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Abstract

A non-linear least-squares method of analysis has been developed for the heat capacities of solids undergoing phase
transitions. It utilizes harmonic heat capacity functions corrected for thermal expansion. The unique feature of the method is that
it incorporates the effect of a gradual phase transition in the fitting function for the low temperature phase. Compact expressions
approximating the Debye function and the Ising model heat capacity function have been derived and presented in practical
forms for use in the Kaleidagraph software. The method has been tested on the heat capacity of sodium chloride (which lacks
a phase transition) and tri-rubidium deuterium disulfate (Rb3D(SO4)2, TRDS) which undergoes a phase transition at 78.5 K
in the deuterated form but not in the normal hydrogenous form. The excess entropy based on the fitting was 5.27 J K−1 mol−1,
close enough toR ln 2 = 5.76 J K−1 mol−1 to suggest an order–disorder mechanism for the phase transition.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the past decade, commercial low temperature
calorimeters have become available for accurate mea-
surement of heat capacities that were previously
attained only by calorimetric specialists employing
specialized instruments. Newly available apparatuses
produce high quality data that appear to allow mean-
ingful analysis based on statistical mechanical theo-
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ries, giving us crucial knowledge about the mecha-
nism of the transition. In the analysis of heat capacity
data of solids, it has been standard practice to sepa-
rate the experimental data into normal and anomalous
parts on various assumptions about their temperature
dependence. The normal component is usually known
qualitatively at least and is of a secondary interest,
while determination of the anomalous part is the pri-
mary objective of the entire experimental work. Some-
times, it also happens that the normal part arises from
a physically complicated mechanism but may be as-
sumed to be a slowly varying function of temperature
for which a polynomial in temperature is an adequate
representation. Most often, the anomalous part is an
excess heat capacity due to a phase transition while

0040-6031/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0040-6031(03)00150-3



138 T. Matsuo et al. / Thermochimica Acta 403 (2003) 137–151

the normal part is the lattice heat capacity. Since the
effect of a phase transition is usually confined within
a limited interval of temperature, the standard proce-
dure is to interpolate the normal heat capacities into
the transition interval and subtract the interpolated
curve from the experimental values to determine the
excess heat capacity. Though this type of analysis
is practical and often gives a reasonable result, one
has to tolerate a certain degree of arbitrariness in the
choice of the transition interval and the interpola-
tion function. The Debye and Einstein heat capacity
functions are standard ingredients of the interpolation
function and optimized by non-linear fitting[1].

We have devised a least-squares interpolation
scheme that includes the effect of phase transitions
in the interpolation function. In this scheme, the ex-
perimental data to which the model function is fitted
may contain the excess contribution to an unspecified
proportion. The best-fit combination of the normal
and excess parts is achieved by the least-squares op-
timization. Once the best-fit function is determined,
the normal part is subtracted from the whole experi-
mental data to determine the excess part. This greatly
diminishes the arbitrariness in the interpolation. The
original version of the fitting program was written in
BASIC and has been used on various experimental
data[2,3].

In the present paper, we describe a recent version of
the fitting program based on more recent commercial
software for numerical analysis. We use Kaleidagraph
(version 3.51) for the actual calculation and graphic
presentation. Other numerical analysis software will
also be appropriate for the present purpose. The re-
vised version of the fitting program may be useful
in conjunction with computerized calorimeters now
available commercially. It should be pointed out that,
unlike the modulated DSC, adiabatic calorimetry with
which we are concerned in this paper gives only static
heat capacity. Hence, it is not necessary to consider
complex values of the heat capacity.

Tri-rubidium deuterium disulfate (Rb3D(SO4)2,
TRDS) undergoes a phase transition at 78.5 K[4].
This phase transition is unusual in that it does not oc-
cur in tri-rubidium hydrogen disulfate (Rb3H(SO4)2,
TRHS). This strong isotope effect indicates the impor-
tance of the quantum nature of the motion of protons
in determining even macroscopic properties of some
crystals. The excess heat capacity of this compound

is significant over a wide temperature range covering
the transition temperature and this makes the evalu-
ation of the transition entropy susceptible to various
arbitrary factors mentioned above. The difficulty is
especially great in this compound because the phonon
heat capacity changes three- to fourfold in the temper-
ature interval in question. We also recognize that the
mean-field approximation described below is accurate
for such a gradual transition[5]. We have applied the
extended least-squares method to this phase transition
and determined the excess heat capacity and entropy.
We also present the analysis of the heat capacity of
sodium chloride which we performed as a check of
the non-linear least-squares analysis. Sodium chloride
is available in high purity but only a limited set of
heat capacity data has been published[6,7]. We mea-
sured the heat capacity of a single crystal of sodium
chloride forT between 5 and 320 K.

2. The extended least-squares fitting

2.1. The principle of the method

Suppose that the normal heat capacity can be repre-
sented by harmonic oscillator heat capacity functions
such as Debye and Einstein functions. In the previous
method, we optimized the Debye and Einstein tem-
peratures by fitting the heat capacity functions to ex-
perimental data outside the transition interval[2]. This
works well in some cases and does not in others. The
difficulty arises for phase transitions for which the
excess heat capacities start to increase gradually far
below the transition temperature. For such phase tran-
sitions, one cannot decide a unique temperature below
which the effect of the transition is negligible. This dif-
ficulty has been coped with sometimes successfully by
changing the temperature interval taken into the fitting
[1,8]. In the extended fitting described here, we add
a function of temperature to represent the phase tran-
sition for temperatures below the transition tempera-
ture. The interpolation function consists of two pieces,
one for the high temperature region and the other for
the low temperature region. The whole interpolation
function is optimized against the experimental data.
There is a gap between the temperature regions for
the high and low temperature sets of data. The gap
portion of the data is “masked” where the excess heat
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capacity cannot be represented in a general parame-
terized form. The experimental data should cover the
low temperature region where the excess contribution
is significant. The function to be optimized is discon-
tinuous at the transition temperature, but this does not
cause difficulty.

In the fitting we may assign weights to the experi-
mental data depending on the temperature. However,
since there is no general way for weighting, we give
a uniform weight in the following.

