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Abstract

In this paper a more precise approximate formula for Arrhenius temperature integral, i.e.,−ln P(u) = 0.37773896+
1.89466100 lnu+1.00145033u, is proposed, by using two-step linearly fitting process: (i) the linear dependence of d lnp(u)/du

on 1/uand (ii) the linear dependence of (lnp(u)−c ln u) on u. Values ofp(u) at differentu were directly obtained from numer-
ical integration of temperature integral without derivation from any approximating infinite series, and values of d lnp(u)/du

were obtained by numerical differentiating. New equation for the evaluation of non-isothermal kinetic parameters has been
obtained from the above dependence, which can be put in the form

ln

[
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]
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E
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The validity of this formula was confirmed and its deviation from the values of numerical integrating was discussed. Compared
with some previously published approximate formulae, our formula has the best result in the kinetics analysis of non-isothermal
process.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Last century had witnessed an accelerating use of
thermal analysis techniques to investigate the kinetics
of various isothermal and non-isothermal decomposi-
tions. Thermogravimetry (TG) may be one of the most
popular thermal analysis techniques. And the reaction
is carried out under a linear temperature program in
the most of reported TG studies. An understanding of
kinetic parameters, such as kinetic model, activation
energy and the frequency factor, can be obtained by
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various approaches. The integral approach is generally
believed to be more convenient, reliable, and accurate
than the differential method[1]. It is usually assumed
that the basic kinetic equation for solid-state decom-
position process under non-isothermal conditions can
be expressed as a function of the fractional conversion
α (0 < α < 1) in the following form:

dα

dT
= A

β
e−E/RTf(α) (1)

whereA is the pre-exponential factor of the Arrhenius
rate constant,E the apparent activation energy,β the
heating rate,T the absolute temperature,R the gas
constant,f(α) the reaction kinetics function.

0040-6031/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0040-6031(03)00310-1



40 W. Tang et al. / Thermochimica Acta 408 (2003) 39–43

RearrangingEq. (1) and integrating both sides of
the equation, the following expression is obtained:

g(α) =
∫ α

0

dα

f(α)
= A

β

∫ T

0
e−E/RT dT = AE

βR
p(u),

p(u) =
∫ α

∞
−e−u

u2
du (2)

wherep(u) is the Arrhenius temperature integral,u =
E/RT. Unfortunately, the right side ofEq. (2) can-
not be analytically integrated. Consequently, extensive
efforts have been devoted to obtain better integral ap-
proximations. In a recent paper, Flynn[2] has reviewed
various evaluations and approximations for the tem-
perature integral and reappraised their accuracies and
utilities to evaluate the temperature integral in thermal
analysis kinetics.

In 1986, Madhusudanan et al.[3] proposed an ap-
proximate formula for temperature integrating calcu-
lation, which can be readily rearranged for using in
the field of iso-conversional method. Because of its
simplicity the formula is commonly used in integral
methods of thermal analysis[4–8]. This formula is
shown below:

−ln P(u) = 0.297580+ 1.921503 lnu + 1.000953u

(3)

Two other equations[9] in the form ofEq. (3) were
proposed for the evaluation of kinetic parameters from
non-isothermal experiments later. These two equations
reported are shown below:

−ln P(u) = 0.299963+ 1.920620 lnu + 1.000974u

(4)

−ln P(u) = 0.389677+ 1.884318 lnu + 1.001928u

(5)

Just as Heal[10] said, ‘Those early mathematical
tables are themselves derived from some approximat-
ing infinite series, because there is, of course, no true
value for the integral’. The question is not only “How
precisely do the recent approximation fit the older
standard tabulated data”, but also, “How reliable are
the old data sets”. And he also pointed out that the
tables used in the past, considering the date of publi-
cation, must have been produced without the aid of

computers, and might contain errors. So he concluded
that a new set of values, computer-calculated, were
needed. When we reevaluated these literatures, we
found that there was something to be improved.

In the literature[2], the authors declared that their
approximate formula (Eq. (3)), which is called as
MKN equation, was derived based on a two-term
approximate formula, i.e.(e−u/u2)[(u + 1)/(u+ 3)],
which is just but an approximation ofEq. (2). That is,
their approximate formula (Eq. (3)) was not directly
derived from the original numerical values of tem-
perature integral. Using the same method, in another
literature[8], Eqs. (4) and (5)were derived based on
the three-term approximate equation, i.e.

e−u

u2

[
1 − 2

u + 3
− 5

(u + 1)(u+ 2)(u + 3)

]

and the series approximate equation for Arrhenius
temperature integral, i.e.

e−u
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÷ 28

(u ÷ 1) · · · (u + 4)
− 120
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+ 496
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− · · ·

]

respectively. Taking into account the generalized use
of MKN equation for temperature integral, it seems
to be of great interest to check the accuracy of these
approximations.

