referred to as T 0, is

randomly selected from the thermogravimetric curve.

By analogy to Eq. (5) we obtain

ln
d�0

dT

� �
� ln

A

�
ÿ E

RT 0
� nln �1ÿ�0� (6)

where �0 is the fraction of material decomposed at

temperature T 0, and here for the convenience of

representation, (d�/dT)T=T 0 has been expressed simply

as d�0/dT. Subtracting Eq. (6) from Eq. (5) yields

Dln
d�

dT

� �
� ÿE

R
D

1

T

� �
� nDln �1ÿ�� (7)

Dividing both sides by Dln(1ÿa), we have

�A� Dln �d�=dT�
Dln �1ÿ�� � ÿE

D�1=T�
RDln �1ÿ�� � n

(8)

This expression is just the one used in the FC

method (see Eq. (4)), but the derivation here is more

concise than that of Freeman and Carroll. This equa-

tion is used in the proposed new method to determine

the activation energy E. Hence, we mark this equation

by (A) for sake of emphasis. As has been explained,

dealing with the weight loss curve by the FC method

comes down to ®tting a straight line in terms of this

equation. In a strictly mathematical sense, the FC

regression line may be expressed as follows:

Y � â� b̂X (9)

where X and Y are two variables related to each other

by the least squares method, while aÃ and b̂ are two

estimators. Corresponding to Eq. (8), we have the

following relations:

X � ÿ D�1=T�
RDln �1ÿ�� (10)
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Y � Dln�d�=dT�
Dln �1ÿ�� (11)

E�â� � n (12)

E�b̂� � E (13)

Here the notation E( ) denotes the predicted value of

the bracketed term. The terms aÃ and b̂ are respectively,

the estimators of n and E.

For a speci®c thermogravimetric experiment, sam-

ples of the data point (X, Y) are measured and calcu-

lated randomly from the weight loss curve. In this

sense, X and Y can be looked on as two observed

variables, and it can be assumed that the two variables

follow normal distribution. In general, different sam-

ples of (X, Y) lead to different values of aÃ and b̂. In

other words, the estimators aÃ and b̂ will ¯uctuate when

the used sample changes from one to another. If the

¯uctuations of aÃ and b̂ both result to be small com-

pared with their respective targets, i.e. n and E, the Eq.

(9) may be referred to as a stable regression equation.

If not, we call Eq. (9) an unstable regression equation,

and the estimator with great ¯uctuation will be unreli-

able.

In mathematics, the ¯uctuations of aÃ and b̂ can be

formulated by their standard deviations [16]:

�â � �
��������������������������������PN

i�1 X2
i

N
PN

i�1�Xiÿ�X�2
s

(14)

�b̂ �
�����������������������������PN

i�1�Xiÿ�X�2
q (15)

where � is the standard deviation of Y around the

regression line.

We de®ne the relative errors of aÃ and b̂ as the ratios

of �aÃ and �b̂ respectively to E(aÃ) and E(b̂), and

expressed them as ~�â and ~�b̂

~�â � �
n

��������������������������������PN
i�1 X2

i

N
PN

i�1�Xiÿ�X�2
s

(16)

~�b̂ �
�

E

����������������������������PN
i�1�Xiÿ�X�2

q (17)

