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Abstract

Model-free isoconversion methods are the most reliable methods for the calculation of activation energies of thermally
activated reactions. A large number of these isoconversion methods have been proposed in the literature. A classification of
these methods is proposed. Type A methods such as Friedman methods make no mathematical approximations, and Type
B methods, such as the generalised Kissinger equation, apply a range of approximations for the temperature integral. The
accuracy of these methods is investigated, by deriving expressions for the main sources of error which includes the inaccuracy
in reaction rate measurement, approximations for the temperature integral and inaccuracies in determination of temperature
for equivalent fraction transformed. Both highly inaccurate and highly accurate Type B methods are identified. In cases where
some uncertainty over baselines of the thermal analysis data exists or where accuracy of determination of transformation rates
is limited, type B methods will often be more accurate than type A methods.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A general objective of the modelling of thermally
activated reactions is the derivation of a complete de-
scription of the progress of a reaction that is valid
for any thermal treatment, be it isothermal, by linear
heating or any other non-isothermal treatment[1,2].
For many reactions this objective is a daunting one
as any given reaction might progress through a range
of mechanisms and intermediate stages, all of which
can have a different temperature-dependency, and this
is especially so for solid-state reactions. To come to
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terms with this potentially very complicated problem,
most researchers attempt to achieve the objective by
making a few judiciously chosen simplifying assump-
tions. A simplifying assumption that is encountered
in innumerable publications is the assumption that the
transformation rate during a reaction is the product of
two functions, one depending solely on the tempera-
ture,T, and the other depending solely on the fraction
transformed,α [3].

dα

dt
= f(α)k(T) (1)

The temperature dependent function is generally as-
sumed to follow an Arrhenius type dependency.
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k = k0 exp −
(

E

RT

)
(2)

Thus, to describe the progress of the reaction at
all temperatures and for all temperature-time pro-
grammes, the functionf(α), and the constantsk0 and
E need to be determined. In general, the reaction
function f(α) is unknown at the outset of the analysis.
A range of standard functions which represent par-
ticular idealised reaction models have been proposed
(see, e.g.[4,5]).

FromEqs. (1) and (2)follows immediately that for
transformation studies by performing experiments at
constant temperature,Ti, E can be obtained from the
well-known relation:

ln tf = E

RTi

+ C1 (3)

wheretf is the time needed to reach a certain fraction
transformed, andC1 a constant which depends on the
reaction stage and on the kinetic model. Thus,E can
be obtained from two or more experiments at different
T. For isothermal experimentsk(T) is constant, the
determination off(α) is relatively straightforward, and
is independent ofE.

For non-isothermal experiments, the reaction rate at
all times depends on bothf(α) andk(T), and the deter-
mination off(α), k0 andE (the so-called kinetic triplet)
is an interlinked problem (see e.g.[1]). A deviation in
the determination of any of the three will cause a de-
viation in the other parameters of the triplet. Thus it is
important start the analysis of non-isothermal experi-
ments by determining one element of the triplet with
high accuracy. This paper focuses on the accuracy of
methods for obtaining the activation energy from ex-
periments at constant heating rate,β. Over the past
decades a bewildering range of such methods have
been proposed (a selection of methods can be found
in [6–21]). Some of these methods have been shown
to be very inaccurate, which has fuelled doubts about
the accuracy and validity of non-isothermal methods
in general[22]. Some methods are non-transparent
because they rely on numerical integration of data,
which may explain the relatively scarce use of more
recent less transparent methods. It is further noted that
in many publications inaccuracies in some activation
energy analysis methods introduced by approximation
of the so-called temperature integral (seeSection 2.2)
are cited as justification for the development of fur-

ther new (and often non-transparent) models, without
considering whether the magnitude of these inaccura-
cies are significant and mostly without providing proof
that new methods are any more accurate than existing
methods.

In an attempt to clarify the current state of activa-
tion energy analysis, the present paper has two aims.
First aim is to clarify the reasons behind the profu-
sion of activation energy methods through analysing
and categorising the derivations and approximations
made. This will lead to a simple means of categorising
isoconversion methods, which encompasses all known
isoconversion methods. This work has also allowed
identification of several new isoconversion methods,
which have benefits over existing methods. The second
aim is to provide a quantitative and conclusive anal-
ysis of the errors and uncertainties of a large number
of isoconversion methods (including the best known
ones), and thus unambiguously determine the benefits
and drawbacks of the methods.