2.2. The excess heat capacity function

The entire experimental heat capacity of an actual
phase transition is a complicated function of temper-
ature. It varies from a transition to another depending
on the underlying physical mechanism as well as on
secondary effects such as purity of the sample. We
cannot hope to find a mathematical function that re-
produce the entire heat capacities of phase transitions
in a general way. However, we need for the present
purpose only a theoretical expression of the excess
heat capacity at low temperature. The most generally
applicable model is the Ising model. We solved it by
mean-field approximation and gave the resulting heat
capacity in a compact form[2]:

Ising
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T

)
= 6.311 exp

(
−1.390

Tc

T

)

− 5.042 exp

(
−2 × 1.390
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T

)

+ 18.70 exp

(
−3 × 1.390

Tc

T

)
. (1)

This function multiplied by the molar gas constant
R = 8.3145 J K−1 mol−1 gives the heat capacity of the
Ising model in the mean-field approximation, whereTc
is the transition temperature. For temperatures above
Tc, the function is assigned with a zero value. The
function is reproduced inFig. 1.

Although the Ising model is limited in various ways,
the heat capacity due to thermal excitations across an
energy gap is described well by this model at low
temperature. The transition temperature is the only
adjustable parameter in this part of the fitting function.
A multiplicative factor to the Ising heat capacity may
be included in the least-squares parameter, but often
one can give a constant value (e.g. 1, 2, etc.) based

Fig. 1. The heat capacity of the Ising model solved in the
mean-field approximation.

on the underlying model of the phase transition. The
function given above does not describe the behavior of
the heat capacity near the transition temperature. But
it does not cause a difficulty since we use the function
only for low temperature behavior of the excess heat
capacity. Often phase transitions of the first order have
a gradual portion below the transition temperature.
This is also described well byEq. (1).

One can also use any other parameterized functions
to describe the excess heat capacity. The Schottky
anomaly is one of the often-used anomalous parts. In
fact, the mean-field calculation (Eq. (1)) is equivalent
to the Schottky model in the low temperature limit and
is an extension of the latter to higher temperatures. An
extra part may also be added to the fitting function for
the high temperature region. The fitting can be further
generalized to admit three or more separate tempera-
ture regions each of which has different fitting func-
tion. The obvious limitation is set by the least-squares
optimization routine. In our case, Kaleidagraph is ca-
pable of dealing with up to nine parameters.

2.3. Vibrational heat capacity functions

A sum of the Einstein and Debye functions are used
to represent the vibrational heat capacity. The num-
ber of the functions depends on the number of vibra-
tional degrees of freedom of the sample, the number of
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characteristic temperatures known from spectroscopy,
and on how the unknown characteristic vibrations are
grouped together. For those vibrations whose frequen-
cies are known from spectroscopic data, the Einstein
functions of appropriate characteristic temperatures,
weighted by the number of the vibrational modes, are
included in the fitting function. The Einstein function
is used in the form normalized to 1 at high tempera-
ture:

Ein(ΘE, T) = (ΘE/T)2 exp(−ΘE/T)

(1 − exp(−ΘE/T))2
. (2)

The Debye function cannot be written in a closed form
of functions available in Kaleidagraph. We approxi-
mated it in three forms each appropriate for differ-
ent inverse normalized temperatures (ΘD/T). They are
given inAppendix A.

Correction for theCp − Cv difference is approxi-
mated byATC2

v in the interpolation function. The en-
tire fitting function is as follows:

• For the high temperature region:

CpH(T) = Cvk([Θk], T) + Cvu([Θu], T)

+ AT(Cvk([Θk], T) + Cvu([Θu], T))2.

(3)

• For the low temperature region:

CpL (T) = CpH(T) + R Ising(Tc, T). (4)

Cvk([Θk], T) is the sum of the Einstein heat capacity
functions whose characteristic temperatures [Θk] are
known from other sources such as spectroscopy. It may
also contain a Debye term if the Debye temperature is
known. Though it is not written explicitly, the function
can include any other known contributions given in a
calculable form.

Cvu([Θu], T) is the sum of the Debye and Einstein
functions whose characteristic temperatures are not
known. The set [Θu] of the characteristic tempera-
tures contains Debye and Einstein temperatures to be
optimized by the least-squares fitting. TheCp − Cv

correction coefficientA may be known from thermal
expansion and compressibility data, in which caseA
should be assigned the constant value and excluded
from the fitting parameters. More often,A is included
in the fitting parameter. Finally the Ising term is added
for the low temperature part of the fitting function,

with the transition temperature included in the fitting
parameters.

2.4. General polynomial interpolation functions

If the harmonic approximation by Debye and Ein-
stein functions with a correction for theCp − Cv dif-
ference is found inappropriate for some reason, one
can still use the extended fitting by taking a polyno-
mial in T as the normal heat capacity function. In ac-
tual calculations, a low degree polynomial (e.g. of the
third order) in temperature normalized to+1 or −1 in
the temperature interval of fitting will be convenient.

3. Application to sodium chloride

The heat capacity of sodium chloride was mea-
sured between 5 and 320 K using a single crystal
sample. The calorimeter used and the experimental
procedure are the same as with Rb3D(SO4)2 described
below.

NaCl is a diatomic ionic crystal so that the De-
bye approximation will be appropriate at low energies,
with a more localized density of states at higher ener-
gies near the Debye temperature. Three-parameter fit
with a Debye function of weight 3, an Einstein func-
tion of weight 3 and theCp − Cv correction term was
satisfactory for most of the temperatures. The finalχ2

value was 1.13 (J K−1 mol−1)2 for 152 points between
5.5 and 320 K. Hereχ2 is defined as the sum over
dataset of the squares of the difference between the ex-
perimental and calculated heat capacities. The Debye
and Einstein temperatures were 217.6 (0.5) and 260.5
(0.5) K, respectively, with the probable errors in the
parentheses. TheCp −Cv correction coefficientA was
3.72(0.03)×10−6 mol J−1. There were some system-
atic differences between the experiment and the fitted
curve. A significantly better fitting was obtained with
a five-parameter model function consisting of two De-
bye functions (weights 2 and 1), two Einstein functions
(weights 2 and 1) and aCp −Cv term. The best-fit re-
sult was the Debye temperatures 321.8 (2.3) and 186.1
(1.1) K, Einstein temperatures 250.2 (1.5) and 154.9
(0.7) K andA = 3.842 (0.007)× 10−6 mol J−1. χ2

obtained was 0.0350 (J K−1 mol−1)2 for the same set
of data. The result is shown inFig. 2 and given in
Table 1.
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Fig. 2. The heat capacity of sodium chloride compared with the
near-perfect five-parameter fit.