The orders of magnitude of these two errors cannot

be evaluated theoretically in a general sense. However,

for the thermal decomposition of solid materials, the

order of ~�b̂ can be inferred from the literature. So far,

some studies have been devoted to the polymer ther-

mal degradation, in which the FC method and several

other kinetic methods were used simultaneously in

order to obtain relatively reliable kinetic data. It seems

that for a speci®c experiment all these methods always

resulted in approximately the same activation energy

values. This hints that, for most cases, the activation

energy E can be estimated by the FC method accu-

rately, with a quite small error ~�b̂ obtained. A recent

reference of this kind is that by Huang and Li [17]. By

means of four kinetic methods, Huang and Li have

obtained the kinetic parameters for cellulose and

cellulose esters at 108C/min in nitrogen, and it was

found that the E values by the FC method differed little

from those by other three methods. Another reference

of this kind is that of Sharp and Ventworth [14], as has

been stated in Section 1. During their investigation, the

great ¯uctuation of the reaction order value by the FC

method hinted at a very big order of ~�â. However, with

different numbers of points used, the obtained E

values by the FC method were also found to differ

not too much from those by other two methods. In fact,

there has been a substantial agreement that the FC

method can be used in the determination of the E

values with satisfactory accuracy, and an investigation

of the literature revealed that the obtained E value is

generally in error by 5±15%, that is to say, ~�b̂ �5±

15%. Here and in the following discussion we use the

symbol `�' to mean `the order of magnitude is equal

to'.

Combining Eqs. (16) and (17) yields the following

relation

~�â

~�b̂

� E

n

�����������������PN
i�1 X2

i

N

s
(18)

Taking Eq. (10) into account, Eq. (18) can be

rewritten as the following expression:

~�â

~�b̂

� ED�1=T�
nRDln �1ÿ�� (19)

For simplicity, let � = 1ÿy. Here y is the fraction of

material not yet decomposed at time t. To evaluate the

order of magnitude of ~�â=~�b̂, we de®ne two functions

z1 (T, T0) and z2 (y, y0) as

z1 � 1

R

1

T
ÿ 1

T 0

� �
�300�T ; T 0�1073� (20)
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z2 � ln yÿln y0 �"�y; y0�1:0� (21)

Eq. (19) can then be rewritten as

~�â

~�b̂

�Ez1

nz2

(22)

In general, the thermal decomposition is carried out

in an inert atmosphere from room temperature to about

8008C, meanwhile the fraction of material not decom-

posed decreases from 1.0 to " continuously. Here " is

the fraction not yet decomposed when the temperature

has been increased up to 8008C. In dealing with the

weight loss curve by the FC method, the temperatures

T and T0 are selected randomly and independently, and

the corresponding fractions y and y0 are determined

from the curve. Due to this procedure, the fractions y

and y0 can be looked on as two quantities independent

of each other, with possible values ranging from " to

1.0 for each of them.

Fig. 1 shows the graph of z1 versus T for various

values of T0. Inspection of Fig. 1 indicates that for any

®xed value of T0, z1(T) is on the order of 10ÿ5±10ÿ4

over most of the interval of T. Stated in another way,

for any two temperatures T and T0 selected randomly

from the weight loss curve, the following relation

holds in almost all cases:

z1�T ; T 0��10ÿ5ÿ10ÿ4 (23)

In an analogous manner, the plot of z2 versus y for

various values of y0 shown in Fig. 2 reveals that

z2�y; y0��10ÿ1ÿ100 (24)

is valid under general circumstances. Combining Eqs.

(23) and (24) the order of magnitude of z1/z2 can be

obtained as the following expression:

z1

z2

�10ÿ5ÿ10ÿ3 (25)

It has been shown in the literature that the activation

energy E is generally on the order of 104±105 J/mol,

and the reaction order n � 1. An investigation of the

literature revealed that almost all the studies with few

exceptions have supported these orders of magnitude.

Some papers of this kind in recent years are those by

Huang and Li [17], Jimenez et al. [18], Chang [19],

Antal and Varhegyi [20], and Milosavljevic and Suu-

berg [21]. Taking this fact into account, substituting

Eq. (25) into Eq. (22) yields:

~�â

~�b̂

�10ÿ1ÿ102 (26)

Recalling the fact that ~�b̂ �5±15%, we can then

obtain the following evaluation of the error term ~�â:

~�â�0:5ÿ1500% (27)

We note in passing that since y is dependent on T,

Eq. (27) is just an evaluation of the order of magnitude

of z1/z2 in a relatively rough sense. It can be inferred

from the literature that under real situations Z1/Z2 has

generally an order of magnitude of 10ÿ5±10ÿ4 (see,

e.g. [14,18]), and therefore a more accurate evaluation

of ~�â can be obtained:

~�â�0:5ÿ150% (28)Fig. 1. Plot of z1 (T) vs. T for various values of T0.

