

Thermochimica Acta 346 (2000) 161-167

thermochimica acta

www.elsevier.com/locate/tca

Melting and thermal decomposition of β -Ag₆S₃O₄

M. Kurzawa*, E. Tomaszewicz

Department of Inorganic Chemistry, Technical University of Szczecin, Al.Piastów 42, 71–065 Szczecin, Poland

Received 2 June 1999; received in revised form 2 November 1999; accepted 4 November 1999

Abstract

It was found that, in air as well as in an inert atmosphere, β -Ag₆S₃O₄ melts incongruently at 390°C. Solid product of the incogruent melting of β -Ag₆S₃O₄ is β -Ag₈S₄O₄, the second phase existing in the Ag₂SO₄-Ag₂S system. β -Ag₈S₄O₄ melts at 400°C. At this temperature and in air the liquid obtained after melting starts decomposing to give metallic silver. In an inert atmosphere or at reduced pressure the liquid starts decomposing at 530°C and the final solid products of this decomposition are silver sulfide and metallic silver, gaseous product is SO₂. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: β-Ag₆S₃O₄; Ag₂SO₄-Ag₂S system; DTA-TG; SEM; MS

1. Introduction

Our earlier studies on the reactivity in the solid state between Ag_2SO_4 and Ag_2S showed that both reagents are not mutually inert and react to give two compounds: β -Ag_6S_3O_4 and β -Ag_8S_4O_4 [1,2]. As was found, β -Ag_8S_4O_4 is formed by heating in air an initial mixture: 25.00 mol% of Ag_2SO_4 and 75.00 mol% of Ag_2S according to the following reaction:

$$Ag_2SO_{4(s)} + 3Ag_2S_{(s)} \rightarrow \beta - Ag_8S_4O_{4(s)}$$
(1)

 β -Ag₈S₄O₄ crystallizes in a monoclinic system and has the following parameters of the unit cell: a = 1.426(7) nm, b = 0.658(2) nm, c = 1.050(4) nm, $\beta = 91.3(2)^{\circ}$, Z = 4 [2]. Thermal properties of β -Ag₈S₄O₄ were determined in detail in air and inert atmosphere [2]. β -Ag₆S₃O₄, the second phase in the Ag₂SO₄-Ag₂S system, can be obtained by heating in air an initial mixture: 33.33 mol% of Ag₂SO₄ and 66.67 mol% of Ag₂S according to Eq. (2):

$$Ag_2SO_{4(s)} + 2Ag_2S_{(s)} \rightarrow \beta - Ag_6S_3O_{4(s)}$$
(2)

or by heating in air β -Ag₈S₄O₄ and Ag₂SO₄ mixed at the molar ratio of 2 : 1 according to following reaction:

$$2\beta - \operatorname{Ag}_8S_4O_{4(s)} + \operatorname{Ag}_2SO_{4(s)} \to 3\beta - \operatorname{Ag}_6S_3O_{4(s)}$$
(3)

 β -Ag₆S₃O₄ is also monoclinic with lattice constants of a = 1.778(2) nm, b = 0.698(2) nm, c = 1.343(2), $\beta = 105.60^{\circ}$, Z = 8 [1]. In the earlier [1] work it was found that β -Ag₆S₃O₄ melts at 390 ± 5°C.

Hirsch [3] found, that a reaction carried out in an aqueous solution between silver salts (nitrate(V) or sulfate(VI)) and sodium thiosulfate(VI) led to a phase, to which he attributed the formula $Ag_8S_3SO_4$. Accord-

^{*} Corresponding author. Tel.: +48-91-449-45-63; fax: +48-91-433-33-70.

E-mail address: lajo@carbon.tuniv.szczecin.pl (M. Kurzawa).

^{0040-6031/00/\$ –} see front matter \odot 2000 Elsevier Science B.V. All rights reserved. PII: \$0040-6031(99)00390-1\$

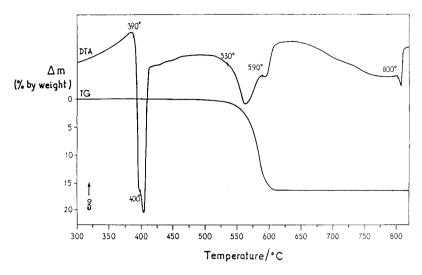


Fig. 1. DTA and TG curves of β-Ag₆S₃O₄ (helium, heating rate 10 K/min).

ing to Hirsch, this phase crystallizes in a tetragonal system with lattice constants: a = b = 0.7201 nm, c = 1.0200 nm, Z = 2.