The coefficientA is correlated only weakly with
other parameters, so that the best-fit value was ac-
curate, even though it represents a small correction
term (about 5% of the experimentalCp at 300 K).
The Cp − Cv difference from the fitting is equal to
2.55 J K−1 mol−1 at 293 K. The same quantity calcu-
lated from the bulk modulus 24.0 GPa and volume ex-
pansivity 119×10−6 K−1 at 293 K is 2.42 J K−1 mol−1

in good agreement with the present result. The data of
the bulk modulus and expansivity were taken from[9].

The experience leading to these results showed that
there are a number of local minima in the parameter
space if its dimension is large (e.g. 5). It is necessary
to try various initial values to find the best solution for
a given interpolation function. For a small number of
the parameters (e.g. 3), the minimum found is likely to
be the absolute minimum. This is especially true when
the three parameters have distinct characters (Debye,
Einstein andCp −Cv correction), as in the first model
function for NaCl given above.

3.1. Sodium chloride with an artificial phase
transition added to it

Having found that the quasi-harmonic heat capac-
ity functions reproduce the heat capacity of sodium
chloride in a wide temperature interval, we prepared
an artificial set of data by adding the Ising mean-field

Table 1
The molar heat capacity of NaCl (R = 8.3145 J K−1 mol−1)

T (K) Cp(exp)/R Cp(calc)/R

5.83 0.0026 0.0032
8.37 0.0084 0.0096

10.09 0.0155 0.0170
12.50 0.0316 0.0331
15.74 0.0697 0.0700
20.00 0.158 0.157
24.68 0.314 0.313
29.96 0.559 0.558
41.39 1.253 1.254
50.74 1.876 1.875
59.99 2.458 2.457
69.81 3.003 3.002
80.85 3.517 3.517
91.88 3.935 3.936

101.97 4.251 4.250
108.88 4.435 4.433
119.29 4.669 4.669
129.84 4.867 4.868
141.53 5.048 5.052
149.77 5.160 5.162
161.76 5.299 5.300
169.53 5.377 5.378
180.94 5.478 5.479
188.39 5.537 5.538
199.39 5.616 5.616
210.18 5.684 5.683
220.81 5.746 5.743
231.29 5.803 5.796
241.64 5.851 5.843
251.87 5.888 5.887
262.01 5.924 5.926
272.05 5.962 5.962
290.94 6.024 6.024
299.34 6.049 6.050
311.86 6.082 6.085

heat capacity (Tc = 100 K) to the experimental values
for sodium chloride. This simulated the heat capacity
of a real compound that undergoes a phase transition.
The data for 80–120 K were excluded (i.e. masked),
because our aim was to test the fitting procedure’s ca-
pability to find the correct normal heat capacity from
a limited set of experimental data. The model function
had four parameters (the Debye and Einstein tempera-
tures,Cp −Cv correction coefficient and the transition
temperature) and converged quickly to the absolute
minimum. The fitted result is shown inFig. 3. The
optimum parameter values are the Debye temperature
220.7 (0.5) K, Einstein temperature 260.4 (0.6) K,A =
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Fig. 3. The heat capacity of sodium chloride with an artificial
Ising term added compared with the four-parameter fitting.

3.79 (0.03) × 10−6 mol J−1, andTc = 96.0(0.3)K,
the final χ2 being 0.64 (J K−1 mol−1)2 for 137 data
points. The normal part is the same three-parameter
function as the first of the two functions discussed in
Section 2, where the best-fit parameters were 217.6
and 260.5 K for the Debye and Einstein temperatures
and A = 3.72 × 10−6 mol J−1. The best-fit values
of the common parameters are satisfactorily close to
each other. The transition temperature recovered is
smaller than the supplied value by 4%. The difference
is larger than we expected from the construction of
the model, but may be accepted as a consequence of
the limitation of the model function. For compari-
son, the best-fit result for the sodium chloride dataset
masked in the interval 80–120 K (without an added
Ising part) was 218.2 (0.5) and 259.4 (0.6) K, and
3.69 (0.03) × 10−6 mol J−1 for the Debye and Ein-
stein temperatures, and theA coefficient, respectively,
with theχ2 value equal to 1.03 (J K−1 mol−1)2.

In order to find how the result depends on the
dataset, the program was run repeatedly on the dataset
with the masked portion between 120 K and a in-
creasingly lower temperature to 40 K. The Debye
temperature was 221.8, 223.5, 226.5 and 231.7 K for
the date set masked from 120 to 70, 60, 50, and 40 K,
respectively. The best-fit values of the other parame-
ters are as follows in the same order of the datasets:
the Einstein temperature—260.3, 259.6, 257.9 and
254.6 K; theA coefficient—3.81×10−6, 3.82×10−6,

3.82 × 10−6 and 3.81× 10−6 mol J−1; Tc—95.1,
93.7, 91.4 and 85.9 K. There are weak systematic
tendencies for the optimum parameter values to de-
pend on the dataset. But we conclude the variation
in the result is sufficiently small as long as a rea-
sonably large magnitude of the excess heat capacity
contributed in the low temperature phase. At 40 K,
the phase transition contributes 1.6 J K−1 mol−1 to
the heat capacity compared with the vibrational heat
capacity of 12 J K−1 mol−1 at the same temperature.
This small magnitude of the contribution from the
phase transition explains the relative instability of the
recovered transition temperature against the variation
of the masked portion of the dataset.

