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Abstract

The model-free and model-®tting kinetic approaches have been applied to data for nonisothermal and isothermal thermal

decompositions of HMX and ammonium dinitramide. The popular model-®tting approach gives excellent ®ts for both

isothermal and nonisothermal data but yields highly uncertain values of the Arrhenius parameters when applied to

nonisothermal data. These values cannot be meaningfully compared with the values derived from isothermal measurements,

nor they can be used to reasonably predict the isothermal kinetics. On the other hand, the model-free approach represented by

the isoconversional method yields similar dependencies of the activation energy on the extent of conversion for isothermal and

nonisothermal experiments. The dependence derived from nonisothermal data permits reliable predictions of the isothermal

kinetics. The use of the model-free approach is recommended as a trustworthy way of obtaining reliable and consistent kinetic

information from both nonisothermal and isothermal data. # 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Kinetic analysis of solid state decompositions is

usually based on a single step kinetic equation [1]

d�

dt
� k�T�f ���; (1)

where t is the time, T is the temperature, � is the extent

of conversion, and f(�) is the reaction model. The

reaction model may take various forms, some of which

are shown in Table 1. The explicit temperature depen-

dence of the rate constant is introduced by replacing

k(T) with the Arrhenius equation, which gives

d�

dt
� A exp

ÿE

RT

� �
f ���; (2)

where A (the pre-exponential factor) and E (the acti-

vation energy) are the Arrhenius parameters and R is

the gas constant. The Arrhenius parameters, together

with the reaction model, are sometimes called the

kinetic triplet. Under nonisothermal conditions in

which a sample is heated at a constant rate, the explicit

temporal dependence in Eq. (2) is eliminated through

the trivial transformation

d�

dT
� A

�
exp

ÿE

RT

� �
f ���; (3)

where � � dT/dt is the heating rate.
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Compared with isothermal experiments, noni-

sothermal runs are more convenient to carry out

because it is not necessary to perform a sudden

temperature jump of the sample at the beginning.

However, Arrhenius parameters obtained from non-

isothermal data are often reported to disagree with the

values derived from isothermal experiments. In our

opinion, there are two major reasons for this disagree-

ment. The ®rst is a result of the prevalent use of kinetic

methods that involve force ®tting of nonisothermal

data to hypothetical reaction models. Following this

`̀ model-®tting approach'', Arrhenius parameters are

determined by the form of f(�) assumed. Because in a

nonisothermal experiment both T and � vary simulta-

neously, the model-®tting approach generally fails to

achieve a clean separation between the temperature

dependence, k(T), and the reaction model, f(�). As a

result, almost any f(�) can satisfactorily ®t data at the

cost of drastic variations in the Arrhenius parameters,

which compensate for the difference between the

assumed form of f(�) and the true but unknown

reaction model. For this reason, the model-®tting

methods tend to produce highly uncertain values of

Arrhenius parameters.

The second major reason for this disagreement

arises from the fact that isothermal and nonisothermal

experiments are necessarily conducted in different

temperature regions. If decomposition involves sev-

eral steps with different activation energies, the con-

tributions of these steps to the overall decomposition

rate measured in a thermal analysis experiment will

vary with both temperature and extent of conversion.

This means that the effective activation energy deter-

mined from thermal analysis experiments will also be

a function of these two variables. However, the usual

implementation of model-®tting methods is aimed at

extracting a single value of the activation energy for an

overall process. The value obtained in such a way is in

fact an average that does not re¯ect changes in the

reaction mechanism and kinetics with the temperature

and the extent of conversion.

The aforementioned drawbacks of model-®tting can

be avoided with the use of isoconversional methods

[2±4]. Firstly, these methods allow the activation

energy to be determined as a function of the extent

of conversion and/or temperature. Secondly, this

dependence is determined without making any

assumptions about the reaction model. Because the

model-free isoconversional methods eliminate the

causes of the aforementioned disagreement, they are

likely to produce consistent kinetic results from iso-

thermal and nonisothermal experiments.

In this paper, we explore an opportunity of employ-

ing model-®tting and model-free methods to produce

consistent kinetic characteristics from isothermal and

nonisothermal experiments. Analysis of isothermal

kinetic experiments is traditionally believed to be

more reliable because the one variable (T) is held

constant during each experiment, thereby reducing the

number of kinetic parameters that are determined

simultaneously by ®tting. Therefore, the results of

nonisothermal experiments are expected to agree with

Table 1

Set of reaction models applied to describe thermal decomposition in solids

Reaction model f(�) g(�)

1 Power law 4�3/4 �1/4

2 Power law 3a2/3 �1/3

3 Power law 2�1/2 �1/2

4 Power law 2/3�±1/2 �3/2

5 One-dimensional diffusion 1/2�±1 �2

6 Mampel (first-order) 1±� ±ln(1±�)

7 Avrami±Erofeev 4(1±�)[±ln(1±�)]3/4 [±ln(1±�)]1/4

8 Avrami±Erofeev 3(1±�)[±ln(1±�)]2/3 [±ln(1±�)]1/3

9 Avrami±Erofeev 2(1±�)[±ln(1±�)]1/2 [±ln(1±�)]1/2

10 Three-dimensional diffusion 2(1±�)2/3(1±(1±�)1/3)±1 [1±(1±�)1/3]2

11 Contracting sphere 3(1±�)2/3 1±(1±�)1/3

12 Contracting cylinder 2(1±�)1/2 1±(1±a)1/2

13 Second-order (1±�)2 (1±�)±1±1
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the isothermal data. As a de®nitive test for such

agreement we consider the capability of predicting

isothermal kinetics from nonisothermal data.

2. Experimental

As experimental examples we have chosen thermal

decompositions of two energetic materials, l,3,5,7-

tetranitro-1,3,5,7-tetrazocine (HMX) and ammonium

dinitramide (ADN). The Thiokol Corporation kindly

supplied a sample of ADN. The material was used

without further puri®cation. An HMX sample was

received from the Army Research Laboratory at

Aberdeen Proving Grounds, MD. The sample was

used after recrystallization from acetone.