Our earlier studies on the reaction occurring between aqueous solutions of AgNO₃ and Na₂S₂O₃ showed that these reagents form two phases to which the summary formulas: α -Ag₈S₄O₄ and α -Ag₆S₃O₄ were ascribed [4]. It was found that quantitative contents of elements as well as a diffraction pattern and lattice constants (a = b = 0.720(5) nm, c =0.511(4) nm, Z = 1 [4]) for α -Ag₈S₄O₄ were very similar to these obtained by Hirsch for Ag₈S₃SO₄. On the ground of the chemical analysis it was also found that quantitative contents of elements in α - $Ag_6S_3O_4$ were the same as in β - $Ag_6S_3O_4$ phase obtained by a reaction in the solid state [4]. The α -Ag₆S₃O₄ phase crystallizes in a monoclinic system and has the following lattice constants: a = 2.096(2)nm, b = 0.531(2) nm, c = 1.498(8) nm, $\beta = 102.7(8)^{\circ}$, Z = 8 [4]. Our DTA and X-ray studies [4] showed that α -Ag₈S₄O₄ and α -Ag₆S₃O₄ phases were lowtemperature polymorphic modifications of β -Ag₈S₄O₄ or β -Ag₆S₃O₄, respectively [4]. The α -Ag₈S₄O₄ and α -Ag₆S₃O₄ undergo irreversible, endothermic polymorphic transitions to high-temperature polymorphic forms at 223 and 221°C, respectively [4].

This work presents the results of investigations carried out in order to study the thermal properties of β -Ag₆S₃O₄ in air or inert atmosphere.

2. Experimental

 β -Ag₆S₃O₄ was prepared by heating a Ag₂SO₄ and Ag₂S mixture as described previously [1].

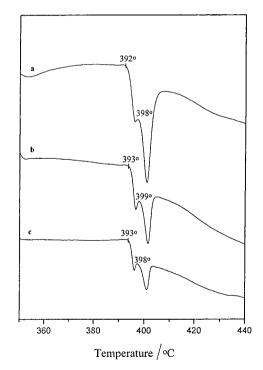


Fig. 2. DTA curve of $\beta\text{-}Ag_6S_3O_4$ (helium, heating rate (a) 5 K/min; (b) 2 K/min; (c) 1 K/min).

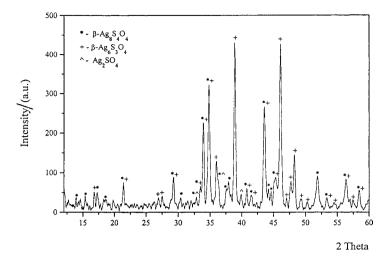


Fig. 3. Diffraction pattern for a sample obtained by heating, in air, β -Ag₆S₃O₄ at 395°C and then quenched.

DTA-TG examinations of β -Ag₆S₃O₄ were made using a TA Instruments SDT 2960 apparatus. These investigations were accomplished in different atmospheres (helium, air) using corundum crucibles and heating rate of 1, 2, 5 or 10 K/min. X-ray diffraction (XRD) measurements were performed using a DRON-3 diffractometer and CoK α radiation ($\lambda = 0.179021$ nm). Mass spectroscopic analysis of gaseous products of β -Ag₆S₃O₄ decomposition was made in a helium atmosphere using a Balzers QMS 300 ThermoStar quadrupole mass spectrometer.

For microscopic and XRD studies samples of β -Ag₆S₃O₄ were heated in air or at reduced pressure for

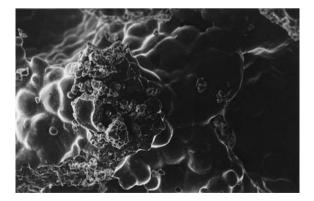


Fig. 4. Scanning electron micrograph of a sample obtained by heating, at reduced pressure, β -Ag₆S₃O₄ at 395°C and then quenched, magnification 1000×.

15 min. at 395, 401 or 670°C and then rapidly quenched. Microscopic observations were made using a JOEL JSM-5400 scanning electron microscope linked to a X-ray microprobe.

3. Results and discussion

3.1. Thermal properties in an inert atmosphere or at reduced pressure

Fig. 1 shows DTA and TG curves of β -Ag₆S₃O₄ for temperature range 300–820°C, recorded in the helium atmosphere with a heating rate of 10 K/min. For

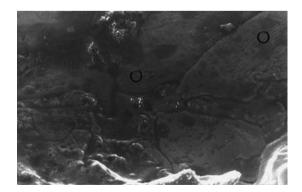


Fig. 5. Scanning electron micrograph of a sample obtained by heating, at a reduced pressure, at 670° C and then quenched, magnification $2000 \times$ (o-metallic silver).