3.2. Use of a polynomial function for the normal
part

We may lack detailed knowledge about the heat
capacity of the background thermal excitation. The
present method is still applicable in such cases by the
use of a polynomial inT for the normal part. This was
shown on the same artificial data (i.e. sodium chlo-
ride + the Ising heat capacity withTc = 100 K) as in
Section 3.1. The fitting function employed was the sum
of a third order polynomial and the Ising heat capac-
ity. It was necessary to mask the data below 40 K and
above 240 K as well as those between 80 and 120 K,
because the polynomial function could not reproduce
the experimental data in the same wide range of tem-
perature as the harmonic heat capacity functions can.
The central portion (80–120 K) was masked as it was
for the fitting by the Debye and Einstein functions.
The five-parameter fit converged uniquely. The recov-
ered transition temperature was 90.2 K, not very far
from the correct value.

4. Application to the gradual phase transition in
tri-rubidium deuterium sulfate

The phase transition in tri-rubidium deuterium sul-
fate was reported by Gesi[10]. The phase transi-
tion and those occurring in the related compounds
have been studied by X-ray diffraction[11], NMR
[12–14], spectroscopic[15], neutron diffraction[16]
and other methods. Interest in this phase transition
centers around the fact that mere change of hydrogen
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to deuterium results in the appearance of a different
crystalline phase. Even the macroscopic symmetry of
the crystal changes as a result of the increase of one
molar mass unit in 450, though the symmetry of the
low temperature phase has not been determined con-
clusively. If the transition entropy is close toRln 2,
we can conclude that deuteron atoms are disordered
in the high temperature phase and ordered in the low
temperature phase, and hence the change of the crys-
tal symmetry. This mechanism has a structural basis
in the short hydrogen bond connecting two sulfate
ions. For the hydrogenous crystal which does not un-
dergo a phase transition, the proton on the hydrogen
bond may be described as a proton cloud[17,18] be-
cause of its delocalization over two sites in the ground
state.

The sample tri-rubidium hydrogen sulfate was pre-
pared from aqueous solution of sulfuric acid and
rubidium sulfate and recrystallized from aqueous so-
lution by slow cooling. Single crystals of 0.5–10 mm
size were obtained. TRDS was prepared from deuter-
ated sulfuric acid, rubidium sulfate and D2O. Deuter-
ation was better than 99% from the proton concen-
tration due to the starting materials. The chemical
composition was checked by analysis for the sulfur
content: 14.11% for TRHS and 14.14% for TRDS
(with probable errors of 0.3%) in agreement with
calculated values 14.27 and 14.23%, respectively.

Two adiabatic calorimeters I and II were used to
cover the temperatures for 13–300 and 2–15 K. The
sample masses were 8.7888 g (I) and 8.7678 g (II) for
TRHS and 8.8801 g (I) and 8.8246 g (II) for TRDS.

4.1. Experimental results

The molar heat capacities are plotted inFig. 4 for
TRHS and TRDS. They are also given numerically in
Tables 2 and 3. The heat capacity curves are obviously
different from each other at the transition tempera-
ture. They are also different at low and high tempera-
tures. At 30 K and below, the heat capacity of TRHS
is larger than that of TRDS, while the relation is re-
versed above 200 K. The difference at higher temper-
ature arises from the lower vibrational frequencies of
deuterium than hydrogen, while the heat capacity dif-
ference at low temperature does not find an easy ex-
planation. TRHS may be a convenient reference for
estimation of the excess heat capacity of TRDS but

Fig. 4. The heat capacity of tri-rubidium hydrogen disulfate and
tri-rubidium deuterium disulfate.

the reliability is limited by an uncertain contribution
from the motion of hydrogen atom because the phase
transition in TRDS occurs precisely as a result of this
substitution.

4.2. Determination of the excess heat capacity of
TRDS by least-squares fitting

There are 14 atoms in the chemical unit and hence
42 vibrational modes. Out of these, 18 are internal
vibrations of the 2 sulfate ions. We measured the
Raman spectrum and assigned the peaks following
published data. They are O–S stretching modes at
1000–1200 cm−1 and O–S–O deformation modes at
440–620 cm−1. We took these wave numbers to calcu-
late the known Einstein temperatures listed inTable 4.
Remaining 24 vibrations were determined by the ex-
tended least-squares. The interpolation function was:
Deb(9)+Ein(7)+Ein(5)+Ein(3)+(Cp−Cv)+Ising
with six adjustable parameters. The heat capacity data
were masked between 72 and 175 K. The parameter
values are given inTable 4. In Fig. 5, we plotted the
heat capacity and its decomposition into contributions
from the known internal vibrations of sulfate ions, op-
timized lattice vibrations of the anions, cations and
deuterium atom,Cp−Cv correction and the excess part
from the phase transition. The excess part is plotted in
Fig. 6 where a significant magnitude at 40 K (=Tc/2)
is notable. It has been possible to derive this part only
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Table 2
The molar heat capacity of TRHS (R = 8.3145 J K−1 mol−1)

T (K) Cp/R T (K) Cp/R T (K) Cp/R T (K) Cp/R

2.34 0.00289 23.66 3.298 76.42 15.30 183.92 23.59
2.59 0.00371 24.48 3.544 78.06 15.51 186.88 23.75
2.74 0.00465 25.34 3.782 79.73 15.71 189.92 23.93
3.00 0.00538 26.22 4.053 81.40 15.91 192.96 24.10
3.02 0.00623 27.21 4.348 83.06 16.09 195.99 24.26
3.44 0.00809 28.31 4.717 84.76 16.29 199.02 24.46
3.60 0.00923 29.48 5.057 86.50 16.49 202.02 24.64
3.91 0.0119 30.66 5.416 88.10 16.65 205.02 24.80
4.19 0.0154 31.82 5.771 89.70 16.81 208.00 24.97
4.45 0.0194 32.97 6.125 91.96 17.04 210.98 25.13
4.78 0.0263 34.10 6.472 94.68 17.31 213.95 25.28
5.07 0.0294 35.18 6.795 97.28 17.55 216.91 25.46
5.35 0.0377 36.21 7.106 99.80 17.78 219.87 25.60
5.59 0.0439 37.24 7.405 102.28 18.01 222.90 25.76
5.86 0.0520 38.24 7.695 104.72 18.21 226.02 25.92
6.10 0.0597 39.27 7.987 107.13 18.42 229.13 26.10
6.37 0.0696 40.32 8.275 109.50 18.60 232.23 26.26
6.60 0.0791 41.34 8.556 111.84 18.80 235.33 26.41
6.85 0.0901 42.35 8.824 114.15 18.97 238.42 26.57
7.12 0.104 43.37 9.102 116.44 19.14 241.50 26.76
7.38 0.118 44.42 9.352 118.69 19.32 244.57 26.88
7.66 0.135 45.44 9.623 120.92 19.49 247.64 27.03
7.96 0.151 46.45 9.872 123.13 19.66 250.70 27.19
8.27 0.173 47.48 10.12 125.31 19.83 253.75 27.34
8.58 0.199 48.52 10.38 127.46 19.97 256.80 27.49
8.91 0.228 49.55 10.61 129.60 20.13 259.92 27.66
9.26 0.258 50.56 10.85 131.72 20.28 261.81 27.76
9.60 0.291 51.59 11.08 133.83 20.41 264.82 27.91
9.98 0.328 52.64 11.31 135.91 20.57 267.83 28.06

