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Abstract

The PadeÂ rational function in general use as an approximation for the p(X) function or the Arrhenius integral seems to be in

error. A corrected equation is given. Even the correct rational function, and other suggested approximating equations, are not

accurate enough at low values of X � E/RT. Chebyshev polynomials offer a better solution, over the whole range of X values,

to a greater precision than found in published tables. Relatively simple computer routines may be used to generate the

coef®cients required.

The Stander and van Vuuren/ZsakoÂ method of analysis of non-isothermal data may be used to test the time of a typical

calculation. # 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The simplest experiment to determine the kinetics

of a thermal decomposition is thermogravimetry under

non-isothermal conditions. If a computer is used to log

the results, a large number of accurate readings are

then available. Dif®culties appear when these results

have to be interpreted.

The evolution of the equations involved have been

given many times, especially in the reviews [1±3]. The

basic rate equation may be combined with the Arrhe-

nius equation

d�

dt
� kf ���; k � Ae�ÿE=RT�; (1)

where � is the fraction of solid reacted at time t, k

the rate constant (sÿ1), f(�) a function of a depending

on the mechanism of decomposition being obeyed.

(One of the dif®culties is ®nding a method to decide

which of the possible functions is being obeyed, when

well over 20 equations have been suggested. Summa-

ries of some of the methods appear in [1±3].)

A is a pre-exponential function, dependent upon the

rate of transfer of energy to a decomposition site, E the

activation energy for the process, R the gas constant,

and T the absolute temperature.

Assuming a rate of heating of b 8/s and integrating

and substituting X � E/RT gives:

g��� � AE

Rb

Z X

X0

eÿXXÿ2dX; where

p�X� �
Z X

X0

eÿXXÿ2dX; (2)
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where g(�) is the integral of 1/f(�). Unfortunately

p(X) cannot be integrated.

A large number of solutions to this problem, with

varying complexity and precision, have been pub-

lished [4±21]. In some cases the data has been tabular.

Other authors have proposed approximating formulae

which involve in®nite series or so called rational

functions. The authors were always seeking to prove

how precise their formulae were by reference back to

earlier tabulated values. Many papers just refer back to

other workers in this ®eld, which in turn refer back to

earlier work, but there seem to be only a few original

data sets available [4,5,22±25]. These early mathema-

tical tables are themselves derived from some approx-

imating in®nite series, because there is, of course, no

true value for the integral. The question is not only

`how precisely do the recent approximations ®t the

older standard tabulated data', but also, `how reliable

are the older data sets'.

Another step, often made in this problem, is to use

integration by parts to get:

p�X� � eÿX

X
ÿ
Z 1

X

eÿX

X
dX: (3)

The integral part still cannot be evaluated, but it is a

well known mathematical function called the integral

of the exponential function, E1(X), which is numeri-

cally the same as another function ÿEi(ÿX) and

approximating series and tables for their values have

been published [22±25].

2. Approximating equations for p(X )

Amongst the approximating formulae that have

appeared, are the ones put forward by Senum and

Yang [11] which are known as rational or PadeÂ

approximations. If p(X) is evaluated from Eq. (3),

then the integral part, E1(X), may be found from the

rational function given by the coef®cients found in

Table 4.3 of [26] (1st and 2nd parts, p. 111):

p�X� � eÿX

X

ÿ eÿX

X

�X4 � 19X3 � 102X2 � 154X � 24�
�X4 � 20X3 � 120X2 � 240X � 120� :

(4)

This simplifies to:

p�X� � eÿX

X

� �x3 � 18x2 � 86x� 96�
�x4 � 20x3 � 120x2 � 240x� 120� :

(5)

Senum and Yang [11] gave equations of this type

with the degree of the polynomial in the denominator

from 1 to 4, plus two other earlier approximating

equations for comparison. They actually quoted

results as a percentage error from standard data in

[22], up to the 3rd degree equation only, for X from 0.5

to 100. They did give results for the 4th degree

equation, seeming to prefer the 3rd degree equation.

Many other workers have used this type of approx-

imation using Senum and Yang's degree equation.

Unfortunately, in their equation, they gave the coef®-

cient of X on the top line as 88 and not the correct value

of 86 as given in Eq. (5). This has, recently, also been

noted by Flynn [21].