2. Methods for determination of activation energy

For transformation studies performed at constant
heating rate, a wide range of methods for deriving
the activation energy of a reaction that conforms to
Eqs. (1) and (2)have been proposed (a selection of
methods can be found in[3–18]). All reliable methods
of activation energy analysis require the determina-
tion of the temperatures,Tf (β), at which an equivalent
stage of the reaction for various heating rates. Hence
the term isoconversion methods. The equivalent stage
(also called fixed or identical stage) may be defined
as the stage at which a fixed amount is transformed,
or at which a fixed fraction of the total amount is
transformed[23]. Isoconversion methods can be cate-
gorised into one of two main groups of methods. One
set of methods relies on approximating the so-called
temperature integral and requires data onTf (β) only.
For reasons that will become clear below, will use
the termp(y)-isoconversion methods to describe the
methods in this category and class them as type B
methods. This set of methods includes the Kissinger
method[6,7], the Kissinger–Akahira–Sunose method
[9] (also termed the generalised Kissinger method), the
Flynn–Wall–Ozawa method[10,12,13]and two meth-
ods developed by the present author[15]. Another set
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of methods does not use any mathematical approxima-
tion, but instead uses a determination of the reaction
rate at an equivalent stage of the reaction for various
heating rates. Hence, we will term this group of meth-
ods rate-isoconversion methods, or type A methods.
A well-known method of this type is the Friedman
method.

2.1. Type A: rate-isoconversion methods (or
Friedman type methods)

Rate-isoconversion methods do not make any
mathematical approximation, but require the rate of
transformation atTf (β) as well as data onTf (β).
These methods are sometimes called transformation
rate-isoconversion methods, or Friedman methods af-
ter the researcher who first derived the method[17],
and in this work we will indicate them as type A
methods. The method is derived by insertingEq. (2)
into Eq. (1)and taking the logarithm, yielding

ln

(
dα

dt

)
= − E

RTf
− ln f(α) (4)

Thus, if a range of linear heating experiments at
different heating rates,β, are performed and the times
at which a fixed stage of the reaction is achieved can
be identified for each linear heating experiment,f(α)
will be a constant. By measuringTf and the transfor-
mation rate dα/dtat that fixed stage for each of the
experiments, we can obtainE from the slope of plots
of ln(dα/dt) versus 1/Tf . As dα/dt can be difficult to
measure accurately, whilst the heating rate is much
easier to determine accurately, one usually prefers to
rewrite the latter equation to

ln

(
dα

dT
β

)
= − E

RTf
− ln f(α) (5)

HenceE is now determined from the slope of plots
of ln(β dα/dt) versus 1/Tf . (The work by Gupta et al.
[18] further clarifies the derivation of the rate isocon-
version method first derived by Friedman[17].) Thus
the method does not require any assumption onf(α),
i.e. it is a so-called model-free method.

Whilst this type A (rate-isoconversion) method
avoids making mathematical approximations used in
type B methods (see later), they introduce some new
measurement uncertainties as the measurement of the

rate of conversion, dα/dT, is sensitive to the determi-
nation of the baseline and calibration of the thermal
analysis equipment.

2.2. Type B: p(y)-isoconversion methods

The procedures for deriving and applyingp(y)-
isoconversion methods can be illustrated well by
considering the derivation of the Kissinger–Akahira–
Sunose (KAS) method[6,7,9,10] (sometimes called
the generalised Kissinger method), which is one of
the best knownp(y)-isoconversion methods. In this
derivation,Eq. (2) is inserted inEq. (1) and this is
integrated by separation of variables∫ α

0

dα

f(α)
= k0

β

∫ Tf

0
exp

(
− E

RT

)
dT

= k0E

βR

∫ ∞

yf

exp(−y)

y2
dy (6)

wherey = E/RT, yf = E/RTf , Tf is the temperature
at an equivalent (fixed) state of transformation, andβ

the heating rate. The integral on the right hand side is
generally termed the temperature integral (some au-
thors use ‘Arrhenius integral’[24]), p(y).∫ ∞

yf

exp(−y)

y2
dy = p(yf ) (7)

Integrating in parts and truncating the series by as-
sumingyf � 1 results in the following approximation
for p(y) (see e.g.[10]):

p(y) ∼= pK(y) = exp(−y)

y2
(8)

The assumptionyf � 1 is reasonable, since for the
vast majority of solid-state reactions (and many other
reactions) 15< yf < 60. By taking the logarithm of
Eq. (6)and usingEq. (8)one obtains

ln
∫ α

0

dα

f(α)
= ln

(
k0E

R

)
+ ln

(
1

βy2
f

)
− yf (9)

At constant fraction transformed,α, this leads to

ln

(
β

T 2
f

)
= − E

RTf
+ C2 (10)

C2 and subsequentC3, C4, etc. are parameters that are
independent ofT andβ. According to the latter equa-
tion, plots of ln(T 2

f /β) versus 1/Tf should result in
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straight lines, the slope of the straight lines equalling
E/R. The method does not require any assumption on
f(α), i.e. just like other type A and type B methods, it is
a model-free method. This Kissinger–Akahira–Sunose
(KAS) is essentially identical to the method described
by Vyazovkin and co-workers[25,26]. (Note that this
early method by Vyazovkin and co-workers is differ-
ent from a later model[27,28] derived by him. Note
also that various authors[21,29] have in the past de-
rived Eq. (10) using a specific reaction model, but,
as shown above and elsewhere[4,10,15], this limiting
assumption is not required.)