The thermogravimetric analysis (TGA) experi-

ments were carried out using a Rheometric Model

1000M TGA instrument. To reduce thermal gradients

and exothermic self-heating, the experiments were

performed on small (�0.5 mg) samples. The sample

temperature, which is controlled by a thermocouple,

did not exhibit any systematic deviation from the

preset linear temperature programs. Samples of ener-

getic material were placed in aluminum pans and

heated in a ¯owing atmosphere of nitrogen

(100 ml min±1). For experiments carried out under

nonisothermal conditions, the instrument was pro-

grammed to heat the sample from room temperature

at a constant heating rate. After an initial period of

nonlinear heating (<5 min), the programmed linear

heating rates were established. The actual heating

rates used in the kinetic analysis were calculated from

temperature measurements made during the actual

period of a material decomposition. For the thermal

decomposition of HMX the heating rates were 0.17,

0.34, 0.51, 0.68, and 0.848C min. For ADN experi-

ments, the heating rates were 1.5, 4.0, 5.5, 7.8, and

9.508C min±1.

For isothermal experiments, the temperature pro-

gram was optimized to reach the preset isothermal

temperature within 1.5 min without overshooting.

During the next 1.5 min, the sample temperature

was regulated to within � 18C of the set point. For

the remainder of each run, the sample temperature was

maintained within � 0.058C. The thermal decomposi-

tion of HMX was studied at the temperatures of 230,

235, 240, 245, and 2508C. ADN was decomposed

under the temperatures of 132, 138, 143, 147, and

1508C.

3. Kinetic computations

3.1. Model-fitting method

Rearrangement and integration of Eq. (1) for iso-

thermal conditions gives

gj��� � kj�T�t; (4)

where g �� � � R �
0

f �� �� �ÿ1
d� is the integrated form of

the reaction model (Table 1). The subscript j has been

introduced to emphasize that substituting a particular

reaction model into Eq. (4) results in evaluating the

corresponding rate constant, which is determined from

the slope of a plot of gj (�) versus t. For each reaction

model selected, the rate constants are evaluated at

several temperatures, Ti, and the Arrhenius parameters

are determined in the usual manner using the Arrhe-

nius equation in its logarithmic form,

ln kj�Ti� � ln Ajÿ Ej

RTi

; (5)

Arrhenius parameters evaluated for the isothermal

experimental data by the model-fitting method are

presented in Tables 2 and 3.

To choose an appropriate reaction model, one can

plot � as a function of a reduced time variable t/t�,

where t� is the time required to reach a speci®ed

conversion (e.g., � � 0.9). The method is broadly

used in solid state kinetics [1]. The reduced time plots

for the thermal decomposition of HMX and ADN are

shown in Figs. 1 and 2, respectively. For each model,

the goodness of ®t can be estimated by using the

residual sum of squares

S2
j �

1

nÿ1

Xn

i�1

ti

t0:9
ÿ gj��i�

gj�0:9�
� �2

: (6)
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Statistics constructed as

Fj �
S2

j

S2
min

; (7)

where S2
min is the minimum value of all S2

j , have the F-

distribution [5±7]. According to the F-test, only those

reaction models for which Fj > F1±p,n±1,n±1 should be

discriminated as giving S2
j that are significantly larger

than S2
min (and therefore not belonging to the set of

`̀ best fit'' models). All other reaction models fit

experimental data as accurately as the model that

gives the minimum residual sum of squares, S2
min.

The value F1±p,n±1,n±1 is a percentile of the F-distribu-

tion for (1±p)100% confidence probability [5±7].

Tables 2 and 3 provide the values of Fj for various

Table 2

Arrhenius parameters for isothermal decomposition of HMX

determined using the model-fitting approach

Modela F � S2=S2
min E (kJ mol±1) log(A/min±1)

1 43.89 120.9 10.0

2 27.45 122.0 10.2

3 9.10 123.9 10.5

4 16.41 132.7 11.5

5 32.33 136.0 11.8

6 32.34 158.1 14.7

7 16.96 137.1 11.9

8 5.37 139.7 12.3

9 1.00 144.6 13.0

10 69.84 158.9 13.9

11 17.80 144.4 12.6

12 12.25 139.2 12.1

13 90.02 362.4 37.5

a Enumeration of the models is given in Table 1.

Table 3

Arrhenius parameters for isothermal decomposition of ADN

Modela F � S2=S2
min E (kJ mol±1) 1og(A/min±1)

1 592.12 126.0 13.2

2 454.32 126.1 13.3

3 266.55 126.4 13.5

4 2.38 127.7 13.7

5 16.88 128.2 13.8

6 22.81 129.5 14.5

7 332.84 127.4 13.6

8 197.99 127.6 13.8

9 56.67 128.1 14.0

10 126.04 130.3 13.7

11 1.00 128.4 13.7

12 1.26 128.1 13.75

13 217.93 289.9 36.8

a Enumeration of the models is given in Table 1.

Fig. 1. Reduced time plots for the reaction models (solid curves, as

enumerated in Table 1) and isothermal experimental data for HMX

decomposition. Circles correspond to data that are the average of

five isothermal experiments performed at 230, 235, 240, 245, and

2508C. The dashed curve for model 9 designates the best fit.

Fig. 2. Reduced time plots for the reaction models (solid curves, as

enumerated in Table 1) and isothermal experimental data for ADN

decomposition. Circles correspond to data that are the average of

five isothermal experiments performed at 132, 138, 143, 147, and

1508C. The dashed curves for models 11 and 12 designate the best

fits.
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reaction models as applied to the thermal decomposi-

tions of HMX and ADN.

