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Applying Kissinger analysis to the glass transition
peak in amorphous metals
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Abstract

Some amorphous metals show a glass transition peak in a linear heating differential scanning calorimetry (DSC) experiment
before crystallisation occurs. The temperature at which this peak is observed is a function of the heating rate used in the DSC
experiment. From this dependence, an effective activation energy can be obtained using Kissinger analysis. The literature
suggests that the glass transition is a kinetic phenomenon, caused by the production and annihilation of structural defects.
Starting from the differential equation that describes the rate of change of these defects, an analytic expression is derived for this
effective activation energy. The energy is found to have two contributions: one corresponds to the migration of structural defects
and the other is related to their equilibrium concentration. The analysis shows the relevance of experimentally determining
the slope of a Kissinger plot of the glass transition peak in amorphous metals.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

When an amorphous metal is heated at a constant
heating rate in a differential scanning calorimetry
(DSC) experiment, the material undergoes structural
changes and eventually crystallises. In addition to the
large exothermal crystallisation peak, the DSC trace
of some metallic glasses shows an endothermic peak
before crystallisation occurs: the glass transition peak.
This calorimetric glass transition is generally consid-
ered to be due to changes in the amorphous structure,
which approaches a thermodynamic equilibrium state
as the temperature of the system is increased[1–3].
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Like the crystallisation peak, the position of the
glass transition peak depends on the heating rate[4].
It is, therefore, tempting to make a Kissinger plot[5]
of the glass transition peak and calculate an activation
energy from the slope. However, whilst this procedure
has been shown to yield a physically meaningful acti-
vation energy for the crystallisation peak[6,7], there
is no a priori reason to believe that this is also the case
for the glass transition peak.

In this paper, we make an attempt to resolve the
relationship between the slope of a Kissinger plot of
the glass transition peak and the parameters that de-
termine the kinetics of the structural changes that un-
derlie this glass transition. The glass transition will
be treated in terms of the free volume model[8–11].
This model gives an adequate description of a range
of effects related to structural relaxation[12–14].
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2. Theoretical background

In the free volume model, the concentration of struc-
tural defectsc is related to the reduced free volumex
[4] through[11]

c = exp

(
−1

x

)
. (1)

In equilibrium, the defect concentration depends on
temperatureT through[11]

ce = exp

(
− B

T − To

)
, (2)

wherexe ≡ (T − To)/B is the equilibrium free vol-
ume;To andB are constants of unitK. Note that when
T � To, Eq. (2)has the mathematical form of a Boltz-
mann fraction, withkBB (wherekB is the Boltzmann
constant) as the activation energy for the formation of
the structural defects. When the defect concentration
is not in equilibrium, it will approach the equilibrium
value. The rate of change of the defect concentration
is in that case equals to[11]

dc

dt
= −kc(c− ce). (3)

The rate constantk has an Arrhenian temperature de-
pendence[11]:

k = ko exp

(
− Q

kBT

)
, (4)

whereQ is the activation energy for the migration of
the structural defects andko is a constant of unit per
second. FromEqs. (1)–(3), it follows that the rate of
change of the free volume is given by

dx

dt
(x, T) = −kx2(c− ce). (5)

Eq. (5) can be solved numerically to obtain
(dx/dt)(T) under linear heating conditions, i.e.T =
ϕt, where ϕ is the heating rate. This is done for
ϕ = 1 K/s, using the values forko, Q, B andTo from
Table 1. The free volume at the beginning of the ex-
periment was taken to bexo = 0.0315, a typical value
for an annealed amorphous sample[11]. The result is
shown inFig. 1.

According to ref.[15], the DSC signal is described
by:

dH

dt
= α

dx

dt
+ β

dψ

dt
, (6)

Table 1
List of the parameters that describe the glass transition peak of
Pd40Ni40P20, as determined by Duine et al.[12]

Parameter (unit) Value

Q (eV/atom) 1.7
B (K) 6600
To (K) 355
ko (Hz) 3.4 × 1025

Fig. 1. Plot of dx/dtvs. T, obtained by solvingEq. (5)numerically
under linear heating conditions, with a heating rate ofϕ = 1 K/s
and the free volume in the material prior to the scan equal to
xo = 0.0315. The values forko, Q, B andTo are taken from Duine
et al. [12] and correspond to Pd40Ni40P20.

whereH is the internal free energy of the amorphous
structure andψ is an order parameter that charac-
terises the amount of chemical order in the material;
α and β are constants (cf. the Borchard assumption
[16,17]). The authors conclude that the basic features
of the glass transition are preserved when the changes
in chemical order are neglected. Adopting this approx-
imation, we will assume that the DSC signal is pro-
portional to the trace shown inFig. 1. Thus, the glass
transition as observed in a linear heating DSC exper-
iment is treated as a calorimetric effect caused by the
annihilation and production of structural defects. The
glass transition peak corresponding toFig. 1occurs at
Tg = 600 K.