All p(y)-isoconversion methods involve the plotting
of 1/Tf versus a logarithmic function which depends
on the heating rate and often the temperature. The lat-
ter logarithmic function depends on the approximation
for the temperature integral used, which is different
for the differentp(y)-isoconversion methods. Thus, the
approximation of the temperature integral is key to
understanding the different methods and below these
approximations will be considered.

2.2.1. The temperature integral and its
approximations

A range of approximations of the temperature in-
tegralp(y) have been suggested in the literature, and
here we will here consider the best known, the most
cited and the most accurate approximations, as well
as consider how these approximations relate to each
other.

As will be shown below, all the known approxima-
tions will loose accuracy for small values ofy (typi-
cally for y below about 15) whilst some loose accuracy
for large values ofy (typically y > 60). To be able to
appreciate the relevance of these deviations we need
to consider the range ofy values that can be encoun-
tered in practice. In a first assessment, the activation
energies and temperature ranges of the reactions de-
scribed in the papers cited in this work were assessed,
and it was found that for the thermal analysis exper-
iments reportedy values range from 20 to 60. If in
addition reactions that were mentioned but not anal-
ysed with thermal analysis are considered, the lower
limit for y is 9. (This exceptionally low value ofy oc-
curs for nitriding and carburising of steel.) There are
several reasons for the lack of reactions with y val-
ues outside this range. Firstly, reactions with a high

activation energy will generally occur at high temper-
atures and vice-versa. This will tend to limit the oc-
currence of extremely low or extremely high values of
y. Secondly, for diffusion controlled reactions the typ-
ical diffusion distance,�, is given by �= √

Dt, where
D is the diffusion coefficient.D is generally given by

D = D0 exp

(
−ED

RT

)
(11)

and thus, we find

y = ED

RT
= −ln

(
�2

D0t

)
(12)

Again, extreme values ofy are unlikely because (a)
� and t are limited due to practical considerations,
and the lower limit for� is defined by interatomic
distance, (b) larger diffusion distances,�, will imply
longer experiment times,t, (c) the logarithmic function
will limit variation.

Thus, there are sound physical reasons for expecting
that there are upper and lower boundaries to the range
of y values that can occur. The assessment shows that
in searching for an approximation forp(y) only the
range 9< y < 100 is of practical significance, whilst
the overwhelming majority of reactions occur for 15<
y < 60.

In considering the different mathematical expres-
sions for the temperature integral we will first con-
sider series expansions, which form the basis for less
accurate approximations. Three important types of ex-
pansions are the asymptotic expansion after a single
integration in parts

p(y) = exp(−y)

y2

×
(

1 + 2!

−y
+ 3!

(−y)2
+ 4!

(−y)3
+ · · ·

)
(13)

Schlömilch’s expansion[30]

p(y) = exp(−y)

y(1 + y)

×
(

1 − 1

2 + y
+ 2

(2 + y)(3 + y)

− 4

(2 + y)(3 + y)(4 + y)
+ · · ·

)
(14)
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and Lyon’s expansion[16]

p(y) = exp(−y)

y(2 + y)

×
(

1 + 2

(2 + y)y
− 8

(2 + y)2y

+ O(y−4) + · · ·
)

(15)

Thus, the general structure of these asymptotic ex-
pansions is of the type:

p(y) = exp(−y)

y(ω + y)
(1 + g(y)) (16)

whereω is a constant (inEqs. (13)–(15)equalling 0,
1 and 2),g(y) is a an expansion of which the first term
is of the ordery−1 or y−2, with g(y) � 1 (providing
y is larger than about 10). It is apparent that by taking
non-integer values ofω, many more expansions can
be derived. Senum and Yang[31] provided a range of
approximations described by the equation

p(y) ∼= exp(−y)

y2
h(y) (17)

In this equation,h(y) is the ratio of two polynomials,
and hence they termed their approximations ‘rational’
approximations. The fourth order approximation is
given by1

h(y) = y4 + 18y3 + 86y2 + 96y

y4 + 20y3 + 120y2 + 240y + 120
(18)

To arrive at approximations that are suited for de-
riving a p(y) isoconversion method, the expansion is
typically limited to only the first term or the first two
terms. The first term in the expansion inEq. (13) is
the approximation used by Murray and White[32].

p(y) ∼= exp(−y)

y2
(19)

As shown above, this approximation leads to the
Kissinger–Akahira–Sunose (KAS) method. The ap-
proximation by Coats and Redfern[33] is the first
two terms inEq. (13).

p(y) ∼= exp(−y)

y2

(
1 − 2

y

)
(20)

1 Note that some authors (including Senum and Yang[31], and
some recent papers) have erroneously quoted the coefficient ofy2

on the top line as 88 and not the correct value of 86[24].

