

Available online at www.sciencedirect.com

SCIENCE \bigcap DIRECT.

Thermochimica Acta 413 (2004) 249–253

thermochimica acta

www.elsevier.com/locate/tca

Excess molar enthalpies of binary mixtures containing glycols or (polyethylene) glycols + propylene carbonate at 308.15 K

Carlo Castellari^a, Fabio Comelli^b, Romolo Francesconi^{a,*}

^a *Dipartimento di Chimica "G. Ciamician", Università Degli Studi, Via Selmi 2, I-40126 Bologna, Italy* ^b *ISOF-CNR-Istituto per la Sintesi Organica e la Fotoreattività, c/o Dip. Chimica "G. Ciamician", Via Selmi 2, I-40126 Bologna, Italy*

Received 25 March 2003; received in revised form 29 September 2003; accepted 29 September 2003

Abstract

Excess molar enthalpies, H_m^E , were determined as a function of molar fraction at 308.15 K and at atmospheric pressure for the binary mixtures containing propylene carbonate with ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, poly(ethylene glycol)-200, poly(ethylene glycol)-300, poly(ethylene glycol)-400, and poly(ethylene glycol)-600. Values of $H_m^{\rm E}$ range from a maximum of about 1640 J mol⁻¹ (propylene glycol) to a minimum of about −386 J mol⁻¹ (PEG-600). All mixtures containing monodisperse glycols have positive values of H_m^E . Also PEG-200 presents a curve of H_m^E versus x_1 (the molar fraction of glycol, component 1) always positive, whereas PEG-600 presents negative values of the heat of mixing over the whole range of the molar fraction. Finally, PEG-300 and PEG-400 show an inversion of sign of H_m^E , at about $x_1 = 0.7$ and 0.3, respectively. The experimental data were correlated using the Redlich–Kister polynomial and the adjustable parameters were obtained by the least-squares method. A qualitative discussion have been made in terms of intermolecular H-bonds.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Excess molar enthalpy; Propylene carbonate; Poly(ethylene glycol); Calorimeter; Hydrogen bond

1. Introduction

The physical properties of binary mixtures are studied for many reasons, the most important of which is to provide information about molecular interactions present in the liquid state. In our previous studies [1–4], excess molar volumes, excess molar enthalpies, deviations in viscosities and refractive indices of binary mixtures containing poly(ethylene glycols) were determined. The poly(ethylene glycols) ($H(OCH₂CH₂)_nOH$) [have fo](#page-4-0)und a wide variety of applications in the automotive, pharmaceutical, petroleum, cosmetic, textile, and other industries. Moreover, in recent years, attention has been focused on the solubility of PEGs in both water and organic solvents. This property is important in the development of more environmental friendly processes, like in the design of water soluble catalysts, and in the extraction, separation, and purification of biological substances. As a continuation of our work, the present paper deals with the excess molar enthalpies, H_{m}^{E} , of propylene carbonate (PCA)+ethylene glycol (EG), or +propylene glycol (PPG), or +diethylene glycol (DEG), or +triethylene glycol (TEG), or +tetraethylene glycol (TETG), or +PEG-200, or +PEG-300, or +PEG-400, or +PEG-600 at 308.15 K and at atmospheric pressure. Experimental measurements of $H_{\mathrm{m}}^{\mathrm{E}}$ for the binary mixtures presented in this paper have not been found in the literature.

2. Experimental

Chemicals were used without further purification, degassed by using ultrasound (ultrasonic bath, Hellma, type 460, Milan, Italy) and dried over molecular sieves (Union Carbide, type 4A, 0.16 cm pellets) to reduce the water content before use.

Densities, ρ , of pure compounds were measured using a vibrating tube density meter (Anton Paar, model DMA 60/602, Graz, Austria), thermostated at 308.15 ± 0.01 K by a circulating external bath (Heto, type DTB 623, Copenhagen, Denmark). The density meter precision was estimated to be $\pm 1.5 \times 10^{-5}$ g cm⁻³. Details of the equipment and its

[∗] Corresponding author. Tel.: +/fax: +39-051-2094325.