3. Calculating the slope of the Kissinger plot

3.1. Numerical calculation

We now solveEq. (5)numerically for different heat-
ing rates to obtainTg as a function ofϕ. Fig. 2 shows
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Fig. 2. Kissinger plot of the glass transition peak, obtained from
a series of plots as shown inFig. 1, for heating rates equal to
ϕ = 0.5, 1, 2, 5, 10, 20, 40, 80 and 160 K/s. A least square fit of
a straight line to the data yields a slope of−4.6 eV.

a plot of ln(ϕ/T 2
g ) versus 1/KBTg, a Kissinger plot

[5], for the glass transition peak, for heating rates in
the range ofϕ = 0.5–160 K/s. The plot can be seen
to yield a fairly straight line. Fitting a straight line to
the data yields a slope of−4.6 eV.

3.2. Approximate analytic expression

In the remainder of this section, we shall attempt to
derive an analytic expression for this slope, in terms of
the kinetic parameters,ko, Q, B andTo. As it stands,
Eq. (5) is too complex to handle analytically. There-
fore, we start by making two simplifying assumptions.
ExpandingEq. (1) around the equilibrium free vol-
ume, gives

exp

(
−1

x

)

= exp

(
− 1

xe

)
+ 1

x2
e

exp

(
− 1

xe

)
(x− xe)+ · · · .

(7)

3.3. First approximation

Retaining only the first two terms of this expansion
and substituting intoEq. (5)yields

dx

dt
≈ −k x

2

x2
e
(x− xe)exp

(
− 1

xe

)
(8)

to second order.

3.4. Second approximation

We now use the same idea again to disregard the
quadratic terms inEq. (8) to give

dx

dt
≈ −k(x− xe)exp

(
− 1

xe

)
. (9)

At the glass transition peak, dx/dtgoes through a max-
imum, so that d2x/dt2 = 0 atTg. Taking the derivative
of Eq. (9)with respect to time, gives

d2x

dt2
= −ko

[
dx

dt
− dxe

dt
+ ϕ(x− xe)

×
(

Q

kBT 2
+ B

(T − To)2

)]

× exp

(
− Q

kBT
− B

T − To

)
, (10)

where we have usedEq. (4)and the fact that dx/dt =
ϕdT/dt under linear heating conditions. Setting
Eq. (10)to zero gives

dxg

dt
= ϕ

B
−ϕ(xg − xe)

(
Q

kBT 2
g

+ B

(Tg − To)2

)
, (11)

where we have used the expression for the equilibrium
free volume and definedxg ≡ x(Tg). Alternatively, the
value of dx/dtat Tg follows directly fromEq. (9):

dxg

dt
= −ko(xg−xe)exp

(
− Q

kBTg
− B

Tg − To

)
. (12)

EquatingEqs. (11) and (12)would give an implicit
equation for the glass transition peak.

3.5. Third approximation

The implicit expression forTg obtained by equating
Eqs. (11) and (12)is rather cumbersome, but simpli-
fies greatly when the first term on the r.h.s. ofEq. (11)
is ignored. For the parameters corresponding toFig. 1,
this term is indeed much smaller (but not quite negli-
gible) compared to the second term. With this approx-
imation,Tg follows from

kokB

(
T 2

g

ϕ

)
exp

(
− Q

kBTg
− B

Tg − To

)
= Q′, (13)
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where we have defined

Q′(Tg) = Q+ kBB
T 2

g

(Tg − To)2
(14)

for convenience. FromEq. (13), it then follows that

ln

(
ϕ

T 2
g

)
= ln(kokB)− ln(Q′)− Q

kBTg
− B

Tg − To

(15)

3.6. Fourth approximation

Note that the first term on the r.h.s. ofEq. (15)
has no temperature dependence and the dependence of
the second term onTg is weak due to the logarithm,
sinceQ′ � 1. Ignoring this dependence onTg, it is
easy to show that taking the derivative with respect to
reciprocal temperature finally gives

∂ ln[ϕ/T 2
g ]

∂(1/kBTg)
= −Q′ (16)

for the slope of the Kissinger plot. This completes
our derivation of the slope of the line in a Kissinger
plot of the glass transition peak. Note that, according
to Eqs. (14) and (16), the slope of the Kissinger plot
shows no implicit dependence onko. However, there
is an implicit dependence becauseTg itself depends
on ko, as is shown byEq. (13).