Doyle[34–36]suggested a linear approximation of the
logarithm ofp

logp(y) ∼= −0.4567y− 2.315 (21)

which is equivalent with

p(y) ∼= exp(−1.0518y− 5.330) (22)

It was noted in reference[15] that the Doyle and
Murray and White approximations are part of a wider
group of approximations described by

p(y) ∼= exp(−Ay + B)

yκ
(23)

This class of approximations leads to a distinct group
of methods (the direct methods) described below. For
each value of exponentκ, A andB can be optimised by
minimising the deviation between the approximation
function and the exact integral. It was indicated[15]
that from this group of approximations, the approxi-
mation withA = 1 that is most accurate for 20< y <

60 is obtained withκ = 1.95, which leads to

p(y) ∼= exp(−y − 0.235)

y1.95
(24)

In a further analysis performed for the present work,
it was observed that ifA is not required to equal 1, a
highly accurate approximation is given by

p(y) ∼= exp(−1.0008y− 0.312)

y1.92
(25)

Analyses of accuracies of selected approximations
of the temperature integral have been published in sev-
eral works[15,37,38]. Comparison of the accuracies of
these approximation is straightforward, and inFig. 1
the accuracies are compared by plotting (pa/p − 1).
The figure shows that, as expected, the fourth order
Senum and Yang approximation is the most accurate
of the equations presented above. The two next most
accurate approximations are Starink’s approximation
for κ = 1.95 and Coats and Redfern’s approximation.
The Doyle approximation proves to be the most inac-
curate of the ones considered here.

2.2.2. Type B-κ: direct p(y)-isoconversion methods
The above approximations forp(y) can be used

to derive p(y)-isoconversion methods. Thep(y)-
isoconversion methods can be subdivided into
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Fig. 1. Relative accuracy of different approximations for the temperature integral: (a) overview; (b) enlarged view.

four classes. For the most straightforwardp(y)-
isoconversion methods the activation energy is deter-
mined from the slope of a plot of two parameters that
are determined byTf andβ. We will term these direct
p(y)-isoconversion methods. One of these methods
is the Kissinger–Akahira–Sunose method, outlined
at the start of this section, in whichE is determined
from the slope of plots of ln(b/T 2

f ) versus 1/Tf . As

described, this method uses the Murray and White
approximationEq. (19). In general all approxima-
tions that are of the form ofEq. (23)lead to a direct
p(y)-isoconversion method. Of which the general
form is

ln

(
β

T κ
f

)
= −A

E

RTf
+ C3 (26)
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So, Doyle’s approximation leads to

ln β = −1.0518
E

RTf
+ C4 (27)

This is the Flynn–Wall–Ozawa method in which the
E is determined from the slope of plots of ln(β/T 2

f )

versus 1/Tf . UsingEq. (24)the following equation is
derived

ln
β

T 1.95
f

= − E

RTf
+ C5 (28)

Thus Ea is determined from the slope of plots of
ln(β/T 1.95

f ) versus 1/Tf . And usingEq. (25)we can
derive

ln
β

T 1.92
f

= −1.0008
E

RTf
+ C6 (29)

Thus, in this newly derived method,E is determined
from the slope of plots of ln(β/T 1.92

f ) versus 1/Tf .
From the above it is clear that by applying dif-

ferent approximations ofp(y) a wide range of di-
rect p(y)-isoconversion methods can be derived.
In view of the many possible methods we will
classify them as type B-κisoconversion methods
with κ the exponent defined inEq. (26). Thus the
Flynn–Wall–Ozawa method is the Type B-0 method,
the Kissinger–Akahira–Sunose (KAS) method is the
Type B-2 method andEqs. (27) and (28)are the
Type B-1.95 and Type B-1.92 methods. (Similarly the
Boswell method described in[14] is Type B-1.)

In deciding which method is most valuable, we
should consider accuracy, robustness/reliability (with
respect to possible inaccuracies in measurement of
Tf ), transparency and convenience of application. The
analysis of the accuracy of thep(y) approximations
shows that the accuracy of the Type B-1.92 method
is the best, and that accuracy decreases in the order
Eq. (29), (28), (26) and (27). (This is further anal-
ysed inSection 4.) As shown before in various papers
[15,38], the type B-0 method (Flynn–Wall–Ozawa
method) is in fact quite inaccurate, with deviations in
activation energy higher than 10% being introduced
in specific realistic cases. (However, corrections can
be made, see below.) Reliability of all methods is sim-
ilar, and all methods are simple and convenient, even
though the type B-0 method has a small advantage in
that the axes of the plot each use only one variable.
It is here proposed that of thep(y)-isoconversion

methods, the type B-1.92 method (Eq. (29)) is to be
preferred because it has the best accuracy, combined
with a simple application.