It is always possible that the coef®cients in Table

4.3 of [26] are incorrect, but the equations to generate

these coef®cients are given in the same reference on p.

83. When tried, these gave exactly the coef®cients of

Table 4.3 of [26].

Table 1 shows the precision to be expected from the

various approximation equations, compared with the

tabulated values. This is similar to the table given by

Senum and Yang [11] and shows the percentage error

found for a reasonable number of X values, covering a

range wide enough for any X value found in an

analysis of kinetic results. This seems to be a simpler

way of displaying the results than the complex error

graphs given by other workers.

The error is given as literature table value of p(X)

minus the calculated value from an approximating

equation. It may be seen that most errors are positive

except for some ZsakoÂ values and the incorrect 4th

degree equation. Some values at X � 100 are also

negative, but the value of p(X) is here very small

and also the absolute error is very low, and might

be in¯uenced by the precision of calculation on a

particular computer.

It is unfortunate that Senum and Yang [11] did not

put the error values for the 4th degree equation in their

paper and also unfortunate that so many other workers
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chose to use that equation blindly, without knowing if

it worked. The error has now been propagated through

many research publications [14,16,27±30] (and no

doubt others).

Other previous methods of calculation of p(X) have

included asymptotic series such as Eq. (6) [9]:

p�X� � eÿX

X2

� 1ÿ 2!

X
� 3!

X2
ÿ 4!

X3
� � � � � �ÿ1�n�n� 1�!

Xn

� �
:

(6)

The problem with this type of equation is that the

terms of the series need to decrease rapidly in value, so

that a reasonable number of terms will give suf®cient

precision. At high values of X, i.e. >20, this is so.

However, at low X the method fails, and the terms do

not decrease rapidly enough. When X � 10 the terms

®rst fall, then rise again, so evaluation is impossible.

Even at X � 20 terms in the equation after the 19th

begin to rise, so the evaluation should be stopped at

that point, restricting precision to only seven signi®-

cant ®gures. At X � 10 only the ®rst nine terms

decrease and the precision is restricted to two sig-

ni®cant ®gures! Below X � 10 the method becomes

impossible. This has been pointed out by ZsakoÂ

[12].

Another series suggested is shown in Eq. (7) [9]:

p�X� � eÿX

X�X � 1�
�

1ÿ 1

X � 2
� 1

�X � 2��X � 3�

ÿ . . .� �ÿ1�n�1

�X � 2� . . . �X � n�
�
: (7)

This equation gives terms that are continuously

becoming smaller, but the result is not all that close

to the tabulated values of p(X), giving only three

signi®cant ®gures of precision at the most.

Some other series have been suggested for low

values of X such as the power series [11,12,22]:

p�X� � eÿX

X
�  � ln�X� �

X1
n�1

�ÿ1nn

nn!
; (8)

where  is the Euler±Mascheroni constant, equal to

0.5772156649.

Unfortunately this function is only valid for X < �.

This is pointed out in [11,22], but not in [12]. This

equation is then of little use.

Only a few types of equations are mentioned here,

but many others have been suggested [2±20] and

reviewed [12,21,22].

The author decided to investigate new ways of

calculating values of p(X) with particular aims in

mind.

1. The tables used in the past, for checking values

obtained, are rather old and, considering the date

of publication, must have been produced without

the aid of computers, except for [22]. This may

mean that they contain errors. A new set of values,

computer-calculated, was needed.

2. The older tables often actually contained E1 or Ei

and so p(X) must have been calculated from them,

allowing the possibility of error again. p(X)

needed to be calculated and printed out or

displayed directly.