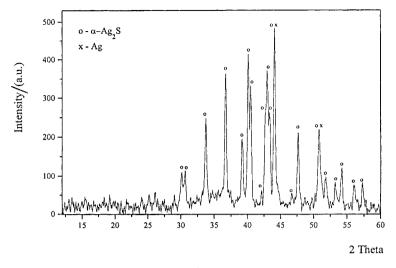


Fig. 6. Diffraction pattern for a sample obtained by heating β-Ag₆S₃O₄, at reduced pressure, at 670°C and then quenched.

comparison Fig. 2 shows DTA curves of β -Ag₆S₃O₄ for temperature range 350–440°C recorded in helium with heating rates: 1, 2 or 5 K/min. The first endothermic effect, observed on DTA curve (Figs. 1 and 2) at about 390°C, is characterized by incongruent melting β -Ag₆S₃O₄. The second effect with its onset at about 400°C, is associated with melting β -Ag₈S₄O₄, phase deposited during the incongruent melting β -Ag₆S₃O₄. Thus, the melting β -Ag₆S₃O₄ can be described by the following equation:

$$\beta$$
-Ag₆S₃O_{4(s)} $\rightarrow \beta$ -Ag₈S₄O_{4(s)} + liquid (4)

The liquid resulting from melting β -Ag₆S₃O₄ and then β -Ag₈S₄O₄ starts decomposing at 530°C. This fact can

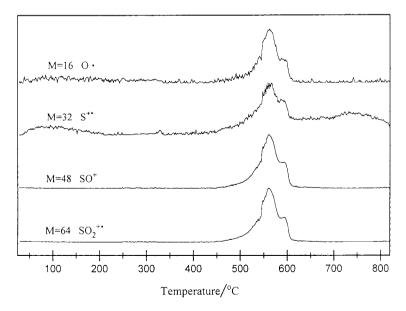


Fig. 7. MS profiles of gaseous products of the decomposition of β -Ag₆S₃O₄.

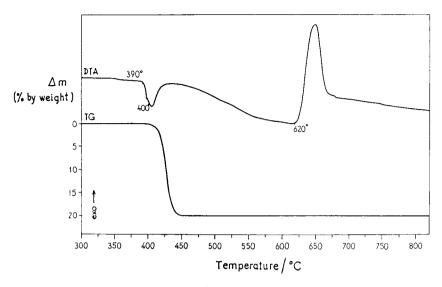


Fig. 8. DTA and TG curves of β -Ag₆S₃O₄ (air, heating rate 10 K/min).

be confirmed by the endothermic effect, recorded on the DTA curve (Fig. 1), and starting at the same temperature a mass loss recorded on the TG curve (Fig. 1). The endothermic effect with its onset at 590° C is also associated with the decomposition of the liquid. The endothermic effect with its onset at 800° C is due to melting Ag₂S. For technical reasons the DTA measurements of β -Ag₆S₃O₄ carried out in helium were terminated before the melting point of metallic silver.

The melting behaviour of β -Ag₆S₃O₄ was also confirmed by XRD method and microscopic observations. On the ground of XRD method it was found that β -Ag₆S₃O₄ sample, heated at a reduced pressure at 395°C and then quickly quenched contained β -Ag₈S₄O₄, β -Ag₆S₃O₄ and Ag₂SO₄ (Fig. 3). It was also found that, this sample contained liquid and polycrystallites (Fig. 4). The occurrence of silver, sulfur and oxygen in the crystallites as well as in the liquid can be detected using a X-ray microprobe.

It was also found that the sample of β -Ag₆S₃O₄, heated at a reduced pressure and the temperature a little higher than the β -Ag₈S₄O₄ melting point, i.e. at 401°C, and then rapidly quenched, did not contain any crystallites. The presence of silver, sulfur and oxygen in its whole mass can be observed using the same instrument. The sample obtained by heating β -Ag₆S₃O₄ at 670°C at a reduced pressure and then quenched, is non-homogeneous. Many microareas containing sole metallic silver and those where silver and sulfur were occurring together were detected (Fig. 5). Diffraction patterns of considered sample (Fig. 6) and solid residue obtained after DTA measurements contain the set of diffraction lines characteristic for Ag₂S and the set of reflections attributed to silver.