E-mail address: romolo@ciam.unibo.it (R. Francesconi).

^{0040-6031/\$ –} see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2003.09.024

Table 1

Purity, source, and density, ρ , of pure components and comparisons with literature data

Component	T(K)	ρ (g cm ⁻³)		
		Experimental	Literature	
Ethylene glycol $(+99%)$ (Aldrich)	298.15 308.15	1.10980 1.10293	1.10982 ⁶ 1.102947	
Diethylene glycol (99%) (Aldrich)	298.15 308.15	1.11233 1.10565	1.1122 ⁸ 1.105577	
Triethylene glycol (99%) (Aldrich)	298.15 308.15	1.11980 1.11210	1.119768 1.112097	
Tetraethylene glycol (99%) (Aldrich)	298.15 308.15	1.12010 1.11228	1.12005 ⁸ 1.112289	
Propylene glycol (99.5%) (Riedel-de Haën)	308.15	1.02615	1.026177	
PEG-200 ($M_n = 192$; $M_w/M_n = 1.16$) (Fluka)	308.15	1.11284	1.112437	
PEG-300 ($M_n = 274$; $M_w/M_n = 1.11$) (Fluka)	308.15	1.11358	1.113287	
PEG-400 ($M_n = 365$; $M_w/M_n = 1.10$) (Fluka)	308.15	1.11489	1.11372 ⁹	
PEG-600 ($M_n = 554$; $M_w/M_n = 1.06$) (Fluka)	308.15	1.11396		
Propylene carbonate (Fluka)	298.15 308.15	1.19952 1.19024	1.1995^{10}	

operating procedure have been described previously [5]. Purity, source, and density, ρ , of pure substances are shown in Table 1 and compared with literature data [6–10]. Both the number average, M_n (= $\sum N_i M_i / \sum N_i$), and the weight average molecular weights, \overline{M}_{w} (= $\sum N_i M_i^2 / \sum N_i M_i =$ $\sum w_i M_i$), of PEGs were obtained by the gel permeation chromatography [1]. N_i is the numb[er of mo](#page-4-0)les of species *i*, having molecular weight M_i , and weight fraction w_i . Moreover, a polydispersity index was calculated as the ratio of $M_{\rm w}/M_{\rm n}$ (Table 1). The excess molar enthalpies, $H_{\rm m}^{\rm E}$, were measu[red b](#page-4-0)y using a flow microcalorimeter (LKB Producer AB, model 2107, Bromma, Sweden) equipped with a thermostatic water bath, a digital unit for data acquisition, and two automatic burets (ABU, Radiometer, Copenhagen) to pump pure liquids into the mixing cell of the calorimeter. The temperature of the heat sink containing both the mixing and reference cells was controlled by a water bath. Accuracy in temperature control is ± 0.01 K. Details of the apparatus were reported in previous papers [11,12].

The H_{m}^{E} were obtained from the following relationship

$$
H_{\rm m}^{\rm E} = \frac{I^2 R(E/E_{\rm c})}{f} \tag{1}
$$

where *I* and *R* are the electrical current and resistance in the electrical calibration experiments, E and E_c are the voltage readings for measurements and electrical calibration, respectively, and *f* the molar flow rate of the mixture.

The molar flow rate f_i of the *i*th component flowing into the mixing cell is obtained from the formula

$$
f_i = \frac{\rho_i V_i}{M_i} \tag{2}
$$

where ρ_i and M_i are the density and molar mass, respectively, and *V*ⁱ the volumetric flow rate of component *i*.