For nonisothermal conditions there are several rela-

tionships used to compute Arrhenius parameters, [1]

each of which is based on an approximate form of the

temperature integral that results from rearrangement

and integration of Eq. (3)

g��� � A

�

Z T�

0

exp
ÿE

RT

� �
dT � A

�
I�E; T��:

(8)

One such approximation gives rise to the Coats±

Redfern equation [8]

ln
gj���

T2

� �
� ln

AjR

�Ej

� �
1ÿ 2R�T

Ej

� �
ÿ Ej

RT
; (9)

where �T is the mean experimental temperature. This

method is reported [9] to be one of the most frequently

used to evaluate nonisothermal data. Inserting various

gj(�) into Eq. (9) results in a set of Arrhenius para-

meters determined from the plot ln[gj(�)/T 2] against

T ±1. The sets of Arrhenius parameters for the thermal

decompositions of HMX and ADN are shown in

Tables 4 and 5, respectively. For each model, the

goodness of fit is customarily estimated by a coeffi-

cient of linear correlation, rj. A single pair of E and A

is then commonly chosen as that corresponding to a

reaction model that gives rise to the maximum abso-

lute value of the correlation coefficient, rmaxj j [10±13].

This popular routine ignores the fact that the correla-

tion coefficient (and other statistical measures) is

subject to random fluctuations, and its uncertainty

must be taken into account in the form of confidence

limits. Within these limits, all the models are equally

probable. Therefore, the maximum value of rj j or the

minimum value of S2 does not necessarily indicate

`̀ the most probable'' reaction model.

The above-mentioned F-test takes proper account

of the uncertainty in S2, and there are similar tests for

the correlation coef®cient [6,7,14]. They all start from

Fischer's transformation,

z � 1

2
ln

1� r

1ÿr
; (10)

which allows one to obtain a variable that has a normal

distribution with the standard deviation � � 1=
���������
nÿ3
p

where n is the sample size. Let us now determine z0,

which is the smallest value of z that does not violate

the statistical hypothesis z0 � zmax where zmax and z0

are Fisher's transformations for rmaxj j and r0j j, respec-

tively. This can be done with the help of the following

statistics [14]

U � zmaxÿz0

1=
���������
nÿ3
pÿ � (11)

that has a standard normal distribution. For 95%

confidence probability, the percentage point of the

normal distribution is 1.645. By substituting this value

into Eq. (11), we can determine z0. Then the inverse

Table 4

Arrhenius parameters for nonisothermal decomposition of HMX at

0.178C min±1 determined using the Coats±Redfern equation

Modela E (kJ mol±1) log(A/min±1) ±r

1 21.3 ±0.6 0.9327

2 31.0 0.5 0.9424

3 50.4 2.7 0.9501

4 167.0 14.8 0.9582

5 225.3 20.7 0.9591

6 125.9 10.8 0.9444

7 25.6 0.0 0.9205

8 36.7 1.3 0.9299

9 59.0 3.7 0.9378

10 246.1 22.2 0.9536

11 119.1 9.5 0.9508

12 116.2 9.4 0.9530

13 152.6 14.0 0.9073

a Enumeration of the models is given in Table 1.

Table 5

Arrhenius parameters for nonisothermal decomposition of ADN at

5.58C min±1 determined using the Coats±Redfern equation

Modela E (kJ mol±1) log(A/min±1) ±r

1 24.5 1.7 0.9783

2 35.1 3.0 0.9813

3 56.2 5.5 0.9837

4 182.9 20.1 0.9862

5 246.2 27.3 0.9865

6 139.4 15.5 0.9928

7 29.5 2.4 0.9903

8 41.7 3.9 0.9913

9 66.1 6.9 0.9921

10 269.1 29.3 0.9928

11 131.0 13.9 0.9924

12 127.6 13.6 0.9910

13 177.8 20.5 0.9436

a Enumeration of the models is given in Table 1.
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Fisher's transformation gives the value of r0

r0 � exp �2z0�ÿ1

exp �2z0� � 1
: (12)

Therefore, we can discriminate only those reaction

models for which rj

�� �� < r0j j as having inferior linear

correlations. All other models are as good ®ts of

experimental data as the model that gives the max-

imum absolute value of the correlation coef®cient,

rmaxj j Tables 6 and 7 show `̀ the best'' (statistically

equivalent) reaction models with the corresponding

values of Arrhenius parameters.

Sometimes, ®tting various reaction models is

replaced with solely ®tting the reaction order model.

In this method the reaction order, n, is varied to

determine the best ®t (e.g., the maximum of | r |)

and thereby determine the best kinetic triplet [13].

This procedure is not statistically valid unless the

uncertainty in rmax is taken into account. Again, we

have to evaluate r0 as given in above. As seen in Fig. 3,

the value of r0 determines a con®dence interval for n as

well as for Arrhenius parameters. The results shown in

Fig. 3 were obtained by substituting the reaction order

model into the Coats±Redfern equation (9).

The statistically equivalent kinetic triplets deter-

mined from nonisothermal data using the model-®t-

ting method (Tables 6 and 7) have been used to predict

isothermal kinetics as follows:

t� � g���
A exp �ÿE=RT0� ; (13)

where t� is the time to reach the extent of conversion �
at the temperature T0. The kinetic triplets obtained

from fitting the reaction-order model have also been

Table 6

Best kinetic triplets for nonisothermal decomposition of HMX at various heating rates determined using the Coats±Redfern equation

� (8C min±1) Model g(�) E (kJ mil±1) log(A/min±1) ±r

0.17 4 �3/2 167.0 14.8 0.9582

5 �2 225.3 20.7 0.9591

0.34 4 �3/2 166.0 14.6 0.9326

5 �2 224.0 20.4 0.9340

10 [1±(1±�)1/3]2 236.5 20.9 0.9312

12 1±(1±�)1/2 112.6 9.0 0.9281

0.51 4 �3/2 154.5 13.3 0.9548

5 �2 208.7 18.6 0.9558

0.68 4 �3/2 144.7 12.2 0.9304

5 a2 195.6 17.1 0.9320

0.84 4 a3/2 146.1 12.5 0.9501

5 a2 197.5 17.4 0.9513

Table 7

Best kinetic triplets for nonisothermal decomposition of ADN at various heating rates determined using the Coats±Redfern equation