Analysis of the total mass loss recorded on the TG curve of β -Ag₆S₃O₄ (Fig. 1) gives an indication that

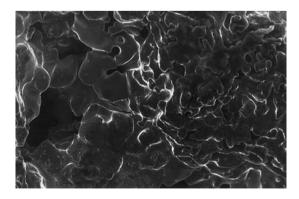


Fig. 9. Scanning electron micrograph of β -Ag₆S₃O₄ sample heated, in air, at 670°C and then quenched, magnification 500×.

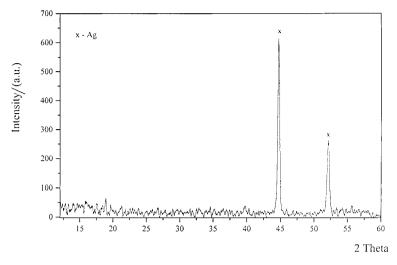


Fig. 10. Diffraction pattern for a sample obtained by heating β -Ag₆S₃O₄, in air, at 670°C and then quenched.

the gaseous product of decomposition of the liquid resulting from melting β -Ag₆S₃O₄ in an inert atmosphere is SO₂. The value of the mass loss equals 15.791% by weight (theoretical value–15.869% by weight), which corresponds to 2 moles of SO₂ falling to 1 mole of β -Ag₆S₃O₄.

An additional proof of this fact can be presence of ionic current corresponding to the mass of molecular SO₂^{+•} ion (M = 64) in the MS profiles of gaseous products of β -Ag₆S₃O₄ decomposition (Fig. 7). The presence of ionic currents corresponding to the mass M = 16, 32 and 48 is due to an advanced fragmentation of the molecular SO₂^{+•} ion leading to radical O[•] (M = 16), fragmentary radical cation S^{+•} (M = 32) and fragmentary cation SO⁺ (M = 48).

The total mass loss recorded on the TG curve (Fig. 1), microscopic observations and X-ray measurements of a sample obtained by heating β -Ag₆S₃O₄ at 670°C and at a reduced pressure and then quenched indicate that final solid products of decomposition of liquid resulting from melting β -Ag₆S₃O₄ are silver sulfide and metallic silver.

Hence, in an inert atmosphere and at reduced pressure, the decomposition of the liquid arising from melting β -Ag₆S₃O₄ can be described as the following process:

$$liquid \rightarrow 4Ag_{(s)} + Ag_2S_{(s)} + 2SO_{2(g)}$$
(5)

3.2. Thermal properties in air

Fig. 8 shows DTA and TG curves of β -Ag₆S₃O₄ recorded in air with heating rate of 10 K/min. The endothermic effects at about 390 and 400°C are associated with incongruent melting β -Ag₆S₃O₄ and melting β -Ag₈S₄O₄, respectively. The exothermic effect, recorded on the DTA curve (Fig. 8) with its onset at 620°C is probably due to oxidation of SO₂ to SO₃. It is suggested that sulfur dioxide is liberated during the β -Ag₆S₃O₄ decomposition in air.

Microscopic observations of a sample obtained after heating, in air, at 401°C and then quenched indicate that this sample did not contain any crystallites. Some microareas composed of sole metallic silver can be detected. Therefore, the liquid resulting from melting β -Ag₆S₃O₄ in air decomposes immediately.

It was also found, on the ground of microscopic examinations, that a sample of β -Ag₆S₃O₄ heated in air at 670°C and then quickly quenched, contained only metallic silver in its whole mass (Fig. 9). This fact is also confirmed by X-ray measurements. The diffraction patterns of the considered sample and a solid residue after DTA measurements contain only reflections characteristic for silver (Fig. 10).

Therefore, decomposition of the liquid, obtained after melting β -Ag₆S₃O₄ in air, gives finally metallic silver. Additional proof of this fact can be the total mass loss–19.930% by weight (theoretical value–

19.841% by weight) recorded on the TG curve (Fig. 8).

Acknowledgements

This work was supported by Polish State Committee for Scientific Research, Grant No. 3-T09A-017-14.

References

- J. Walczak, F. Boccuzzi, E. Lukaszczyk-Tomaszewicz, J.Alloy Compd. 224 (1995) 203.
- [2] M. Kurzawa, E. Tomaszewicz, Mat. Res. Bull., 35 (2000).
- [3] H. Hirsch, J. Appl. Cryst. 12 (1979) 129.
- [4] M. Kurzawa, E. Tomaszewicz, J. Mat. Sci., 35 (2000).