3. The range of X covered by the tables was very

variable from table to table. Only Ref. [22] was

comprehensive. From an examination of literature

Table 1

p(X) given by ZsakoÂ and PadeÂ approximations as percentage error relative to p(X) calculated from the tables in [22]

X � E/RT Zsako

Â

1st degree 2nd degree 3rd degree 4th degree

(Eq. (5))

4th degree

(Senum/Yang)

0.5 ÿ21.6 25.72 9.67 4.33 2.15 1.47

1.0 ÿ2.91 17.42 4.72 1.58 0.608 ÿ0.381

2.0 ÿ0.157 9.86 1.66 0.370 0.0983 ÿ1.05

5.0 ÿ0.200 3.40 0.235 0.0239 3.13�10ÿ3 ÿ0.905

10.0 0.155 1.22 0.0347 1.58�10ÿ3 9.93�10ÿ5 ÿ0.532

20.0 0.185 0.383 3.75 � 10ÿ3 6.41�10ÿ5 1.65�10ÿ6 ÿ0.235

40.0 0.0823 0.109 3.24�10ÿ4 2.13�10ÿ6 3.72�10ÿ7 ÿ0.083

100.0 0.0172 0.019 1.03�10ÿ5 ÿ2.61�10ÿ7 ÿ2.72�10ÿ7 ÿ0.016
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it seemed that the range 0.5 < X < 100 should be

covered.

4. The precision of the values of p(X) was also

variable between four significant figures for Doyle

[5], five figures for ZsakoÂ [4] to 8/10 figures in the

standard tables [22±25]. It was decided to produce

results at least as precise as the tables in [22±25]

to allow comparisons to be made with these tables

and to check the various suggested approximating

formulae.

5. The evaluation of p(X) should be placed in a

procedure in a computer program, so that anyone

who requires a value of p(X), can call it in their

own program, using their own favoured technique

of non-isothermal analysis. If the program proves

to be too slow, it should be possible, after testing

at high precision, to cut back the precision to save

time in the calculation.

6. The method of calculation used should be equally

precise over all of the range of X values used.

Many of the previous approximations are accurate

at high X, but fail at low X, e.g. when X < 5.

3. Chebyshev polynomials

A better solution to the problem is to use Chebyshev

polynomials. They provide values of exp(ÿX)/X. E1,

from which E1 and p(X) may be calculated and are of

similar precision throughout the range of X values. In a

summation series, used in this method, the individual

terms decrease continuously for almost all values of X.

The variable X has to be converted into a normalised

quantity, W/X, where W is a normalising factor and

represents the smallest value of X that may be used, i.e.

W/X must not exceed 1. There is no maximum X; the

only limit imposed is in the precision of the computer

(smallest numbers that may be stored as the terms and

p(X) value). In this application it is suggested that W,

and thus the minimum X, is 0.5.

These polynomials are described in some detail in

Luke's books [26,31].

The integral part of Eq. (3), or E1, is given in [26]

(p. 105):

E1 �
Z 1

X

eÿX

X
dX � eÿX

X

X1
n�0

CnT�n �W=X�:

(9)

In this, Cn is a series of single coef®cients of

steadily decreasing size as n increases. This series

is particular to the function being evaluated, E1 here.

T�n is a series of polynomials: as n rises the degree of

the polynomial rises, as does the magnitude of the

polynomial coef®cients. T�0 is a single constant, T�1 is a

®rst degree polynomial etc. There are several types of

Chebyshev polynomials Tn. The particular set used

here, T�n , is called shifted polynomials of the ®rst kind

and sets are listed in [26] (p. 462). This set is ®xed and

is used irrespective of the particular function being

evaluated.

Values of the coef®cients Cn for the integral E1 are

given in of [26] (p. 105), but these are for W � 5. The

constants from the two tables in [26] could have been

entered directly into a computer routine and used to

evaluate p(X). However, a large number of digits

would have to be typed, with the risk of making a

mistake. Secondly, the table given for Cn is for W � 5

and it is suggested that for the present application the

set for W � 0.5 is used. Thirdly, the table for T�n stops

at n � 20 and Cn stops at n � 30 and it was thought

better to be able to try more terms, if the computer can

hold them, at least for purposes of testing agreement

with the older tables. For this reason it was decided to

use routines to calculate the coef®cients required, to

store the coef®cients and use them to evaluate p(X).

The coef®cients Cn were found using the recurrence

formula given on [26] (p. 218), shown here as Eq. (10).

This has been slightly rearranged and symbols chan-

ged for Luke's program in [31] (p. 94):

Cn � �n� 1�

�
��

2Dÿ�2n�3��n�ap�1��n�bp�1�
�n� 2� ÿ4W

�
� Cn�1 � D

�n� 1�ÿ2�2n� 3ÿ2W�
� �

� Cn�2ÿ �n� 3ÿap��n� 3ÿbp�
�n� 2�

� �
Cn�3�=D:

(10)

where D � �n� ap��n� bp�; ap � 1:0; bp � 1:0:

Since ap and bp are both 1.0, the formulae could

have been simpli®ed, but Luke's style of programming

has been retained.