Fig. 2. Plot of z2(y) vs. y for various values of y0.
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Eqs. (27) and (28) both imply that when different

sets of data points (T, �) and (T0, �0) are selected

stochastically from the weight loss curve, the

values of ~�â would ¯uctuate from less than 1% to

over 100%. It has been stated that aÃ is the estimator

of the reaction order n. Therefore, it has been now

clear that the FC method may lead to a great error for

the n value, even if the error of the E value remains

small. In mathematics, this result reveals that the

regression Eq. (9) is in itself unstable for the deter-

mination of its intercept term. Just for the instability,

the obtained value of the reaction order generally

¯uctuates greatly with the number of points used,

as stated previously. Due to the inescapability of

the experimental and measure ¯uctuations, the error

of the E value cannot be reduced to extremely small.

Hence, it can be concluded that the FC method cannot

be used to determine the reaction order accurately in

essence. Only by improving the FC method itself can

the reaction order be expected to be determined with

satisfactory accuracy.

3. Proposed method to obtain the kinetic data

Investigating the literature, it is interesting to note

that although the intercept term of the FC regression

equation showed weak reliability, almost all the

regressions had acceptable correlation coef®cient

values. Before proceeding further into the detailed

description of the new method, let us pause here to

examine the regression reliabilities of the slope and

intercept terms for any one general regression equa-

tion, underlying the interpretation of the principle of

the new method.

For a set of observed data (X1, Y1) (X2, Y2), ..., (XN,

YN), suppose the true relation between X and Y is

Y = a + bX, while the regression line is Y = aÃ + b̂ X. By

comparing the de®nition of the correlation coef®cient

rXY with the expression of b̂, the following relation can

be achieved [22]:

b̂ �
P�Yiÿ�Y�2P�Xiÿ�X�2

( )1=2

rXY (29)

where and in what follows summations are all over

i = 1,2,...,N. Combining Eq. (15) and (29) allows us to

obtain the following expression:

�b̂

b̂
� �

rXY

����������������������P�Yiÿ�Y�2
q (30)

This expression is the approximate relative error of

the estimator b̂. In practice we cannot know the value

of �2, which is the variance of Y about the true line.

Nevertheless, it can be estimated by the following

unbiased deviation about the ®tted line [23]:

s2 � 1

Nÿ2

X
�YiÿŶ i�2 (31)

where Ŷ i is the fitted value of Y on the fitted line:

Ŷ i � â� b̂Xi (32)

The summation term in Eq. (30) can be expressed

by the following equality [22]:X
�Yiÿ�Y�2 �

X
�Ŷ iÿ�Y�2 �

X
�YiÿŶ i�2

(33)

Finally, we can rewrite the approximate relative

error of b̂ by substituting Eqs. (31) and (33) into Eq.

(30). Thus

�b̂

b̂
� 1

rXY

����������
Nÿ2
p

�����������������������P�YiÿŶ i�2
q

��������������������������������������������������P�Ŷ iÿ�Y�2 �P�YiÿŶ i�2
q

(34)