� (8C min±1) Model g(�) E (kJ mol±1) log(A/min±1) ±r

1.5 10 [1±(1±�)1/3]2 260.9 28.8 0.9939

11 1±(1±�)1/3 127.0 13.4 0.9936

4.0 6 ±ln(1±�) 145.6 16.3 0.9946

9 [±ln(1±�)]1/2 69.3 7.2 0.9941

5.5 6 ±ln(1±�) 139.4 15.5 0.9928

9 [±ln(1±�)]1/2 66.1 6.9 0.9921

10 [1±(1±�)1/3]2 269.1 29.3 0.9928

11 1±(1±a)1/3 131.0 13.9 0.9924

7.8 6 ±ln(1±�) 139.4 15.5 0.9920

9 [±ln(1±a)]1/2 66.1 6.9 0.9912

9.5 6 ±ln(1±�) 158.5 17.7 0.9768

9 [±ln(1±a)]1/2 75.6 8.1 0.9745
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used to make isothermal predictions by Eq. (13). All

these predictions are displayed in Figs. 4 and 5.

3.2. Model-free isoconversional method

The basic assumption of the isoconversional

method is that the reaction model, as de®ned in Eq.

(1), is not dependent on temperature or heating rate.

Under isothermal conditions, we may combine Eqs.

(4) and (5) to obtain

ÿln t�;i � ln
A�

g���
� �

ÿ E�

RTi

; (14)

where E� is evaluated from the slope of the plot

±ln t�,i against Tÿ1
i . The E� dependencies obtained

for the thermal decomposition of HMX and ADN are

shown in Figs. 6 and 7.

For nonisothermal experiments, a nonlinear isocon-

versional method has been developed [15,16] which

avoids inaccuracies associated with analytical approx-

imations of the temperature integral. Because g(�) is

independent of the heating rate, for any two experi-

ments conducted at different heating rates, the ratio of

the temperature integral I(E, Ta) to the heating rate �
is a constant, as shown by Eq. (8). For a set of n

Fig. 3. Nonisothermal decomposition of HMX at 0.178C min±1.

Variation of the correlation coefficient (solid curve) and the

activation energy (dashed curve) with the value of the reaction

order, n. The critical value of the correlation coefficient, r0,

determines the confidence intervals Dn and DE for the reaction

order and activation energy, respectively.

Fig. 4. Predictions of the isothermal decomposition kinetics of

HMX at 2358C from nonisothermal kinetic parameters. The solid

curves numbered 4, 5, and 9 are calculated using Eq. (13) and the

corresponding kinetic triplets in Table 4. The dotted curves are

calculated based on kinetic triplets obtained by fitting the reaction

order model (the values of n are indicated by each curve). The

curve marked ASTM was calculated using Eq. (18), and the dashed

curve marked ME is the model-free prediction calculated using Eq.

(16). Circles indicate the experimental data.

Fig. 5. Predictions of the isothermal decomposition kinetics of

ADN at 1508C from nonisothermal kinetic parameters. The solid

curves numbered 6, 9, 10 and 11 are calculated using Eq. (13) and

the corresponding kinetic triplets in Table 5. The dotted curves are

calculated based on kinetic triplets obtained by fitting the reaction

order model (the values of n are indicated by each curve). The

curve marked ASTM was calculated using Eq. (18), and the dashed

curve marked ME is the model-free prediction calculated using Eq.

(16). Circles indicate the experimental data.
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experiments carried out at different heating rates,

the activation energy can be determined at any

particular value of � by ®nding the value of Ea for

which the functionXn

i�1

Xn

j 6�i

I�E�;T�;i��j

I�E�;T�;j��i

(15)

is a minimum. The minimization procedure is

repeated for each value of � to find the dependence

of the activation energy on the extent of conversion.

Figs. 6 and 7 provide the Ea dependencies determined

for the nonisothermal decompositions of HMX and

ADN.

Recently, Vyazovkin [16,17] extended the non-

linear isoconversional method to arbitrary heating

programs. This method can be effectively used to

process data obtained under the conditions of distorted

linear (e.g., self-heating/cooling) or purposely non-

linear (e.g., temperature modulations) heating.

The sole evaluation of E� dependence is suf®cient

to predict the isothermal kinetics from nonisothermal

data. This is formalized by Eq. (16)

t� �
R T�

0
exp �ÿE�=RT� dT

� exp �ÿE�=RT0� ; (16)

which enables the time at which a given conversion

will be reached at an arbitrary temperature, T0, to be

computed. Vyazovkin and Lesnikovich [18] first

derived Eq. (16). Because predictions using this

method can be made without knowledge of the reac-

tion model (and the pre-exponential factor), they will

be referred to as `̀ model-free predictions''. The

model-free predictions for isothermal decompositions

of HMX and ADN are presented in Figs. 4 and 5.

Although the pre-exponential factor and the reaction

model are not needed for making predictions, the

techniques of their evaluating have been developed

[19±21].

3.3. ASTM E698

The ASTM E698 method [22] occupies an inter-

mediate position between the model-®tting and

model-free methods. It uses a model-free estimate

for the activation energy which is evaluated from

Kissinger's plot of ln��=T2
m� against Tÿ1

m [23],

where Tm, is the temperature corresponding to the

maximum of d�/dT. However, the pre-exponential

factor is evaluated on assumption of a ®rst-order

Fig. 6. Dependencies of the activation energy on extent of HMX

conversion determined using the model-free isoconversional

method for the isothermal data (squares) and nonisothermal data

(circles). The dashed line indicates the value obtained by the

model-fitting method from isothermal data.