The recurrence was started from the end, i.e. putting

Cn�3 � Cn�2 � 0.0 and Cn�1 � 1 � 10ÿ20, and work-

ing backwards.
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There is also a rescaling procedure to make the sum

of the absolute value of the coef®cients equal to unity.

The details of such a routine are given in [31] (p. 95).

The Chebyshev polynomial coef®cients T�n were

calculated using [26] (p. 432, Eq. (11); p. 436, Table B,

the entry for T�n ), and [31] (pp. 17 and 18). The

orthogonal polynomials follow a recurrence formula:

qn�1�X� � �anX � bn�qn�X�ÿcnqnÿ1�X�

where qn �
Xn

k�0

ak;nXk: (11)

an � 4, bn � ÿ2, cn � 1 (note cn is different to Cn

above).

For the ®rst polynomial, degree zero, the constant is

1. For the second polynomial, degree one, the constant

is 2 and the coef®cient of X1 is ÿ1. The recurrence

formula then gives the coef®cients for the other poly-

nomials, one more coef®cient for each successive

polynomial. The values for the ®rst 21 equations

(n � 0±20) are given in [26] (p. 462, Table 11.4). In

this case, the sum of the coef®cients for any one

polynomial should equal unity. If it does not, then

the computer has lost some of the digits of precision

because it is at the limit of its capacity.

4. Computer program

A computer program was written in FORTRAN 77 and

was run using a compiler and executing system pro-

duced by Salford Software Ltd at Salford University.

One subroutine calculates the values of Cn and stores

them for later use. Similarly another subroutine ®nds

the coef®cients of the Chebyshev polynomials, T�n and

stores them. These routines only need to be called

once. To get the required precision the normal length

Real variables were too short, so Double Precision real

variables were used throughout. The coef®cients in the

T�n polynomials are all integer in value but rise to very

large numbers. Single precision Integer variables

would not hold these large numbers. Double sized

integers were tried, but were still too small. It was

necessary to declare the array to hold the coef®cients

as Double Precision real, even though it only held

integer quantities. If more and more terms are used

then eventually the array of coef®cients will have

truncated quantities because the precision limit is

reached. It was found that the maximum number of

terms that could be used was 40 before the coef®cients

in one polynomial did not add up to unity, i.e. digits

were lost.

A further evaluation routine returned the value of E1

for the value of X fed to it. A main program was

provided for test purposes only. It asked for an X value

and number of terms, i.e. the highest degree poly-

nomial to be used. It displayed the result as ÿEi(ÿX)

[or E1(X)], XeÿX E1, p(X) and log p(X), for conve-

nience, because the tables available for checking

against [4,5,22±25] give results in these various forms.

The test program was tried by comparison against the

tables, using W � 0.5. It gave perfect agreement with

Doyle [5] and ZsakoÂ [4] (tables with limited preci-

sion). It also gave perfect agreement with the other

tables, which were of greater precision. The agree-

ment for all values of X > 1 was perfect, as long as

suf®cient number of terms was taken. The program

actually gives a more precise result (17/18 signi®cant

®gures) than any of the tables. For 0.5 < X < 1.0 the

situation was more complicated, as shown in Table 2.

As might be expected, the agreement improves as

the number of terms is raised, but as n reaches 40, and

W/X approaches 1.0, the error rises to a large value.

This is true to some extent for n � 30 as well. The

situation is improved if the program is re-written in

Pascal, which points to a precision fault or truncation

of variables, Pascal variables being more precise than

FORTRAN. Examination of intermediate calculations in

the FORTRAN program showed that some variables were

being truncated in value. The result for X � 0.5 and

n � 40 is fortuitously accurate. When W/X � 1.0

exactly, there is some cancelling of intermediate

values and no truncation of variables occurs.

It would appear better to restrict n to a maximum of

25 to preserve the highest precision down to X � 0.5.

In practice it is highly unlikely that an agreement of

anything as close as 10ÿ5% would be required and

n � 15 or n � 20 would suf®ce.