It is clear that for a rXY close to unity, the error of the

slopeterm b̂wouldbesmallonconditionthat thenumber

N is big enough. Even for a small value of N, there is still

possibility that a value of b̂ be achieved with minor error,

due to the reduction effect of the later fractional term in

the above equation. This equation provides a good

interpretation of the reason for which the activation

energy value resulted from the FC method usually has

a reasonable accuracy. As stated previously, in the

existing applications of the FC method, the values of

rXY were usually found to be close to unity, implying that

the variables X and Y for the FC regression line had a

closely positive relation. In view of this fact, reasonable

accuracy of the activation energy E by the FC method is

not surprising. The more important conclusion drawn

from the above equation is that, if the parameter being

examined appears in the slope term of any one general

regression equation, this parameter would be expected

likely to be determined accurately. This conclusion

underlies the theory of the new method.
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It should be pointed out, however, the intercept term

for a general regression equation has not such a good

feature. Fig. 3 is used here to make the point. This

®gure shows a general regression. Suppose the true

regression E(Y) = a+bX is the dashed line shown in the

®gure. This is unknown to the statistician, who must

estimate it as accurately as possible by observing X

and Y. Suppose the estimated regression is Y � â� b̂X.

The correlation coef®cient rXY is assumed to be close

to unity, hinting at a closely positive relation between

X and Y. Our emphasis here is on the reliability of the

®tted intercept term aÃ . In Fig. 3, two coordinate

systems are used to illustrate that a data set (X0, Y0)
with unreliable ®tted intercept value can be readily

constructed, even if the sample correlation coef®cient

between X0 and Y0 is close to unity. It's evident that the

relation of the two coordinate systems is

X0 � X � L (35)

Y 0 � Y (36)

In the space (X0,Y0), the true and the estimated

regression lines can be expressed by X0 and Y0, respec-

tively as

Y 0 � �aÿbL� � bX0 (37)

and

Y 0 � �âÿb̂L� � b̂X0 (38)

Combining these two equations, the error of the

estimated intercept in this space can be obtained:

â0ÿa0 � �âÿa� � �bÿb̂�L (39)

It can be seen from Fig. 3 that the quantity aÃÿa has the

same sign as bÿb̂. Hence, the error of the estimated

intercept in the space (X0,Y0) is enlarged compared with

that in the space (X,Y). It's obvious that if L is taken to be

bigenough,thequantityaÃ 0would®nallybecometodiffer

from a0 so much that the quantity |aÃ 0ÿa0|/|a0| would

exceed unity, hinting at a great error of the estimated

intercept. Stated in another way, the data set (X0,Y0), i.e.

(X + L,Y), would lead to a regression line with an unreli-

able intercept term. During this procedure, the correla-

tion coef®cient rXY remains ®xed, which can be justi®ed

by referring to the de®nition of rXY. Hence, a conclusion

can be drawn from this analysis, that is, with the correla-

tion coef®cient approximating unity, the intercept term

is still likely to be greatly unreliable.

Based on the above arguments, we now proceed to

describe the method for the determinations of the

reaction order and the pre-exponential factor. In view

of the above features of the slope and intercept terms

for a general regression equation, the FC method may

be improved upon by deriving two regression equa-

tions whose slope terms respectively involve the reac-

tion order n and the pre-exponential factor A. The

values of n and A can then be determined from the

slope terms of the two equations. Based on this idea,

we ®rst refer back to Eq. (7) and derive the equation

for the reaction order n. Rearrangement of Eq. (7)

yields the following equation:

�B� Dln �1ÿ��
Dln �d�=dT� �

E

n

D�1=T�
RDln �d�=dT� �

1

n

(40)

The use of its slope term, i.e. E/n, is therefore an

essentially better way to calculate the reaction order

value, on condition that the activation energy E has

been obtained using the FC regression equation. The

above equation is marked by (B). Although the deri-

vation is trivial, this regression equation is of major

importance for the accurate determination of the

reaction order n. In fact, for the solid material thermal

degradation, the following order of magnitude is

generally achieved (see, e.g. [14,18]):

Dln
d�

dT

� �
�1ÿ10 (41)

Due to the fact that D(1/T)/R�10ÿ5±10ÿ4 and E

�104±105, the intercept term of Eq. (40) can be

Fig. 3. Illustration of the unreliability of the intercept term for a

general regression equation.
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shown, by the same analysis method for the FC

regression equation, to have a relative error of 1±

100 times the slope term. This result suggests that

Eq. (40) is also unstable for the determination of its

intercept term. However, the use of its slope term is

expected to lead to an accurate n value, for the reason

stated before.