Fig. 7. Dependencies of the activation energy on extent of ADN

conversion determined using the model-free isoconversional

method for the isothermal data (squares) and nonisothermal data

(circles) The dashed line indicates the value obtained by the model-

fitting method from isothermal data.
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reaction as follows:

A � �E

RT2
m

exp
E

RTm

� �
: (17)

Predictions of the isothermal kinetics are also based

on the assumption that a reaction obeys ®rst-order

kinetics

t � ÿln �1ÿ��
A exp E=RT0� � : (18)

To determine the values of Tm, we used smoothed

numerical derivatives of � over T. The use of the

ASTM method yields values of E � 130.6 kJ mol±1,

log(A/min±1) � 11.5, and r � ± 0.9932 for HMX

decomposition. For decomposition of ADN, this

method yields E � 117.2 kJ mol±1, log(A/min±1) �
12.7, and r � ± 0.9991. Substitution of the E and A

values into Eq. (18) gave rise to predictions that are

shown in Figs. 4 and 5.

4. Discussion

4.1. Model-fitting method

Examination of Tables 2 and 3 suggests that the

Arrhenius parameters determined for the isothermal

data using the model-®tting method are rather mildly

variable when changing the reaction model. The

reduced time plots for isothermal decompositions

of HMX (Fig. 1) and ADN (Fig. 2) were subjected

to statistical analysis as described above Eqs. (6) and

(7). The resulting values of F are given in Tables 1 and

2. The F-test allows the Avrami±Erofeev model (num-

ber 9) to be identi®ed as the best description for

isothermal decomposition of HMX. The correspond-

ing Arrhenius parameters are E � 144.6 kJ mol±1 and

log(A/min±1) � 13.0. For the isothermal decomposi-

tion of ADN, the statistical analysis of reduced

time plots suggests that of the reaction models shown

in Table 1, the contracting sphere and contracting

cylinder models provide the best ®ts to experimental

data. These two models describe quite similar

mechanisms and give rise to practically identical pairs

of Arrhenius parameters (E � 128 kJ mol±1 and log(A/

min±1) � 14). Therefore, the model-®tting method

appears to produce quite reasonable kinetic informa-

tion from isothermal data.

In contrast, the Arrhenius parameters obtained for

nonisothermal decompositions of HMX and ADN are

highly variable, exhibiting a strong dependence on the

reaction model chosen (Tables 4 and 5). As we can see,

most of the models give rise to good linear ®ts as

characterized by the values of r. Statistical analysis

Eqs. (10)±(12) of the linear correlation coef®cients

helps to identify `̀ best'' (statistically equivalent) reac-

tion models (Tables 6 and 7).

For the nonisothermal decomposition of HMX,

models 4 and 5 are the best for all ®ve heating rates.

Model 4 gives rise to an activation energy that varies

from 146 to 167 kJ mol±1 with the heating rate. Model

5 also shows the variation in E from 196 to 225 kJ

mol±1. Fitting of the reaction-order model followed by

statistical analysis (Fig. 3) resulted in the following

con®dence limits ±1.5 � n � 0.5, 94.3 �
E �116.2 kJ mol±1, and 7.1 � log(A/min±1) � 9.7.

The kinetic triplet corresponding to the minimum

(r � ±0.9569) is n � ± 0.3, E � 105.0 kJ mol±1, and

log(A/min±1) � 8.3. According to the statistical test

Eqs. (10)±(12) this kinetic triplet is equivalent to the

triplets corresponding to models 4 and 5.

Let us now compare the results of model-®tting for

nonisothermal and isothermal decompositions of

HMX. Although model 9 (Avrami±Erofeev) was

uniquely chosen from isothermal decomposition, it

did not happen to be among the best ®ts for non-

isothermal data. The mechanisms represented by mod-

els 4 and 5 are obviously different from that embodied

in model 9. Note that the value of the activation energy

corresponding to model 9 is signi®cantly different

from the value 144.6 kJ mol±1 obtained for this model

from isothermal data. The application of models 4 and

5, as well as ®tting of the reaction-order model,

resulted in markedly different values of the activation

energy. Among these three models, only model 4 gives

the value of E that is fairly consistent with the value

obtained from isothermal data. However, statistical

analysis does not allow this model to be chosen to the

exclusion of all others. The resulting uncertainty does

not permit meaningful comparison of the activation

energy derived from nonisothermal data with the value

produced from isothermal measurements.

The above kinetic triplets have been used to predict

the kinetics of the thermal decomposition of HMX at

2358C. As illustrated in Fig. 4, all these predictions are

rather unsatisfactory.
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For nonisothermal decomposition of ADN, no sin-

gle reaction model happened to be the best in all ®ve

experiments (Table 7). In four experiments models 6

and 9 were identi®ed as the best descriptions. Models

10 and 11 are the best in two experiments. All four best

models are best ®ts of thermal decomposition of ADN

at 5.58C min±1. Let us compare the results of this

experiment with isothermal data. Again, we encounter

the problem of internal inconsistency between kinetic

triplets derived from nonisothermal data. The four best

models describe qualitatively different mechanisms,

and the corresponding Arrhenius parameters span a

factor of 4 in activation energy and log A. Therefore

the value of the activation energy for nonisothermal

decomposition is too uncertain to be meaningfully

compared with that value for isothermal process.

In contrast to the results of the experiments with

HMX, one of the two best ®ts of the isothermal data

(model 11) ranks with other best models for non-

isothermal data. All other best ®ts of nonisothermal

data suggest mechanisms that are qualitatively differ-

ent from the contracting geometry interface processes

represented by models 11 and 12 (best ®ts of iso-

thermal data). The Arrhenius parameters correspond-

ing to model 11 also show good agreement with the

parameters computed for isothermal data. Substitution

of the kinetic triplet corresponding to this model into

Eq. (13) results in a very good prediction for the

isothermal decomposition of ADN at 1508C (Fig.