2.2.3. Type B-κ(it): iterative p(y)-isoconversion
methods

Apart from the directp(y)-isoconversion methods
(Type B-κ) described above, there arep(y)-isoconver-
sion methods that make use of a correction proce-
dure, which involves iterative procedures to obtain
the activation energy. The best known of these it-
erative p(y)-isoconversion methods is the proce-
dure described by Flynn[8]. This method uses the
Flynn–Wall–Ozawa method to obtain a first estimate
of the activation energy. Subsequently the activation
energy is corrected by a factor that depends on the
average value ofy for the data, i.e. the average value
of E/RT. The equation for the method is thus

d (ln β)

d(1/Tf )
= −B(y)

E

R
(30)

whereB(y) is the correction function. The method is
iterative becauseB(y) can only be determined by es-
timating E. The first iteration step will be by taking
B(y) = 1 or B(y)= 1.05. This method will be classed
type B-0(it).

A closely related iterative isoconversion method is
the one described by Lyon[16]. This method is based
on an approximiation ofp(y) using the first term of the
expansionEq. (15), which, after taking the logarithm
and taking the derivative with respect to 1/T, yields:

d(ln β)

d(1/Tf )
= −T

(
2 + y + 2

2 + y

)
(31)

This is then further approximated by using

−T

(
2 + y + 2

2 + y

)
∼= −

(
E

R
+ 2T

)
(32)

Thus, the method is given by

d (ln β)

d(1/Tf )
∼= −

(
E

R
+ 2T

)
= −E

R

(
1 + 2

y

)
(33)

Thus, the Lyon method makes two mathematical ap-
proximations: first the temperature integral is approx-
imated using the first term inEq. (15)and then the
approximation described in the latter equation (by the
∼= symbol) is made by taking(2 + y)−1 � 1 + y.
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Another iterative method is described by the
present author in[15], which usesκ = 1.8 and hence
should be classed type B-1.8(it). In principle, any
number of iterativep(y)-isoconversion methods can
be devised, simply by defining a derivate in the form
of d(ln β/T λ)/d(1/Tf ) (with λ a constant equalling
about 0–2) which approximatesE/R and subsequently
applying a numerical correction.

Some of these iterativep(y)-isoconversion methods
can achieve high accuracies. There are, however, some
disadvantages. Firstly, if the first step in the method
involves a plot that is based on a low accuracy approx-
imation of p(y), the plot will not be a straight line.
This is the case with using the Flynn–Wall–Ozawa
plot (ln(β) versus 1/Tf ). In such a case it would not be
possible to use a deviation of a straight line to deter-
mine potential problems in application of the method.
For instance, if two thermally activated processes de-
termined if the reaction studied, an accurate direct
p(y)-isoconversion method would reveal this by show-
ing a curved plot. A plot of ln(β) versus 1/Tf is curved
because of the inaccurate approximation ofp(y) in-
volved, and would hence not allow the identification
this situation. (Note that type B-1.8(it) method in[15]
was optimised to eliminate such drawbacks.) A second
drawback of the iterativep(y)-isoconversion methods
is the added complexity, which again might serve to
obscure potential problems in the application of the
method.

2.3. Maximum rate methods (peak methods)

In the methods considered so far the equivalent stage
of the reaction is taken as the stage at which a fixed
amount of material has transformed, or where a fixed
fraction of the total amount transformed has trans-
formed. Alternatively, it is possible to approximate a
fixed stage of the reaction as the stage at which the
maximum rate of transformation is achieved, the best
know method is the Kissinger method. In several pa-
pers[5,23] the validity of this approximation has been
investigated by considering mathematical expressions
for the reaction functionf(α). It was found that the
maximum rate of a transformation indeed approxi-
mately occurs at a fixed fraction transformed. How-
ever, for all considered reaction functionsf(α), always
small variations in the transformed fraction at maxi-
mum reaction rate with heating rate do occur. Thus

whilst it is possible to use the maximum reaction rate
to define an isoconversion method, a small error will
be introduced.

In principle the maximum rate can be used both in
type A or type B methods, but due to the popular-
ity of the Kissinger method, it is this type B method
that is the dominant method in the maximum rate
methods. We will indicate this class of methods by
adding the ‘peak’ to the classification symbols, i.e.
the Kissinger method is the type B-2-peak method.
Type B-1.92-peak and type B-1.95-peak methods are
likely to be more accurate than the type B-2-peak
method. (But no published applications are known to
the present author.) It is further noted that the accu-
racy of type B-0-peak and type B-1.8-peak(it) meth-
ods were investigated in[23].