The accuracy ofEq. (16) is tested by comparing
a plot of Q′(Tg) from Eq. (14)with the value forQ′
found in Fig. 2. The result is shown inFig. 3 and

Fig. 3. Comparison ofEq. (14), the analytic expression derived
in this paper (shown as full diamonds) and the numerical result,
corresponding toFig. 2, shown as a full line.

shows thatEq. (16)differs from the accurate numerical
calculation by as little as 5% on average.

4. Discussion

The first two approximations made in deriving
Eq. (16) are a good approximation, as by its nature
the kinetic glass transition occurs just before the free
volume reaches its equilibrium value. Note, how-
ever, that the approximation is slightly paradoxical,
because when the free volume is exactly in equilib-
rium, i.e. x = xe, then dx/dt = 0 and there is no
glass transition at all. Nonetheless,Eq. (9) is a good
approximation ofEq. (5). The fact thatxg does not
appear inEq. (13) means that in ignoring the first
term in Eq. (11), we have ignored the dependence of
Tg on xo. From the work by Tuinstra et al.[4] it is
clear that although theheight of the glass transition
peak strongly depends onxo, its position varies only
weakly with xo. This justifies our rather crude ap-
proximation that finally lead toEq. (13). The fourth
and final approximation can be shown to be valid as
long asQ/kB � Tg andB � Tg −To, which is satis-
fied asQ/kB = 19,200 K,B = 6600 K and the glass
transition temperature is of the order ofTg = 600 K.
The fact that these four approximations are accurate
is reflected in the fact thatEq. (16)overestimatesQ′
by as little as 5% on average.

More important than the numerical accuracy of
Eq. (16) is the fact that our analytic expression for
Q′, Eq. (14), reveals the physical significance of this
effective activation energy.Eq. (14)shows that there
are two contributions toQ′. The first contribution
is equal to the activation energy for the migration
of a structural defect. This is the energy we would
find from the slope of an Arrhenius plot of the rate
constant. FromEq. (4), it is easy to show that

∂ ln k

∂(1/kBT)
= −Q. (17)

The second contribution is related to the equilibrium
defect concentration. FromEq. (2), it follows that an
Arrhenius plot ofce yields a slope equal to

∂ ln ce

∂(1/kBT)
= −kBB

T 2

(T − To)2
. (18)
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The relationship betweenEqs. (14) and (16)on the
one hand andEqs. (17) and (18)on the other hand
is rather a remarkable result, given the mathematical
complexity of the derivation. Note that only whenT �
To, Eq. (18)yields the same effective activation energy
for the formation of a structural defect as the one that
appears inEq. (2), viz.kBB.

Including chemical ordering and using the same pa-
rameters as inTable 1, Tuinstra et al.[4] calculated
the slope of the Kissinger plot of the glass transition
peak and foundQ′ = 5.4 eV, which differs signifi-
cantly fromQ′ = 4.6 eV (seeFig. 2). This suggests
that neglecting changes in the chemical order does
not give a very accurate expression forQ′. Includ-
ing the chemical order would presumably add a third
term to Eq. (14), characterising the effective contri-
bution of the spectrum of activation energies used to
describe the rate of change of the chemical order pa-
rameter[15]. Incorporating the second term inEq. (6),
however, would make this problem very difficult to
treat analytically. AsEq. (14)gives a good first order
approximation forQ′, we did not attempt to include
chemical ordering.

Tuinstra et al.[4] found that a Kissinger plot of
the glass transition peak determinedexperimentally
for Pd40Ni40P20 does not give a straight line. Due
to the thermal lag of the DSC apparatus, the line is
curved. Obviously, this thermal lag goes to zero when
the heating rate goes to zero. AsTg decreases with de-
creasingϕ, the slope of an experimentally determined
Kissinger plot athigh reciprocal temperature should
give the best estimate ofQ′. From Fig. 12 in reference
[4], it can be shown thatQ′ = 5.1 eV in this limit.
This compares well with the numerical valueQ′ =
5.4 eV quoted in the previous paragraph. For this rea-
son, we chose not to model the thermal lag of a DSC
apparatus, but rather to compare calculations with ex-
periments in the limit of small heating rate.

5. Summary and conclusions

It is shown that, within the free volume model, the
slope of a Kissinger plot of the glass transition peak

is approximately equal to

Q′ = Q+ kBB
T 2

g

(Tg − To)2

This effective energy is simply the sum of two contri-
butions: the first term on the r.h.s. corresponds to the
migration of structural defects and the second is re-
lated to their equilibrium concentration. This expres-
sion compares very well with an accurate numerical
calculation. For small heating rates,ϕ (i.e. for small
Tg or large 1/kBTg), the expression also compares very
well with experiment.
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