The choice of how precisely to calculate p(X) could

be decided by the precision of experimental results.

The mass readings would normally be known to four

signi®cant ®gures for a 10 mg sample, and the tem-

perature to a similar precision, given that there is

always random noise on a thermocouple EMF at

the mV level. This means that 15 terms might be

suf®cient, but time of calculation should be considered

as well.
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Senum and Yang [11] suggested that more terms

could be used in the PadeÂ or rational function, if

greater precision were required. The constants for

this, in the table in Luke's book [26] (p. 111), go

up only to 6th degree. To go beyond this requires the

constants calculating by the recurrence formula (12)

[26] (p. 111). The constants become very large as the

degree of the equation rises. The largest term has

roughly the same number of digits as the degree. Thus

to avoid errors it is best to calculate and use the

equations inside a computer program. If such a pro-

gram is used, and the degree of the equation is raised,

the precision of the value of p(X) improves with each

step of degree up to the 18th degree equation. On

stepping to the 19th equation, the result is obviously

faulty, with errors of up to 100%. This is because the

FORTRAN program cannot hold the variable required to a

high enough precision. The results for a rational or

PadeÂ equation of degree 18 are shown in Table 2 on the

bottom row. The precision is of the order of the same

result for the Chebyshev equations with n � 10. This

shows the superiority of the Chebyshev results.

5. Time taken for an evaluation of p(X )

A main program was set up to ®nd how long it took

to ®nd a value of p(X) for a given value of X using the

Chebyshev polynomial method compared with Eq.

(5). The computer used was a PC with a 486 DX4

100 processor chip (486 with integral ¯oating point

processor, running at 100 MHz). The time taken to

repeatedly evaluate p(20) 5000 times is shown in

Table 3.

The increase in time between n � 15 and 20 is not

great and would be worth allowing to achieve a greater

precision of one more signi®cant ®gure. The time

taken for the PadeÂ equation of degree 18, explained

above, is also shown. Although it is faster than the

Chebyshev polynomials, it is of the same order of

Table 2

Values of E1 calculated by Chebyshev compared with the published table values [22] as percentage error values summarised to show the range

of power of 10a

N-terms X � 0.5 X � 0.6 X � 0.7 X � 0.8 X � 0.9 X � 1.0

10 <10ÿ2 <10ÿ2 <10ÿ2 <10ÿ2 <10ÿ2 <10ÿ2

<10ÿ3 <10ÿ3 <10ÿ3 <10ÿ3 <10ÿ3 <10ÿ3

15 <10ÿ3 <10ÿ3 <10ÿ3 <10ÿ3 <10ÿ3 <10ÿ3

<10ÿ4 <10ÿ4 <10ÿ4 <10ÿ4 <10ÿ4 <10ÿ4

20 <10ÿ4 <10ÿ4 <10ÿ4 <10ÿ4 <10ÿ4 <10ÿ4

<10ÿ5 <10ÿ5 <10ÿ5 <10ÿ5 <10ÿ5 <10ÿ5

25 <10ÿ5 <10ÿ5 <10ÿ5 <10ÿ5 <10ÿ5 <10ÿ5

<10ÿ6 <10ÿ6 <10ÿ6 <10ÿ6 <10ÿ6 <10ÿ6

30 <10ÿ5 <10ÿ2 <10ÿ4 <10ÿ4 <10ÿ6 0

<10ÿ8 <10ÿ7 <10ÿ7 <10ÿ8 <10ÿ7 0

40 <10ÿ5 1273 11 0.096 <10ÿ2 0

<10ÿ8 <10ÿ1 <10ÿ1 <10ÿ4 <10ÿ5 0

PadeÂ degree 18 <10ÿ2 <10ÿ2 <10ÿ3 <10ÿ3 <10ÿ3 <10ÿ3

a This is for the low range of X only. For higher X the agreement is perfect. The first line is from the FORTRAN program and the second line is

from the Pascal program.