2.4. Other activation energy analysis methods

Apart from the isoconversion methods a range of
other methods for analysing activation energies have
been proposed: the Freeman–Carroll[39] and Eller-
stein methods[40], the Achar–Brindley–Sharp method
[41], the Chatterjee method[42] and the temperature
criterion method[4,43]. Characteristic of these meth-
ods is that they either assume that a particular kinetic
model holds or that activation energies can be derived
from a single experiment at one single heating rate.
These methods have been reviewed by various authors
[44–46], most recently by Ortega[4], and are found to
be generally unreliable, especially for solid-state re-
actions where the reaction kinetic model is generally
complicated, and often unknown.

Further, there are more complex “model free”
methods, akin to isoconversion methods, which avoid
using an approximation ofp(y). The expressions
are generally complex and non-linear; and solutions
can be obtained using computer algorithms, some
of which are available in commercial software. The
“model free” non-parametric kinetics (NPK) method
derived by Serra and co-workers[47,48] is considered
to be accurate, but, due to its mathematical complex-
ity, has been applied very little[1]. (It was shown that
for one particular reaction occurring at abouty = 30,
the method obtained an activation energy 0.6% higher
than the KAS method. As is shown below that at
y = 30 the KAS analysis is very accurate, this sin-
gle example suggests that the NPK method is quite
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accurate.) The non-linear “model free” isoconversion
method by Vyazovkinand and co-workers[27,28]has
been applied in commercial software. In theSection 3,
it is shown that a comprehensive analysis of accu-
racies of the methods described in 3.1–3.3 can be
made, but this approach is not possible for these com-
puter based methods by Vyazovkin and co-workers.
No detailed analysis of the errors related to these
methods is available, apart from the observation that
these methods avoid introducing errors related to ap-
proximation of p(y). However, as the errors due to
approximations ofp(y) are small provided an accurate
method is selected (seeSection 3) and often smaller
than errors introduced by other factors, it is at present
not evident that there is a benefit to be gained by ap-
plying these complex algorithms for activation energy
analysis.

3. Accuracies of isoconversion methods

In order to arrive at recommendations as to which
of the many proposed methods for activation energy
analysis is most appropriate, the accuracy of these
methods needs to be analysed. These accuracies are
determined by six factors.

1. Mathematical approximations. Type B isocon-
version methods use approximations of the
temperature integral. This approximation causes
inaccuracies which depend on the type of approx-
imation chosen as well asT and E. The Lyon

Table 1
Classification of methods

Description Procedure Type/code Best known/very accurate
techniques

Reference

Rate-isoconversion method Plots of ln(dα/dt) vs. 1/Tf Type A Friedman [17]
Gupta et al. [18]

p(y) isoconversion method Plots of ln(T k
f /β) vs. 1/RTf Type B-κ Kissinger–Akahira–Sunose

(generalised Kissinger)
[7,9]

Ozawa [12,13]
Type B-1.92 This paper

Type B—maximum rate methods Plots of ln(T k
p /β) vs. 1/RTp Type B-κ-peak Kissinger [6,7]

Type B—iterative methods Type B followed by iterative procedure Type B-κ(it) Flynn correction of Ozawa
method

[8]

Starink method [15]
Lyon method [16]

method additionally uses a further mathematical
approximation.

2. For all methods the temperature at constant amount
transformed needs to be obtained from the mea-
sured data. This is prone to slight inaccuracies due
to limitation in the accuracy of the baseline deter-
mination and minor inaccuracies in the measure-
ment of the sample temperature. (This error will be
small for maximum rate methods.)

3. Type A methods require experimental data on reac-
tion rate at constant amount transformed. This data
is prone to inaccuracies resulting from a limitation
in the accuracy of the baseline determination and
in the determination of the temperature at constant
amount transformed.

4. Small fluctuations in the supposedly constant heat-
ing rate may cause errors in determination of the
heating rate.

5. In maximum rate methods, the temperature
stage defined is not exactly at constant amount
transformed, thus introducing small deviations
[5,37,49].

6. All methods presume that the equilibrium state is
constant. In some cases this assumption may not
hold and this introduces deviations in the measured
activation energies[23,50].

The different sources of inaccuracies for various
methods are gathered inTable 1.

The deviations introduced by factors (v) and (vi)
are analysed in some detail elsewhere[5,23,37], and
to assess the relative importance of the other factors
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the following analysis is applied. Consider the activa-
tion energy is derived from two constant heating rate
experiments, I and II. Then the activation energy for
a p(y)-isoconversion method described byEq. (26)is
given by

Em = R
ln(βI/T

κ
f ,I) − ln(βII /T

κ
f ,II )

(1/Tf ,I) − (1/Tf ,II )
(34)

where Em stands for the measured value ofE. The
deviation,∆Em, introduced by the different sources of
error is approximated as