10.37 0.375 53.67 11.53 137.98 20.71 270.92 28.21
11.22 0.479 54.70 11.75 140.03 20.85 274.09 28.36
11.66 0.538 55.73 11.97 142.07 20.99 275.82 28.44
12.15 0.606 56.78 12.17 144.09 21.13 277.25 28.52
12.61 0.673 57.83 12.38 146.10 21.27 278.99 28.60
13.12 0.752 58.86 12.58 148.10 21.39 280.40 28.66
13.48 0.831 59.91 12.77 150.09 21.52 282.16 28.76
13.59 0.836 60.97 12.96 152.06 21.65 283.55 28.82
14.10 0.932 62.02 13.14 154.02 21.78 285.32 28.91
14.12 0.937 62.88 13.30 154.68 21.82 286.69 28.98
14.59 1.033 63.07 13.32 155.97 21.90 288.47 29.10
14.77 1.075 64.13 13.51 157.66 22.01 289.82 29.16
15.43 1.197 64.32 13.54 157.90 22.02 291.62 29.25
16.10 1.340 65.20 13.68 159.83 22.14 292.95 29.29
16.76 1.488 65.79 13.78 160.63 22.19 294.77 29.39
17.42 1.637 66.27 13.85 161.75 22.27 296.07 29.42
18.07 1.788 67.30 14.02 163.58 22.37 297.99 29.53
18.84 1.977 68.41 14.18 166.52 22.55 299.19 29.57
19.71 2.199 69.49 14.34 169.45 22.72 301.29 29.67
20.55 2.421 70.14 14.45 172.37 22.91 302.31 29.73
21.36 2.642 71.64 14.65 175.27 23.07
22.14 2.862 73.24 14.89 178.16 23.25
22.91 3.079 74.84 15.09 181.05 23.42
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Table 3
The molar heat capacity of TRDS (R = 8.3145 J K−1 mol−1)

T (K) Cp/R T (K) Cp/R T (K) Cp/R T (K) Cp/R

2.90 0.00470 37.64 7.559 79.79 16.93 123.10 19.66
2.97 0.00555 38.59 7.837 79.86 16.92 126.05 19.88
3.66 0.00870 39.51 8.109 80.20 16.87 128.99 20.09
3.86 0.0117 40.41 8.371 80.55 16.77 131.90 20.29
4.07 0.0126 41.33 8.636 80.75 16.75 134.80 20.50
4.33 0.0170 42.29 8.909 80.92 16.71 137.67 20.69
4.60 0.0208 43.22 9.166 81.30 16.66 140.62 20.89
4.94 0.0250 44.14 9.417 81.69 16.63 143.62 21.10
5.21 0.0314 45.04 9.672 81.72 16.61 146.62 21.29
5.53 0.0394 45.92 9.906 82.07 16.59 149.60 21.48
5.80 0.0446 46.82 10.15 82.46 16.58 152.64 21.68
6.10 0.0534 47.75 10.39 82.69 16.58 155.75 21.88
6.37 0.0615 48.67 10.62 82.85 16.58 158.85 22.08
6.69 0.0725 49.57 10.85 83.25 16.59 161.93 22.28
6.97 0.0834 50.46 11.08 83.64 16.59 165.07 22.48
7.28 0.0966 51.33 11.29 83.66 16.59 168.28 22.67
7.57 0.109 52.23 11.49 84.06 16.61 171.48 22.88
7.86 0.126 53.16 11.72 84.48 16.62 174.66 23.07
8.15 0.142 54.07 11.93 84.63 16.64 177.91 23.27
8.45 0.162 54.97 12.15 84.91 16.63 181.21 23.46
8.76 0.180 55.86 12.34 85.34 16.66 184.51 23.66
9.07 0.204 56.74 12.52 85.60 16.68 187.79 23.85
9.40 0.231 57.64 12.72 85.77 16.69 191.14 24.05
9.74 0.259 58.57 12.91 86.20 16.73 194.54 24.25

10.10 0.293 59.48 13.10 86.57 16.75 197.92 24.46
10.47 0.329 60.38 13.28 86.64 16.76 201.30 24.63
10.87 0.373 61.28 13.47 87.07 16.81 204.73 24.82
11.23 0.414 62.17 13.64 87.52 16.83 208.22 25.03
11.63 0.461 63.08 13.82 87.53 16.83 211.70 25.23
11.97 0.503 64.01 14.00 87.99 16.88 215.17 25.42
12.36 0.555 64.93 14.18 88.45 16.91 218.69 25.61
12.69 0.602 65.85 14.35 88.50 16.90 222.27 25.81
13.08 0.660 66.76 14.52 88.92 16.94 225.84 26.00
13.45 0.714 67.66 14.68 89.39 16.98 229.40 26.21
13.82 0.779 68.59 14.85 89.46 16.97 233.02 26.41
14.12 0.835 69.53 15.03 89.86 17.01 236.69 26.61
14.19 0.839 70.46 15.21 90.33 17.07 240.35 26.83
14.56 0.921 71.06 15.31 90.80 17.12 243.99 27.01
14.65 0.931 71.39 15.36 91.15 17.13 247.70 27.19
15.14 1.022 72.31 15.55 91.29 17.14 251.45 27.39
15.69 1.132 73.09 15.69 91.79 17.18 255.20 27.59
16.35 1.271 73.23 15.72 92.29 17.21 258.66 27.78
16.99 1.410 74.16 15.88 92.79 17.27 261.85 27.96
17.62 1.551 74.20 15.92 93.30 17.30 266.28 28.23
18.29 1.715 74.45 15.95 93.58 17.33 269.44 28.39
19.00 1.891 74.71 15.99 93.80 17.36 272.58 28.53
19.66 2.060 74.96 16.04 94.31 17.40 274.17 28.61
20.29 2.228 75.11 16.08 94.81 17.45 275.71 28.68
20.93 2.401 75.22 16.12 95.33 17.47 277.29 28.77
21.65 2.602 75.48 16.17 95.86 17.53 278.82 28.83
22.47 2.835 75.76 16.24 95.98 17.54 280.39 28.93
23.31 3.079 76.05 16.30 96.39 17.59 281.92 29.01
24.10 3.310 76.06 16.32 96.93 17.62 283.48 29.08
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Table 3 (Continued)