The equation for the pre-exponential factor A can be

derived based on the same idea. In doing so, we would

refer back to Eqs. (5) and (6). Dividing both sides of

them respectively by ln (1ÿ�) and ln (1ÿ�0), and then

subtracting one from the other, we obtain

D
ln �d�=dT�
ln �1ÿ��

� �
� ln

A

�
D

1

ln �1ÿ��
� �

ÿE

R
D

1

Tln �1ÿ��
� �

(42)

Dividing both sides by D(1/T ln (1ÿ�)) yields the

following equation:

�C� D�ln �d�=dT��=ln �1ÿ���
D�1=�Tln �1ÿ����
� ln

A

�

� �
D�1=ln �1ÿ���

D�1=�T ln �1ÿ���� ÿ
E

R
(43)

Obviously the pre-exponential factor A can be

obtained from the slope term of this equation. We

mark this equation by (C) for the sake of emphasis.

This regression equation is worth a few other words. It

has been clear that using Eqs. (A) and (B) the activa-

tion energy E and the reaction order n can be obtained

with permissible errors. However, when E and n have

been obtained, the pre-exponential factor A should not

be estimated by selecting only one data point (T,�)

from the thermogravimetric curve and substituting the

data and the values of E and n into Eq. (5). The reason

is due to the fact that the measured data point (T,�) and

the obtained estimators of E and n all contain errors,

and using them to estimate A would certainly lead to

additional error of the result. Another possible strategy

for determining A is using Eq. (5) directly as the

regression equation, in which the parameters of E

and n are taken as the values obtained by the methods

described earlier. However, it's obvious that the errors

of E and n will still affect the reliability of the obtained

value of A. For this reason, this strategy is also not

recommended. By contrast, Eq. (43) is not directly

affected by the errors of the values of E and n, and thus

it would be expected to result in the value of A with

less error.

So far, we have completed the derivations of the

three regression equations which consist of the new

method to obtain the kinetic information for thermal

degradation reactions. Eqs. (A)±(C) are respectively

used to determine the activation energy E, the reaction

order n, and the pre-exponential factor A. This method

overcomes the disadvantage of the FC method in the

theoretical sense, and therefore it is expected to result

in reliable values of the kinetic parameters.

4. Experimental verification of the proposed
method

In our earlier paper [24], the thermal decomposition

of six different samples of wood and leaves in nitrogen

has been studied by using dynamic thermogravimetry.

We give now one example for the veri®cation of the

above-explained method, using the experimental data

published in the paper. The sample we take here is the

leaves of oil-tea tree, whose botanical name is Camel-

lia oleifera, and the initial weight of this sample is

5.73 mg. The sample was collected from Qimen forest

zone in Anhui province of China. It was ground and

the fraction passing 20 mesh was used for analysis.

Thermal decomposition was observed in terms of the

overall weight loss by using a WRT-3 thermobalance

made by Shanghai Balance Instrument Plant. An

atmosphere of dry nitrogen, oxygen-free, was passed

into the furnace at a ¯ow rate of 80 ml/min. The

sample was used in a wide-mouth porcelain crucible

lightly packed so as not to impede loss of volatile

products. The temperature was increased from room

temperature to 5008C at a rate of 158C/min. The

buoyancy effect was considered negligible, which

was justi®ed by some other researchers, e.g., Simons

et al. [25].

Using the Doyle method, we have found the follow-

ing kinetic data during the temperature interval from

154 to 2758C:

n � 2; E � 63:68 KJ=mol; A � 1:953�105 minÿ1:

To verify the above-suggested method, we selected

several data points randomly from the weight loss

curve, and ®tted three lines respectively according to
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Eqs. (A)±(C). The regression lines are shown in Fig. 4.