Table 3

Time for the evaluation of p(X) {X � 20} 5000 times (comparision of Chebyshev and PadeÂ methods)

n (degree of

polynomial)

Chebyshev

polynomials (s)

Eq. (5)

(PadeÂ degree 4) (s)

PadeÂ

degree 18 (s)

Time per P(x)

(Chebyshev) (s)

40 14.451 0.055 0.495 2.890 � 10ÿ3

20 3.956 0.055 7.912 � 10ÿ4

15 2.582 0.055 5.164 � 10ÿ4
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speed, so the Chebyshev method is worth using for the

greater precision obtained. The difference in time

between Chebyshev polynomials and Eq. (5) is large,

but this could be tolerated if, when the p(X) evaluation

is used in a complete non-isothermal analysis, it does

not occupy a time that is too much out of proportion to

the rest of the calculations.

To test this, the Chebyshev method was incorpo-

rated into the author's favoured method of analysis.

The ®rst step in this program is to ®nd the slope,

tan �, of log(g(�)) versus 1/T, where g(�) is the

integral function of �. The value of tan � was inserted

into the equation of MacCallum and Tanner [8] (see

SÏestaÂk [9]), allowing for a change from calorie to

Joule.

This gave a starting point for the value of E. A value

for X was next obtained, using an average temperature

of Tav. This was then used in an iterative procedure, as

®rst suggested by SÏkvaÂra and SÏestaÂk [32]:

E � RX2eXp�X�tan�: (12)

This equation was printed incorrectly in references

[32,34], but the theory is given correctly in references

[9,10].

The new E was used to obtain a new X, etc. This was

continued until successive E values were within 1 J/

mol of each other. In this method only one p(X) has to

be evaluated per iteration. The value of E obtained will

not be quite correct because the iteration Eq. (12) uses

tan � which cannot be a true value because log(g(�))

versus 1/T is not a true straight line.

An alternative calculation is that advocated by

Stander and van Vuuren [33], based on an idea by

ZsakoÂ [4].

If the correct g(�) function has been chosen, then

the E obtained is the true value and the two curves g(a)

and p(X) versus T are parallel.

The problem with this method is that it requires an

evaluation of p(X) for each data point for each itera-

tion, which is considerably more than in the ®rst

method.

A compromise is to use the ®rst iterative method to

get an approximate E and then to use Stander and van

Vuuren's method, at the end, for a last adjustment of

the E value.

A program was written using the strategy described,

with Chebyshev polynomials used to evaluate p(X),

testing 25 possible kinetic equations divided between

six graph plots. The number of times p(X) was eval-

uated using the SÏkvaÂra and SÏestaÂk method was about

400, and if the Stander and van Vuuren method was

added at the end, the evaluations were about 90 000

times. However, this was to check theoretical data

made up from a known equation and known values of

E and A. The value of E was calculated to the nearest

1 J/mol and it had to agree with the starting value of E.

In practical use, there is probably no reason to require

E to this precision, bearing in mind that mass is only

recorded to four signi®cant ®gures. If the precision in

E is reduced, then the number of p(X) evaluations

would be reduced. In changing from the PadeÂ ratio

approximation to Chebyshev polynomials, for the

SÏkvaÂra and SÏestaÂk method the time increased from

3 to 4 s. Most of the time was used for the rest of the

calculation, graph plotting, output of results etc. For

the combined calculation, adding Stander and van

Vuuren's method, the time went up from 5 to 60 s.

Using another PC with no ¯oating point processor

(¯oating point calculations emulated within the FOR-

TRAN library), running at 25 MHz, the times went up

considerably, of the order of 80 times longer. Under

these conditions the calculation is probably too slow to

tolerate.

6. Conclusions

The speed of computers is still rising and modern

processor chips all have a built-in ¯oating point unit.

In that case it is possible to use the calculations

described on a reasonable time scale. There is, in that

case, no longer the need to use approximating func-

tions for p(X), but to use Chebyshev polynomials,

which provide p(X), as precisely as required by the

user, over the whole range of X values, with no errors

appearing at low X, unlike all of the previously

published equations.

Stander and van Vuuren/ZsakoÂ's method of analysis

seems to be able to pick out the correct kinetic

equation from one non-isothermal experiment, only

if the data are recorded to a high degree of precision.

The program mentioned is also available in Pascal

and BASIC as well as FORTRAN 77. A copy in either

language may be obtained from the author, if required,

by sending a 3.5 inch ¯oppy disc to the given address

or e-mail to roger_heal@yehoo.cor.
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