T (K) Cp/R T (K) Cp/R T (K) Cp/R T (K) Cp/R

24.85 3.533 76.35 16.36 98.34 17.74 285.01 29.16
25.63 3.768 76.64 16.45 98.40 17.75 286.56 29.24
26.49 4.030 76.94 16.52 100.66 17.94 288.08 29.33
27.30 4.283 76.99 16.56 100.75 17.95 289.62 29.42
28.10 4.540 77.24 16.63 102.96 18.12 291.14 29.48
28.94 4.822 77.54 16.74 103.05 18.14 292.67 29.55
29.78 5.078 77.85 16.85 105.22 18.30 294.18 29.59
30.67 5.357 77.92 16.89 105.32 18.32 295.71 29.70
31.60 5.653 78.17 16.95 107.55 18.50 297.21 29.75
32.58 5.968 78.50 17.06 109.77 18.67 298.74 29.86
33.59 6.288 78.83 17.06 111.96 18.84 300.24 29.92
34.62 6.612 78.84 17.05 114.49 19.03 301.76 30.01
35.66 6.944 79.17 17.03 117.35 19.25
36.67 7.260 79.51 16.97 120.19 19.45

by incorporating the adjustable transition contribution
to the fitting function.

Other combinations of functions were also tried.
Some did not converge, others converged butχ2 was
not sufficiently small and still others did reasonably
well. The criterion of a good fit was small values of
theχ2 and small probable errors in the best-fit param-
eter values. The functional form was chosen by this
criterion.

Table 4
Characteristic temperatures of TRDS

Weight

From spectroscopy
Einstein temperature (K)

1451 2 (ν1 of sulfate ion)
635 4 (ν2 of sulfate ion)

1683 6 (ν3 of sulfate ion)
879 6 (ν4 of sulfate ion)

By fitting
Einstein temperature (K)

164.9 (1.4) 7
234.6 (5.7) 5
861.0 (16) 3

Debye temperature
130.3 (0.4) 9

42 (sum of the weights)

Cp − Cv correction coefficient
(mol J−1)

4.14 (0.17)× 10−7

Mean-field transition
temperature (K)

104.7 (4.7)

In lattice dynamic consideration, there is one acous-
tic branch for one primitive unit cell of the crystal and
all the other branches are optical[19]. But the optical
branch in which rubidium ions vibrate against each
other is likely to have a wide band-width because of the
mass equality. This consideration justifies the weight
9 of the Debye term. The 7+5 Einstein terms may be
related with rotational and translational vibrations of
sulfate ions against each other and against rubidium
ions, while the highest energy Einstein term may be
identified with vibrations of the deuterium atom. For
the last term, a higher energy (ca. 1100 K) is expected

Fig. 5. Decomposition of the heat capacity of tri-rubidium deu-
terium disulfate into normal and transition contributions.
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Fig. 6. The excess heat capacity of tri-rubidium deuterium disulfate.

from neutron data[20], but averaging over three modes
(i.e. x, y and z vibrations) as well as general insen-
sitivity of the heat capacity to high frequency modes
may be responsible to the discrepancy. The weights 7
and 5 of the Einstein terms could be 6 and 6, but the
present combination gave a smallerχ2.

4.3. The transition enthalpy and entropy

The excess heat capacity was integrated with re-
spect toT and lnT to determine the transition en-
thalpy and transition entropy, respectively. They are
plotted inFigs. 7 and 8. The high temperature value
of the enthalpy 421 J mol−1 is a measure of the stabil-
ity of the low temperature phase in terms of the en-
ergy relative to the high temperature phase. The high
temperature entropy 5.27 J K−1 mol−1 is related with
structural disorder in the high temperature phase. The
experimental value is sufficiently close toR ln 2 =
5.76 J K−1 mol−1 to suggest that the high temperature
phase is twofold disordered.

In the room temperature structure, the deuterium
atom is located on the symmetry center between to
sulfate ions. The present results shows that the center
of symmetry is a result of disorder of the position of
the deuterium. The deuterium bond lengths 0.2519 and
0.2533 nm appear to accommodate two stable posi-
tions for a deuterium between the two oxygen atoms in
K3D(SO4)2 [21] and K3D(SeO4)2 [18], respectively.

Fig. 7. The excess enthalpy of tri-rubidium deuterium disulfate.

The transition enthalpy 421 J mol−1 may be identified
with the energy of interaction between two neighbor-
ing deuterium bonds.