5). In spite of the obvious viability of model 11, we

have to stress that statistical analysis of the nonisother-

mal experimental data does not allow this model to be

preferred over three other models (6, 9, and 10) whose

use results in unsatisfactory predictions of the iso-

thermal kinetics.

The kinetic triplets found by ®tting the reaction-

order model have also been used for the isothermal

predictions by Eq. (13). Again, the resulting predic-

tions are unreliable (Fig. 5).

The fact that the use of the model identi®ed from

isothermal data allows one to accomplish agreement

between nonisothermal and isothermal kinetics calls

to mind the method proposed by Tang and Chaudhri

[24]. Their idea was to run an isothermal experiment

to identify the reaction model and then use it to

evaluate Arrhenius parameters of a nonisothermal

process. As we can see this method would work well

for the thermal decomposition of ADN. Nevertheless,

for the nonisothermal decomposition of HMX, the

best model identi®ed from isothermal data gave rise to

Arrhenius parameters that were signi®cantly different

from the isothermal values (cf. Tables 2 and 4). The

prediction of isothermal kinetics based on these para-

meters was also unsatisfactory (Fig. 4). In other words,

this method would obviously fail when applied to the

HMX data. Therefore the general applicability of this

method is questionable.

4.2. Limitations of statistical analysis as applied

to model-fitting

As shown here for ADN and HMX, the application

of statistical analyses in model-®tting is most likely to

result in several best ®ts (i.e., kinetic triplets) for the

same set of data. The problem with using and inter-

preting differing kinetic triplets is obvious. But what if

the kinetic triplet has been determined unambiguously

as in the case of the isothermal decomposition of

HMX. There are several problems to be considered

in this situation.

Firstly, we can never be sure that the unambiguous

choice is actually unambiguous. The reaction model is

chosen from the list of arbitrarily (subjectively) com-

piled models. No matter how comprehensive this list

may seem, there is absolutely no guarantee that the

adequate model is included in the list. For any process

under study, the appropriate model may yet to be

invented. However, any arbitrarily compiled list

always has a model that gives a better description

of the process than other models. Therefore, even an

unambiguous choice still can be wrong and yield an

inadequate kinetic triplet.

Secondly, even an unambiguously chosen reaction

model cannot help in drawing an unambiguous

mechanistic conclusion because of the ambiguous

association of the kinetic equation with the mechan-

istic model of a process. Jacobs and Tompkins [25]

emphasized that a posterior agreement between the

theoretical rate equations and experimental results

does not necessarily con®rm the basis on which these

equations are derived. This statement is rather obvious

if we take into account that the same equation can be

derived for totally different mechanistic models and

the same mechanistic model can give rise to several

different equations [26]. For instance, Pysiak [27]

demonstrated that the equation of contracting sphere

62 S. Vyazovkin, C.A. Wight / Thermochimica Acta 340±341 (1999) 53±68



can be derived from three different mechanistic con-

cepts.

Last but not least, any statistical characteristics rank

the reaction models by the goodness of data ®t, but not

by the physical sense of applying these models to

experimental data. Even if a reaction model does not

have any physical meaning at all, it may perfectly ®t

data. For instance, the HMX decomposition data can

be successfully ®t by the reaction order model with

n � ± 0.3 and rj j � 0:9569 (Fig. 3). According to

statistical analysis this bizarre model ®ts the data as

well as models 4 and 5 (Table 1), which are derived

from de®nite physical models. It should be remem-

bered that the prime objective of kinetic analysis is

obtaining physically sound kinetic information.

Therefore, statistical methods cannot be used as an

ultimate tool of kinetic analysis.

4.3. Model-fitting methods and compensation effect

The reason for the failure of the model-®tting

method, as applied to nonisothermal data, is clear.

Unlike the isothermal experiments, in which tempera-

ture is isolated as an experimental variable, the non-

isothermal experiments allow ®ts that vary the

temperature sensitivity k(T) and the reaction model

f(a), simultaneously. This extra ¯exibility in the ®tting

procedure allows errors in the functional form of the

reaction model to be concealed by making compen-

sating errors in k(T) so that a series of approximate

equalities

d�

dt
� k1�T�f1��� � � � � � kj�T�fj���
� � � � � kn�T�fn���; (19)

holds true subject to variable temperature. Because for

most of the reaction models the variation in f(�) with �
is practically negligible as compared to the variation in

k(T) with T, we can derive from the logarithmic form

of Eq. (19) the following approximate equality

ln kj�T� � const: � ln k0; (20)

(here k0 is the isokinetic rate constant [21,28]) that

holds over the experimental temperature region. Eq.

(20) can be rewritten as

ln k0 � ln Ajÿ�RT�ÿ1
Ej: (21)

The experiments are typically carried out over a

relatively narrow range of temperatures so that

Tÿ1 � const: � �T0�ÿ1; (22)

where T 0 is the isokinetic temperature [21,28]. Sub-

ject to condition (22), Eq. (21) can be rearranged as

follows:

ln Aj � ln k0 � �RT0�ÿ1
Ej: (23)

Eq. (23) suggests a linear correlation between the

values of Ej, and ln Aj computed for different reaction

models (cf. Tables 4 and 5). This correlation is often

called `̀ compensation effect'' [1].

Eqs. (20) and (22) also suggest that a series of

Arrhenius plots related to various reaction models

should have a common intersection point at coordi-

nates (T 0)±1 and ln k0. This effect is described as the

so-called arti®cial isokinetic relationship [21,28].

Fig. 8 gives a graphic presentation of this effect for

the thermal decomposition of HMX. Although the

Arrhenius parameters vary by as much as one order

of magnitude (see Table 4), the values of ln ki(T)

related to various reaction models are virtually equal

within the experimental temperature region (Fig. 8).