As we know, the values of temperature integral at
different temperature interval can be easily obtained
by numerical integral on a PC computer nowadays.
If an approximate formula is directly derived, its
accuracy and reliability will be higher than that
derived indirectly. Furthermore, in order to delete
the ambiguity accompanied by the interpretation of
kinetic data produced from thermal analysis measure-
ments, it is important to use adequate computational
methods and experimental conditions. With accurate
measurements of temperature, the use of proper ap-
proximate formula for the temperature integral allow
us to calculate kinetic parameters as precisely as pos-
sible [2]. So we think it is necessary to reevaluate
these approximations and to derive a more precise ap-
proximate formula. The main objective of this study is
to present a precise integral approximate formula for
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kinetic analysis of non-isothermal thermogravimetric
analysis (TGA) data. Because of its simplicity in cal-
culation, the form will be remained and its accuracy
will be enhanced in the newly proposed approximate
formula.

2. Theoretical considerations and calculation
procedure

As shown inEqs. (3)–(5), it is assumed that the
logarithm of temperature integral varies withu, which
obeys the equation below, and can be put in the form:

ln p(u) = a + bu + c ln u (6)

wherep(u) is so-called “temperature integral”,u =
E/RT, T the absolute temperature,E the activation
energy,R the gas constant, anda, b, and c are the
coefficients independent ofu.

Differentiating both sides ofEq. (6), we obtain

∂ ln p(u)

∂u
= b + c

u
(7)

Plotting ∂ ln p(u)/∂u, i.e. d lnp(u)/du, versus 1/u, we
get a straight line. The slope of the line isc, while the
intercept isb. RearrangingEq. (6) and inserting the
value ofc, we obtain

ln p(u) − c ln u = a + bu (8)

Plotting (lnp(u) − c ln u) versusu, we get another
straight line. The slope of the line isb, intercept isa.
The value of intercept inEq. (7) should be equal to
that of slope inEq. (8). Then we get all the coefficients
of Eq. (6).

3. Results and discussion

The ‘exact’ value of the Arrhenius integral used
for the error calculation was obtained by double pre-
cision numerical integration of temperature integral
using the Simpson’s procedure with a step size of 1 for
u on a PC computer. And values of∂ ln p(u)/∂u were
obtained from cubic spline numerical differentiating.
Since most ofu encountered in experimental studies
lies in the domain of 20≤ u ≤ 60, different values of
P(u) at correspondingu were gained. The plots ofEqs.
(7) and (8)are shown inFigs. 1 and 2, respectively.
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Fig. 1. Linear plotting of d ln p(u)/du versus 1/u.

From the linear plot of d ln p(u)/du versus 1/u, b,
c, and linear regression coefficients were calculated
and their values are as follows: b = −1.00140637,
c = −1.89466100, r = 0.99997662. The values
of a, b and coefficient, r, for the linear plot of
(ln p(u) − c ln u) versus u are: a = −0.3773896, b =
−1.00145033, r = 1.00000000. The value of b ob-
tained from Eq. (7) is quite close to that from Eq. (8),
which validates Eq. (6) in the range 20 ≤ u ≤ 60.
The two values of b from Eqs. (7) and (8) and their
mean value were also compared. The result showed
that the value of b from Eq. (8) results in the highest
accuracy.
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Fig. 2. Linear plotting of ln p(u) − c ln u versus u.
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When values of coefficients a, b, and c are obtained
from Figs. 1 and 2, they are inserted into Eq. (6). A
new form of approximation is shown as below:

−ln P(u) = 0.37773896 + 1.89466100 ln u

+1.00145033u (9)

Inserting Eq. (9) into Eq. (2), and logarithm on both
sides of Eq. (2), we get

ln

[
g(α)

T 1.89466100

]

=
[

ln
AE

βR
+ 3.63504095 − 1.89466100 ln E

]

−1.00145033
E

RT
(10)

Plotting ln[g(α)/T 1.89466100] versus 1/T, the activa-
tion energy E is obtained from the slope and the
pre-exponential factor A can be calculated by insert-
ing E and heating rate β into the interception,[

ln
AE

βR
+ 3.63504095 − 1.89466100 ln E

]

Eqs. (3)–(5), and Eq. (9) have the same forms, but
their coefficients are different, respectively. Doyle for-
mula [11], one of the most widely used approximate
formulae for P(u), is also introduced for comparison