For the sake of comparison, we calculated the tran-
sition enthalpy and entropy by taking the heat capac-
ity of TRHS as the normal heat capacity. For this,
the heat capacity of TRHS was expressed in a fourth
degree polynomial and subtracted from TRDS. The
excess heat capacity was positive above 40 K and es-
sentially zero above 120 K. The transition enthalpy

Fig. 8. The excess entropy of tri-rubidium deuterium disulfate.
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and entropy 220 J mol−1 and 3.19 J K−1 mol−1, re-
spectively, from this excess heat capacity are sub-
stantially smaller than those obtained by the extended
least-squares fitting. Although the undeuterated com-
pound lacking the phase transition is an obvious choice
for the normal heat capacity, it is not the case for the
present compounds: the heat capacity of TRHS is sig-
nificantly larger than that of TRDS at low temperature
(see further). It is likely that a small change in the lat-
tice spectrum as a result of deuteration has changed
the normal heat capacity of TRDS from the heat ca-
pacity of TRHS. A more interesting interpretation is
to assume a tunnel state for the hydrogen atoms in
TRHS. The heat capacity of TRHS then contains the
contribution from the Schottky level. By taking TRHS
as the reference, we have included this contribution in
the normal part. The transition enthalpy and entropy of
TRDS will be correspondingly smaller than is appro-
priate with proper evaluation of the phonon part. This
explains what we have actually found. Attempts to de-
termine the tunnel level by fitting the harmonic and
Schottky heat capacities to the TRHS data converged
easily, giving�E/R = 217 K for the tunnel level using
the data in the interval 7–80 K and a three-parameter
harmonic fitting function. However, the result varied
much with the interval and model functions.

4.4. The heat capacity of TRHS

The heat capacity of TRHS is a smooth function
temperature between 2 and 300 K, proving the absence
of a phase transition. It could be used as the base line
for TRDS but not very successfully as described in
Section 4.2. For the sake of comparison with TRDS,
the best-fit function was Deb(9, ΘD = 124.5 K) +
Ein(12, ΘE = 191.0 K) + Ein(3, ΘE = 752 K) with
theCp − Cv coefficient of 1.12× 10−7 mol J−1. Here
again a higher Einstein temperature may be expected
as with TRDS and the difference could be explained
similarly.

4.5. The heat capacities at very low temperature

The heat capacity of TRHS is significantly larger
than that of TRDS at temperatures between 2 and
30 K. This is unexpected because the mass effect
suggests the opposite. AsFig. 9shows, the difference
amounts to 1.6 J K−1 mol−1. The larger heat capacity

Fig. 9. The heat capacity of tri-rubidium hydrogen disulfate and
tri-rubidium deuterium disulfate at low temperature.

of TRHS explains its failure as the normal heat ca-
pacity for TRDS. It could be attributed to a Schottky
anomaly due to tunneling protons broadened by in-
teraction between them, as proposed previously[22]
for Rb3H(SeO4)2. The inverse isotope effect where
deuterated species has a smaller heat capacity than
the normal one has been also found in NaOH–NaOD
[23,24], the phenalenone derivatives[25,26] and sev-
eral cubic ammonium compounds[27–30]. All of
these substances share the property that they undergo
phase transitions in the deuterated forms for which
the structural aspect of the problem has also been
studied[27,29].

5. Conclusion

In the present paper, we have shown a computa-
tional method to find the optimum parameter values
for a given model of the heat capacity of solids that
undergo phase transitions. The fitting procedure has
eliminated a large part of arbitrary factors involved
in the analysis of the heat capacity of gradual phase
transitions. The method can be generalized in several
directions. First, the fitting function can be made up
of more than two pieces. In the cases discussed above
we used different functions for low and high tempera-
ture regions. This can be generalized to three or more
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regions with some parameters common among the re-
gions. The Kaleidagraph mathematical functions al-
low this to be done easily. Second, the model functions
can be generalized beyond those consisting of Debye
and Einstein functions. We have shown explicitly that
polynomial in temperature can be used for the normal
heat capacity. It could be any calculable function ofT.
Similarly the equation for the extra contributions for
particular fitting intervals can be freely chosen from a
larger group of functions. The limit is set by the num-
ber (i.e. 9) of the parameters that can be dealt with by
the Kaleidagraph fitting section. In practice the con-
vergence is not assured, and even if the fitting has
converged, the solution obtained may be a local mini-
mum ofχ2. Probability of hitting a local minimum in-
creases rapidly as the number of parameter increases.
Within these obvious limitations associated with any
non-linear least-squares fitting, the analysis presented
here allows us to explore a greater number of possi-
bilities of various physical models and to decide the
good models on well-defined criteria.

The low temperature heat capacity has been the
source of important knowledge about order and disor-
der and other thermal excitations in solids since early
1900 when helium gas was first liquefied. However,
the only practical measures available for the analysis
of the heat capacity have been to interpolate the nor-
mal heat capacity curve into an ill-defined transition
interval by the use of a polynomial function in tem-
perature. Modern commercial cryogenic calorimeters
have broadened the scope of calorimetry to include
novel compounds available only in a small quantity.
The precision and accuracy of the measurement care-
fully conducted with the commercial instruments are
sufficiently good for the data to be compared mean-
ingfully with the Einstein, Debye and other theories of
the heat capacity. The fitting method presented above
should be useful in the analysis of the heat capac-
ity obtained not only with the established adiabatic
calorimeters as we have discussed above for TRDS
and TRHS but also with those from the new genera-
tion of instruments.

Appendix A. The Debye function

The Debye heat capacity function was computed in
the following forms:

• For ΘD/T > 16:

Deb(ΘD, T) = 77.927

(
T

ΘD

)3

. (A.1)

• For 16≥ ΘD/T > 6.7:

Deb(ΘD, T)

= 0.59522

/(
1+

(
(ΘD/T) − 0.86335

4.7573

)2.9489
)

.