An interesting consequence of the compensation

behavior given by Eq. (19) is that despite the wide

Fig. 8. Arrhenius lines plotted data presented in Table 4 for

nonisothermal decomposition of HMX. 155±2508C is the tempera-

ture region of the nonisothermal decomposition of HMX. 2358C is

the temperature for the predictions (Fig. 4) were made.
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variation in Arrhenius parameters they can be used to

fairly reproduce the dependence of � on T from which

these parameters were estimated. This is shown in Fig.

9. The � versus T predictions were made by substitut-

ing the kinetic triplets (Table 4) into Eq. (24)

� � Gj

Aj

�
I�Ej; T�

� �
; (24)

where Gj is the function inverse to gj(�), so that

Gj[gj,(�)] > �. The temperature integral in Eq. (24)

was replaced with the Senum±Yang approximation

[29].

Then, the question arises why these Arrhenius

parameters cannot be used to reasonably predict the

isothermal kinetics even for the temperatures that lie

within the temperature region of a nonisothermal

experiment (Fig. 10). As we can see in Fig. 8, the

rate constants for different reaction models are almost

identical at the temperature for which the predictions

are made. It should be remembered that the predictive

power of the kinetic triplets derived from nonisother-

mal data rests upon the compensation of k(T) and f(�)

(Eq. (19)) that holds only for the conditions of variable

temperature. For this reason, the form of the reaction

model is virtually irrelevant when the kinetic triplets

are used to reproduce nonisothermal data (Fig. 9).

Because for isothermal predictions the rate constant is

invariable, it cannot compensate for the difference

between the assumed and true reaction model. As a

result the error in choosing the reaction model from

nonisothermal experimental data is revealed when

those constants are used to predict the results of

isothermal experiments (Fig. 10). This fact brings

us to the important conclusion that the goodness of

nonisothermal data ®ts does not characterize the abil-

ity of the kinetic triplets to predict the isothermal

kinetics.

To characterize the quality of isothermal predictions

made with various kinetic triplets, we used the average

relative deviations determined as follows:

ARD � 100%

n

Xn

i�1

t
exp
�;i ÿt

j
�;i

t
exp
�;i

�����
�����; (25)

where t
exp
�;i and t

j
�;i respectively are the experimentally

measured and predicted by jth model (Eq. (13)) times

to reach the same extent of conversion. The ARD

values were applied to evaluate the predictions of the

isothermal decomposition of HMX at 2358C. Fig. 11

shows the ARD values plotted against the correlation

coefficients that characterize the kinetic triplets for the

nonisothermal decomposition of HMX (Table 4). As

we can see, the correlation between these two char-

Fig. 9. Predictions of the nonisothermal decomposition of HMX at

0.178C min±1. The numbers 1, 2, 8, and 13 indicate the kinetic

triplets (Table 4) that resulted in the worst fits. Circles show the

actual measurements.

Fig. 10. Predictions of the isothermal decomposition of

HMX at 2358C. The numbers indicate kinetic triplets (Table 4)

used for predictions by Eq. (13). Circles show the actual

measurements.
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acteristics is poor. This emphasizes the point that

choosing a kinetic triplet from nonisothermal data

on the basis of linear correlation coefficients is not

very likely to result in successful prediction of the

results of the corresponding isothermal experiment.

4.4. Model-free isoconversional method

Application of Eq. (14) to the isothermal data for

HMX reveals the functional dependence of E� on �
(Fig. 6). The activation energy at high extents of

conversion is essentially constant, but is somewhat

lower in the early stages of the reaction. Unlike the

model-®tting method, which yields a single effective

value of the activation energy for the whole process

(144.6 kJ mol±1), the isoconversional method has the

ability to reveal complexity of the process in the form

of a functional dependence of E� on �. Application of

Eq. (15) to the nonisothermal data results in a E�-

dependence that is similar in shape to the isothermal

one. The similarity of the dependencies derived from

isothermal and nonisothermal measurements suggests

that the operative multi-step mechanism is essentially

the same for the isothermal and nonisothermal con-

ditions.

The E�-dependence evaluated from nonisothermal

data was employed to predict (by the use of Eq. (16))

the isothermal kinetics of HMX decomposition. This

model-free prediction is in excellent agreement with

the actual isothermal measurements (Fig. 4).

For the isothermal decomposition of ADN, the use

of Eq. (14) gives rise to an E�-dependence (Fig. 7) that

rises from about 110 kJ mol±1 at low conversion to

nearly 140 kJ mol±1 at � � 0.2. At � > 0.2 the depen-

dence decreases to about 124 kJ mol±1 near the com-

pletion of the reaction. As compared to the model-

®tting method that gave a single value of the activation

energy for the process (128 kJ mol±1 in this case), the

isoconversional method reveals complexity of the

process. Fig. 7 also shows the E�-dependence for

the nonisothermal decomposition of ADN, as com-

puted by the nonlinear isoconversional method Eq.

(15). The dependence is similar in shape to the iso-

thermal one. The activation energy increases to a

maximum around 168 kJ mol±1 at � � 0.2, then

decreases monotonically to 112 kJ mol±1 near the

end of the reaction. The obtained dependencies unmis-

takably indicate a multi-step mechanism of both iso-

thermal and nonisothermal decompositions of ADN.

Recently we have reported a detailed scheme of this

process [30,31].

Fig. 5 demonstrates the ADN isothermal decom-

position as predicted by using the E�-dependence

derived from nonisothermal data (Eq. (16)). We can

see that the model-free prediction agrees very well

with the actual measurements.

The examples considered here demonstrate that the

parallel application of model-free isoconversional

method to isothermal and nonisothermal data results

in obtaining Ea-dependencies that are similar in shape.

but not identical. Our theoretical analysis has shown

[32] that some difference in the Ea-dependencies

produced from isothermal and nonisothermal is rather

typical. However, the use of Ea-dependence derived

from nonisothermal data has permitted reliable pre-

dictions of the isothermal decomposition of HMX and

ADN. Therefore, we may conclude that the model-

free isoconversional method is capable of producing

consistent kinetic information from isothermal and

nonisothermal data.