−ln P(u) = 5.3308 + 1.0516u (11)

The relative percent errors associated with the use
of MKN approximate formulae, Doyle formula, and
Eq. (9) as solution of the Arrhenius integral for vari-
ous u are shown in Table 1, respectively. The relative
percent errors associated with the use of these approx-
imate formulae as solution of the Arrhenius integral
for a physically realistic domain of u are plotted in
Fig. 3. The line (–�–) represents the values of temper-
ature integral at different u (5 ≤ u ≤ 70) calculated
by using numerical integral method with Simpson’s
rule. Meanwhile, the other lines represent the values
calculated by using Eqs. (3)–(5), (9) and (11), respec-
tively. Fig. 3 shows that Eq. (9) is significantly more
accurate than either of Eqs. (3)–(5) or (11), as a so-
lution of Arrhenius integral. As shown in Fig. 3. The
precisions of Eqs. (5) and (11) are rough and the range
of their applicability is narrow. Eqs. (3) and (4) al-
most have the same precision at different values of u,

Table 1
Relative percent error for some approximate formula at various u

u Eq. (3) Eq. (4) Eq. (5) Eq. (9) Eq. (11)

5 13.4107 13.2898 9.2803 9.0243 −87.3576
10 4.4600 4.4016 2.7839 2.0515 −65.7565
15 1.9745 1.9433 1.3698 0.4634 −43.4410
20 1.0043 0.9885 0.9942 0.0299 −24.4140
25 0.5669 0.5604 0.9041 −0.0538 −10.3003
30 0.3509 0.3500 0.8818 −0.0281 −1.3662
35 0.2329 0.2351 0.8522 0.0194 2.8430
40 0.1571 0.1606 0.7875 0.0535 3.1096
45 0.0961 0.0995 0.6787 0.0601 0.3103
50 0.0359 0.0381 0.5244 0.0340 −4.7140
55 −0.0309 −0.0308 0.3262 −0.0256 −11.2238
60 −0.1081 −0.1108 0.0870 −0.1179 −18.6058
65 −0.1974 −0.2035 −0.1897 −0.2410 −26.3756
70 −0.2997 −0.3097 −0.5005 −0.3927 −34.1674

for their plots are nearly superposed with each other.
Eq. (9) is better than both Eqs. (3) and (4) almost in
all the range of u. The typical deviation of these five
kinds of equations from ‘exact’ values of p(u) at dif-
ferent u is shown in Table 2. Eq. (9) under-predicts
the true value of the Arrhenius integral by less than
1% over the domain u ≥ 13, which is often encoun-
tered in experimental studies. From Fig. 3 we can see
that Eq. (9) is much superior to Eqs. (3)–(5). And
we also investigated other possible approximations in
the form of Eq. (6), in which Eq. (9) is best. Fur-
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Fig. 3. Comparison of various approximate methods at different
values of u.
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Table 2
The range of their use for some temperature integral approximate formulae and their relative percent error

Approximate equation Range of u

Deviation from Simpson’s rule (%)

<0.1 <0.5 <1.0 <2.0 <5.0

Eq. (3) 45 ≤ u ≤ 59 ≥27 ≥20 ≥15 ≥10
Eq. (4) 45 ≤ u ≤ 59 ≥27 ≥20 ≥15 ≥10
Eq. (5) 60 ≤ u ≤ 63 51 ≤ u ≤ 70 ≥20 ≥12 ≥8
Eq. (9) 19 ≤ u ≤ 59 ≥15 ≥13 ≥11 ≥7
Eq. (11) – – – – 28 ≤ u ≤ 50

thermore, Eq. (9) is directly derived from numerical
temperature integral without derivation from any ap-
proximating infinite series, so it is reliable. So we are
sure that Eq. (9) is an ideal choice in the treatment of
TGA data.

All calculation mentioned above was run by a
program compiled in MATLAB 5.3 language, which
is a powerful soft ware for numerical calculation
and symbol calculation. The precision of numeri-
cal calculation performed is higher than ±10−11%
[12].

4. Conclusions

The accuracy and reliability of three MKN approx-
imate formulae, which have the form, −ln p(u) =
a+ bu + c ln u, are reevaluated by the numerical anal-
ysis. A improved approximation for temperature in-
tegral, −ln P(u) = 0.37773896 + 1.89466100 ln u +
1.00145033u, has been proposed by using two-step
linear fitting process. High linearly fitting coefficients
and sameness of b from Eqs. (7) and (8) confirm
the validity of this newly proposed equation. The re-
sults show that this modified approximation has higher
accuracy and reliability than that ever published, and
is an ideal choice for temperature integral.
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