A direct test established that these plots showed very

good linearity. For sake of comparison, the kinetic

parameters have been calculated respectively by the

FC method and the suggested method, and the results

are shown in Table 1. It is apparent that a singular

value of n, i.e. ÿ1.11, has been achieved by the FC

method. Contrarily, the comparison of the values of E,

n, and A by the proposed method with those by the

Doyle method has shown good agreement. Table 2 is a

summary of the regression results for the FC method

and the proposed method. With reference to the table

we can see that all the correlation coef®cients approx-

imate unity, implying that the points in each plot of

Fig. 4. Data calculated from the suggested method for (a) the activation energy, (b) the reation order, and (c) the pre-exponential factor. The

unit of T is K, and the unit of R is J/K mol. Note that plot (a) is just the one used in the FC method.

Table 1

Kinetic parameters by different methods

E (KJ/mol) n A (minÿ1)

FC method 69.83 ÿ1.11 ±

Doyle method 63.68 2.00 1.953 � 105

Proposed method 69.83 2.16 1.596 � 106

Table 2

Regression results for the FC method and the proposed method

FC method Proposed methoda

(A) (B) (C)

Ib ÿ1.11

�I 0.64

Sc 69833.0 69833.0 32370.8 11.57

�S 2397.9 2397.9 1620.9 0.64

r 0.996 0.996 0.994 0.991

a (A), (B) and (C) correspond respectively to Eqs. (A), (B) and

(C).
b Intercept term.
c Slope term.
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Fig. 4 are nearly in a line. Inspection of the standard

deviations revealed that only the FC regression line

resulted in an error of its intercept being of the same

order as the intercept value itself, hinting at a great

unreliability of the reaction order obtained by the FC

method. This result illustrated the invalidation of the

FC method in determination of the reaction order. On

the other hand, as is clear from Table 2, the standard

deviations for the suggested method are small com-

pared with the corresponding estimator values, indi-

cating that the suggested method has good accuracy in

the determination of all the kinetic data.

5. Concluding remarks

Previous thermogravimetric studies showed that the

FC kinetic method, for which no assumption about the

reaction order is needed, has great instability in the

determination of the reaction order n. In this paper, an

insight into this limitation has been offered by means

of the regression theory, which suggests that the

regression line used in the FC method is in essence

unstable for the calculation of the n value from the

intercept term. Just for this instability, the n values by

the FC method often ¯uctuate greatly with the number

of points used for ®tting.

For any one general regression equation, the reliabil-

ities of the intercept and slope terms have also been

investigated mathematically. It is shown that the slope

term can be expected to be determined accurately on

conditionthat thecorrelationcoef®cient isclose tounity.

Whereas even with the correlation coef®cient approx-

imating unity, the intercept term is still likely to be

obtained with great error. Based on this analysis, a

new method to determine the three kinetic parameters

E, A, and n accurately has been suggested. In the

proposed method, the three kinetic parameters are deter-

mined respectively from the slopes of three regression

lines. The comparison of the results respectively from

the Doyle method, the FC method, and the proposed

method has shown that the proposed method can be

appliedwithamuchbetteraccuracy than theFCmethod.

The proposed method can be used without a priori

knowledge of the reaction order, which is needed for

most of the other existing kinetic methods. Meanwhile,

the proposed method removes the disadvantages of the

FC method, and its statistical way of working up experi-

mentaldata insurestheaccuracyinestimatingthekinetic

parameters. The proposed method is therefore a reason-

able improvement upon the FC method, and it can be

applied in the study of global mass loss kinetics of

polymer thermal degradation.

As a ®nal remark, this work also reveals that when

any one new kinetic method is developed, the reli-

abilities of its resulted parameters should be investi-

gated in detail, by either experimental or theoretical

means. Only with reliable kinetic parameters can the

suggested method be recommended in use for the

kinetic data of the thermal degradation reactions.
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