�Em = ∂Em

∂TI
�TI + ∂Em

∂TII
�TII + ∂Em

∂βI
�βI

+ ∂Em

∂βII
�βII + �Em(T integral) (35)

where the first four terms on the right hand relate to
the inaccuracies in determination of the temperatures
at fixed fraction transformed and the inaccuracies in
determination of heating rate, and�E (T integral) is
the deviation introduced as a result of the approxima-
tion made in theT integral,p(y). As the heating rate
can generally be determined to a very high accuracy,
�βI and�βII terms inEq. (35)can be ignored. The
first term on the right hand side of the latter equation
is evaluated as

∂Em

∂TI
�TI = R

(
TII

TI − TII

[
κ + Em

RTI

])
�TI (36)

As κ � E/RT, we can approximate

∂Em

∂TI
�TI ∼= Em

(
�TI

TI − TII

TII

TI

)
(37)

Thus, for type B methods, the errors introduced
by error sources (i–iv) are mostly dominated by error
sources (i) and (ii), and the errors can be approximated

�Em

Em

∼= �TI

TI − TII

TII

TI
+ �TII

TII − TI

TI

TII

+�Em(T integral)

Em
(38)

We can further approximate this by considering that
in most casesTI − TII � TII , TI and hence

�Em

Em

∼= �TI

TI − TII
+ �TII

TII − TI
+ �Em(T integral)

Em

(39)

The last term in the latter equation can be determined
as follows. FromEqs. (6) and (7)we can derive that
for type B methods:

ln

(
p(yf )

β

)
= constant (40)

The general form for the approximation ofp is given
by

pa(y) = e−yq(y) (41)

If the ration betweenp and the approximationpa is
r(y) Eq. (40)can be rearranged to

ln

(
pa(yf )r(y)

β

)
= ln

(
e−yq(yf )r(y)

β

)

= −y + ln

(
q(yf )

β

)
+ ln (r(y))

= constant (42)

and thus it follows

d ln(q(yf )/β)

d(1/T)
= E

R
− d ln(r(y))

d(1/T)

= E

R

(
1 − d ln(r(y))

d(y)

)
(43)

Thus, we can conclude that

�Em(T − int)

Em
= d ln(r(y))

d(y)
= d ln(pa/p)

d(y)
(44)

The right hand side of the latter equation was evaluated
and results are presented inFig. 2. This figure shows
that for the most accuratep(y)-isoconversion method
(type B-1.92 method) the deviations introduced by ap-
proximation of the temperature integral are less than
0.25% fory > 15 and<0.75% fory > 10. For the
Lyon method the sources of error are similar to Type
B methods, but in addition an error source related to
the approximation inEq. (32)is introduced. The rel-
ative error inE introduced is about−2(y(2 + y))−1,
and hence accuracy is better than 1.7% fory > 10 and
better than 0.8% fory > 15.

Fig. 2b indicates that the deviations introduced by
approximation of the temperature integral approach
zero for increasingy only for the type B-2 method (the
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Fig. 2. The fraction error in activation energy caused by approximation of the temperature integral in isoconversion methods type B-0,
B-2, B-1.95 and B1.92. For the Lyon method the error due to the approximation inEq. (32) is given (equalling−2(y(2 + y))−1): (a)
overview; (b) enlarged view.
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KAS method). Indeed, ifκ �= 2 we find

lim
y→∞

�Em(T − int)

Em
= lim

y→∞
d ln(pa/p)

d(y)

= lim
y→∞

d ln(T κ−2)

d(y)
�= 0 (45)

However,Fig. 2b shows that deviations are negli-
gible in the range up toy = 100, which is the upper
limit for realisticy values, providedκ is between about
1.9 and 2.

A rough estimate of deviation introduced by the
first two terms on the right hand side ofEq. (39)can
be obtained by considering some typical values for
solid-state reactions (TI − TII ≈ 50 K with �T ≈
0.25 K) and we find that this deviation amounts to
about 0.5%. Seeing that for several type B methods the
error introduced by approximation of the temperature
integral is smaller, the accuracy of the temperature
integral approximation has a very limited effect on the
overall accuracy of determination ofE, provided an
accurate type B isoconversion method is used.

The accuracy of the type A methods (rate-isocon-
version methods, Friedman method) can be analysed
following a similar procedure. For these methods it
will hold

�Em = ∂Em

∂TI
�TI + ∂Em

∂TII
�TII + ∂Em

∂βI
�βI

+ ∂Em

∂βII
�βII + ∂Em

∂qI
�qI + ∂Em

∂qII
�qII (46)

whereq = dα/dT. Analysis shows

�Em

Em

∼= �TI

TI − TII

TII

TI
+ �TII

TII − TI

TI

TII

+ RTI

Em

�qI

qI

TI

TII − TI
+ RTII

Em

�qII

qII

TII

TI − TII

∼= �TI

TI − TII
+ �TII

TII − TI
+ RTI

Em

�qI

qI

TI

TII − TI

+ RTII

Em

�qII

qII

TII

TI − TII
(47)