4.5. ASTM E698

The application of model-free Kissinger's method

resulted in the values of the activation energy that

agree well with the values obtained from isothermal

Fig. 11. Average relative deviations (ARD) of the isothermal

predictions (Fig. 10) from the actual measurements plotted against

the correlation coefficients (Table 4).
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measurements. The values derived from nonisother-

mal and isothermal data respectively are 131 and

148 kJ mol±1 for HMX and 117 and 128 kJ mol±1

for ADN. The value of A determined by Eq. (17)

and Kissinger's estimate for E were substituted in Eq.

(18) to obtain the isothermal predictions that are

shown in Figs. 4 and 5. The resulting predictions

appear to have intermediate accuracy that is obviously

higher than that of the model-®tting predictions but

lower than accuracy of model-free predictions. In

general, Kissinger's method permits obtaining the

values of the activation energy that agree with the

values produced from isothermal data. The isothermal

predictions made by using the ASTM method (Eq.

(18)) are reasonable, but signi®cantly less accurate

than the predictions obtained with model-free method

Eq. (16). As compared to the authentic isoconver-

sional methods [2±4,15±17] the Kissinger method has

a disadvantage of producing a single value of the

activation energy for the whole process. As a result,

activation energy variations in that may accompany

complex (e.g., multi-step) kinetics may not be

revealed by this method.

4.6. Model-free versus model-fitting method as

applied to multi-step kinetics

Solid state reactions ordinarily demonstrate a

tangled interplay of various chemical and physical

processes such as solid-state decomposition, reaction

of gaseous products with the solid, sublimation, poly-

morphous transitions, diffusion, melting, evaporation,

adsorption, desorption, etc. Therefore, the effective

activation energy of a solid state reaction is generally a

composite value determined by the activation energies

of various processes and by their in¯uence on the

overall reaction rate. Even if the temperature is kept

constant (single isothermal experiment), the relative

contributions of the elementary steps into the overall

reaction rate vary with the extent of conversion ulti-

mately resulting in a dependence of the effective

activation energy on the extent of conversion [32].

Additionally, the kinetics of solid state reactions are

known [33] to be sensitive to pressure, size of crystals,

gaseous atmosphere and many other factors which are

likely to change during the process.

Model-®tting methods are designed to extract a

single set of global Arrhenius parameters for the

whole process and are therefore unable to reveal

this type of complexity in solid state reactions. The

values obtained in such a way are averages that do not

re¯ect changes in the mechanism and kinetics with the

temperature and the extent of conversion. The model-

free isoconversional method allows for unmistakably

detecting multi-step kinetics as a dependence of the

activation energy on the extent of conversion. Further-

more, it was shown [34] that revealing the dependence

of the activation energy on conversion not only helps

to disclose the complexity of a process, but also helps

to identify its kinetic scheme. The shapes of the

dependence of E� on � have been identi®ed from

simulated data for competing [34], independent [35],

consecutive [36], and reversible [37] reactions, as well

as reactions complicated by diffusion [38]. Principles

and examples of the mechanistic interpretations of the

dependence of E� on � can be found elsewhere

[30,34,39±47].

4.7. Model-fitting method and nonisothermal

kinetics, or `̀ why has nonisothermal kinetics

gained so bad a reputation?'' [48]

As was mentioned above, application of the model-

®tting method to nonisothermal data always gives rise

to highly ambiguous kinetic triplets. This ambiguity

ultimately causes the failures of interpretation and

utilization of the kinetic triplets. It should be empha-

sized that the problem of ambiguity is peculiar to the

model-®tting method itself, no matter if it is applied to

isothermal or nonisothermal data. In a nonisothermal

experiment, the temperature and conversion contribu-

tions of the reaction rate are not separated, and this

strongly aggravates the problem of ambiguity. That is

why this problem is often considered as a speci®c

problem of nonisothermal kinetics, but not a problem

of the model-®tting method. Unfortunately, this

¯awed method has been employed in an overwhelm-

ing majority of kinetic analyses. Its failures are some-

times revealed as bizarre results, such as unreasonably

small [49,50] or even negative [51] values of the

activation energy, or as negative values of the activa-

tion entropy for endothermic processes [49,52,53], or

as a negative estimated number of collisions [54]. The

¯ood of inconsistent information produced from

nonisothermal data with the model-®tting method
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provoked an antagonistic attitude towards nonisother-

mal kinetics as a whole. In our view this attitude is

justi®able only as it pertains to the use of the model-

®tting approach to the kinetic analysis. The model-

free isoconversional approaches provide trustworthy

methods of analyzing nonisothermal kinetic data such

that the kinetic parameters can be used to predict the

results of isothermal experiments.

5. Conclusions

The application of the model-®tting method to

nonisothermal data results in highly uncertain kinetic

triplets that cannot be meaningfully compared with the

triplets evaluated from isothermal measurements.

Because of the characteristic uncertainty, the kinetic

triplets obtained from nonisothermal data are not

capable of reasonably predicting isothermal kinetics.

The model-®tting method applied to isothermal data

gives rise to unambiguous values of Arrhenius para-

meters that are likely to conceal multi-step kinetics. A

viable alternative to the model-®tting method is the

model-free isoconversional method. This method has

the attractive attributes that

� it can be used to analyze either isothermal or

nonisothermal data;

� results from isothermal and nonisothermal experi-

ments are internally consistent;

� the explicit evaluation of Ea-dependencies can

reveal complexities in the reaction kinetics.

Therefore, this model-free approach can be recom-

mended as a trustworthy way of obtaining reliable and

consistent kinetic information from both nonisother-

mal and isothermal data.
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