(A.2)

Table B.1
Standard thermodynamic functions of NaCl (R = 8.3145
J K−1 mol−1)

T (K) C◦
p/R H◦/RT S◦/R (S◦/R) − (H◦/RT)

5 0.00147 0.00034 0.00044 0.00010
10 0.0151 0.00346 0.00448 0.00103
15 0.0589 0.0135 0.0175 0.00402
20 0.158 0.0360 0.0466 0.0106
25 0.327 0.0761 0.0987 0.0226
30 0.561 0.1365 0.1780 0.0415
40 1.161 0.3149 0.4185 0.1035
50 1.827 0.5507 0.7490 0.1983
60 2.458 0.817 1.139 0.3220
70 3.011 1.092 1.560 0.4685
80 3.479 1.362 1.994 0.6321
90 3.870 1.620 2.427 0.8075

100 4.195 1.861 2.852 0.9908
110 4.462 2.086 3.265 1.179
120 4.683 2.294 3.663 1.369
130 4.869 2.485 4.045 1.561
140 5.029 2.661 4.412 1.751
150 5.162 2.823 4.764 1.941
160 5.285 2.973 5.101 2.127
170 5.382 3.112 5.424 2.312
180 5.470 3.241 5.734 2.494
190 5.548 3.360 6.032 2.672
200 5.619 3.471 6.319 2.847
210 5.684 3.575 6.594 3.019
220 5.742 3.672 6.860 3.188
230 5.794 3.763 7.116 3.353
240 5.840 3.849 7.364 3.515
250 5.881 3.929 7.603 3.674
260 5.919 4.005 7.835 3.829
270 5.954 4.077 8.059 3.982
273.15 5.965 4.098 8.128 4.029
280 5.988 4.144 8.276 4.131
290 6.020 4.209 8.486 4.278
298.15 6.045 4.258 8.654 4.395
300 6.050 4.269 8.691 4.422
310 6.078 4.327 8.890 4.563
320 6.103 4.382 9.083 4.701
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• For 6.7 ≥ ΘD/T :

Deb(ΘD, T) = 0.62663 exp

(
−
(

ΘD/T

3.5621

)1.9922
)

+ 0.37341

1 + ((ΘD/T)/6.8099)3.5919
.

(A.3)

Table B.2
Standard thermodynamic functions of TRHS (R = 8.3145 J K−1

mol−1)

T (K) C◦
p/R H◦/RT S◦/R (S◦/R) − (H◦/RT)

5 0.0292 0.0069 0.0088 0.0019
10 0.333 0.0760 0.0972 0.0212
15 1.116 0.2789 0.3637 0.0848
20 2.278 0.6274 0.8365 0.2091
25 3.682 1.095 1.492 0.3972
30 5.213 1.653 2.298 0.6448
35 6.753 2.272 3.217 0.9454
40 8.186 2.923 4.214 1.291
45 9.522 3.583 5.257 1.673
50 10.73 4.238 6.323 2.085
55 11.81 4.878 7.397 2.519
60 12.78 5.497 8.467 2.970
65 13.65 6.091 9.525 3.434
70 14.42 6.659 10.57 3.906
75 15.12 7.200 11.58 4.384
80 15.75 7.715 12.58 4.866
85 16.32 8.205 13.55 5.348
90 16.84 8.670 14.50 5.830
95 17.33 9.113 15.42 6.311

100 17.80 9.536 16.33 6.789
110 18.64 10.33 18.06 7.736
120 19.40 11.05 19.72 8.666
130 20.13 11.72 21.30 9.577
140 20.83 12.35 22.82 10.47
150 21.51 12.94 24.28 11.34
160 22.15 13.49 25.69 12.19
170 22.78 14.02 27.05 13.03
180 23.38 14.52 28.37 13.84
190 23.96 15.01 29.65 14.64
200 24.53 15.47 30.89 15.42
210 25.07 15.91 32.10 16.19
220 25.61 16.34 33.28 16.94
230 26.13 16.76 34.43 17.68
240 26.65 17.16 35.55 18.40
250 27.15 17.55 36.65 19.11
260 27.65 17.93 37.73 19.80
270 28.15 18.30 38.78 20.48
273.15 28.31 18.41 39.11 20.70
280 28.65 18.66 39.81 21.16
290 29.14 19.01 40.83 21.82
298.15 29.55 19.29 41.64 22.35
300 29.64 19.36 41.82 22.47

Here the Debye function with the characteristic tem-
peratureΘD is normalized to 1 in the high temperature
limit. The numbers in these functions have been de-
termined by the least-squares fitting to reproduce the
Debye function to 0.02% for most of the temperatures
relevant to the present purpose.

Table B.3
Standard thermodynamic functions of TRDS (R = 8.3145
J K−1 mol−1)

T (K) C◦
p/R H◦/RT S◦/R (S◦/R) − (H◦/RT)

5 0.0268 0.0066 0.0084 0.0019
10 0.2834 0.0655 0.0845 0.0190
15 1.003 0.2444 0.3183 0.0740
20 2.147 0.5701 0.7552 0.1851
25 3.571 1.024 1.383 0.3587
30 5.148 1.579 2.172 0.5930
35 6.747 2.204 3.086 0.8825
40 8.242 2.867 4.086 1.220
45 9.671 3.544 5.141 1.596
50 10.96 4.223 6.228 2.005
55 12.13 4.889 7.328 2.439
60 13.20 5.538 8.430 2.892
65 14.19 6.166 9.526 3.360
70 15.13 6.773 10.61 3.840
75 16.06 7.360 11.69 4.327
80 16.89 7.941 12.76 4.821
85 16.65 8.453 13.77 5.318
90 17.03 8.919 14.73 5.815
95 17.46 9.358 15.67 6.309

100 17.87 9.773 16.57 6.799
110 18.66 10.55 18.31 7.768
120 19.41 11.25 19.97 8.716
130 20.14 11.91 21.55 9.643
140 20.84 12.52 23.07 10.55
150 21.51 13.10 24.53 11.43
160 22.17 13.65 25.94 12.30
170 22.80 14.17 27.30 13.14
180 23.41 14.66 28.62 13.96
190 24.00 15.14 29.91 14.77
200 24.58 15.60 31.15 15.56
210 25.15 16.04 32.36 16.33
220 25.70 16.46 33.55 17.08
230 26.24 16.88 34.70 17.82
240 26.78 17.28 35.83 18.55
250 27.31 17.67 36.93 19.26
260 27.84 18.05 38.01 19.96
270 28.36 18.42 39.08 20.65
273.15 28.53 18.54 39.41 20.87
280 28.89 18.79 40.12 21.33
290 29.42 19.14 41.14 22.00
298.15 29.90 19.43 41.96 22.53
300 29.95 19.50 42.15 22.65
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Appendix B. Thermodynamic functions

The thermodynamic functions of sodium chlo-
ride (Table B.1), tri-rubidium hydrogen disulfate
(Table B.2) and tri-rubidium deuterium disulfate
(Table B.3) calculated from the heat capacity data are
given in the dimensionless form.
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