The first two terms on the right hand side are identical
for type A and type B methods, and we may derive a
condition which defines in which case a type A method
is more accurate than an type B method. The type A

method is more accurate if

RTI

Em

�qI

qI

TI

TII − TI
+ RTII

Ea

�qII

qII

TII

TI − TII

<
�Em(T integral)

Em
(48)

Seeing that�q1 and �q2 are independent we may
define a typical accuracy of determination ofq, �q,
and rewrite the above condition as

�q

q
= �(dα/dt)

dα/dt

<
1√
2

Em

RTI

TII − TI

TI

�Em(T integral)

Em
(49)

Accuracy of determination ofq may depend on a range
of factors including baseline stability and dependency
of heat flow calibration on heating rate and tempera-
ture, and it is thought that�q/q may vary between 0.5
and 5% depending on sample and experimental condi-
tions. Considering some typical values for solid-state
reactions would yield as indication of the magnitude:

RTI

E

TI

TII − TI
≈ 1

20
× 500

50
= 0.5 (50)

3.1. Choice of activation energy analysis methods

In order to arrive at recommendations as to which
of the many methods for activation energy analysis is
to be preferred, the expressions for the main sources of
deviations in the various methods are listed inTable 2.
One of the main criteria to consider is whether a
Type B (p(y) isoconversion) or a type A (Friedman)
type method is chosen. TakingEq. (49)and inserting
some typical values for solid-state reactions and using
�Em(T integral) = 0.0025, it follows that a Fried-
man type a method is more accurate than aT integral
isoconversion type method if

�q

q
= �(dα/dt)

dα/dt
< 0.1% (51)

Thus if transformation rate can be measured with a
precision that is very high (typically better than about
0.1%) type A methods would be more accurate. How-
ever, in many cases it will be impossible to guarantee
that the rate of transformation can be measured to this
accuracy and in these cases the type A methods are
not recommended. It should also be considered that it
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Table 2
General assessment of the sources or error in methods for activation energy analysis

Methods Sources of error

i
(approximatelyp(y))

ii
(measuringTf )

iii (determining
dα/dT)

iv (Non-
constantβ)

v (Tp not at
constantTf )

vi (T dependency
equilibrium state)

Type A methods at fixed
fraction transformed

ISR ISR ISR, SR ISR, SR

Type B methods at fixed
fraction transformed

ISR, SR ISR ISR, SR ISR, SR

Type B—peak methods ISR SR ISR, SR ISR ISR, SR
Type B—iterative methods SR ISR ISR, SR ISR, SR

ISR means important source of errors, SR means source of error that is small and usually negligible.

may be very difficult to estimate the accuracy of the
determination of∆q, and thus it is very difficult to
estimate the possible errors resulting from application
of type A methods. In such cases, it would be better
to accept the limited but quantifiable deviation in type
B methods (introduced by the approximation ofp(y))
rather than apply a type A method in which the devi-
ations are difficult to quantify.

In summarising the assessment it is thought that for
activation energy analysis one of the more accurate
type B isoconversion methods is in most cases the
most appropriate method.

4. Concluding remarks

The present paper contains a conclusive and quan-
titative analysis of the accuracies of isoconversion
methods. It is quite clear that highly accurate and
convenient isoconversion methods are available (e.g.
the Type B—1.92 method), and in the opinion of the
author it is unlikely that further research will uncover
new methods that are substantially better. Thus the
need for further work on activation energy analysis
methods has very much reduced. For any new method
to be valuable it must be demonstrated to be more ac-
curate than the existing methods, taking into account
all possible sources of deviations (i–vi).

5. Conclusions

Over the past decades a bewildering range of meth-
ods for obtaining the activation energy from experi-

ments at constant heating rate have been proposed. In
the present work the isoconversion methods have been
classified and their accuracies have been investigated.

• Type A isoconversion methods such as Friedman
methods make no mathematical approximations.

• Type B isoconversion methods, such as the gen-
eralised Kissinger and Ozawa methods, apply
approximations for the temperature integral. Due
to the large range of approximations for the tem-
perature integral a wide range of type B methods
exist

• Expressions for the accuracies of the type A and B
methods are derived.

• The accuracy of the Type B methods proposed in
the literature is variable, but highly accurate variants
are available. For the more accurate methods iden-
tified the approximation of the temperature integral
is highly accurate and in practical cases this approx-
imation has virtually no influence on the overall ac-
curacy of the method when applied to real data.

• The Ozawa method is very inaccurate. The accuracy
of the Kissinger and generalised Kissinger meth-
ods is limited to about 1%. Several lesser known
but highly accurate Type B methods are available
(accuracy better than 0.5% fory > 15), and these
are preferred over the better known (generalised)
Kissinger and Ozawa methods.

• For real experimental data determination of base-
lines of the thermal analysis data is never perfect
and accuracy of determination of transformation
rates is hence limited. In these circumstances type
B methods are generally more accurate than type A
methods.
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