The performance and reliability of the calorimeter were checked by the test mixtures hexane $+$ cyclohexane, $benzene + cyclobexane$, and methanol $+$ water. The experimental excess molar enthalpies, agreed within 1% with the literature data [13]. Values of H_{m}^{E} of all mixtures are reported in Table 2. Each set of experimental values of H_{m}^{E} was fitted to a Redlich–Kister polynomial of the type

$$
H_{\rm m}^{\rm E} = x_1 x_2 \sum_{k \ge 0} a_k (x_1 - x_2)^k
$$
 (3)

by an unweighted least-squares method. In Eq. (3) , x_1 , x_2 are the molar fractions of glycols or PEGs (component 1) and component 2 and a_k are adjustable parameters. The a_k values are given in Table 3 together with the standard deviation $\sigma(H_{\rm m}^{\rm E})$ defined as

$$
\sigma(H_{\rm m}^{\rm E}) = \left| \frac{\phi_{\rm min}}{N - n} \right|^{0.5}
$$
\n(4)

where *N* and *n* are the number of experimental points and parameters, respectively. ϕ_{min} is the minimum value of the objective function ϕ defined as

$$
\phi = \sum_{k=1}^{N} \xi_k^2 \tag{5}
$$

where $\xi_k = H_{\text{m, calcd}}^{\text{E}} - H_{\text{m}}^{\text{E}}$; H_{m}^{E} is the experimental value and $H_{\text{m,calcd}}^{\text{E}}$ is evaluated by Eq. (3).

 H_{m}^{E} (J mol⁻¹)

1003.1

1393.7

1215.2

Table 2

Excess molar enthalpies, H_{m}^{E} , for binary mixtures containing propylene carbonate with ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, PEG-200, PEG-300, PEG-400 and PEG-600 at 308.15 K

 x_1 $H_{\rm m}^{\rm E}$

0.0597 644.7
0.1127 1003.1

0.1600 1205.9 0.2025 1313.6 0.2759 1441.3 0.3369 1479.6 0.4325 1459.7 1393.7

0.5993 1254.2 0.6957 1071.2 0.7530 954.8 0.8205 807.5 0.8591 702.9 0.9014 571.9 0.9242 474.3 0.9482 355.4 0.9734 204.3

0.0459 583.2 0.0879 962.7
0.1263 1215.2

0.1616 1377.2 0.2208 1553.2 0.2782 1635.0 0.3664 1665.9 0.4353 1639.7 0.5362 1552.6 0.6344 1428.8 0.6982 1338.8 0.7763 1190.3 0.8223 1065.9 0.8741 872.8 0.9025 750.1 0.9328 574.6 0.9652 333.6

Ethylene glycol (1) + propylene carbonate (2)

Propylene glycol (1) + propylene carbonate (2)

Diethylene glycol (1) + propylene carbonate (2)

Triethylene glycol (1) + propylene carbonate (2)
0.0258

0.1370

0.0258 215.6 0.0503 376.3 0.0736 496.1 0.0957 584.8
0.1370 696.0

0.0350 298.7 0.0693 516.7 0.1005 662.2 0.1296 765.9 0.1826 883.5 0.2295 930.6 0.3088 953.2 0.3733 927.2 0.4716 878.2 0.5727 804.0 0.6412 745.0 0.7283 648.8 0.7814 563.3 0.8428 446.7 0.8773 365.1 0.9147 266.1 0.9555 151.0

3. Discussion

Experimental H_{m}^{E} data are presented in Figs. 1 and 2 together with the calculated values $H_{\text{m,calcd}}^{\text{E}}$ (solid lines).

Fig. 1. Excess molar enthalpies, H_{m}^{E} , for binary mixtures of EG (1)+PPCA (2) (\bullet) and PPG (1) + PPCA (2) (\star), DEG (1) + PPCA (2) (\bullet), TEG (1) + PPCA (2) (\blacklozenge) and TETG (1) + PPCA (2) (\blacksquare) at 308.15 K. Solid curves represent Redlich–Kister equation.

The excess molar enthalpies of the solutions of PCA with monodisperse glycols are positive over the whole range of composition, according to the sequence PPG $>$ EG \gg $DEG > TEG > TETG$. The heat of mixing decreases with the increase of molecular size with the exception of PPG (Fig. 1). A decrease of H_{m}^{E} with the increase of molecular length is observed also for the solutions of PCA + PEGs (Fig. 2). The values at equimolar composition $(x_1 = 0.5)$ are positive for PEG-200 and PEG-300 and negative for PEG-400 and PEG-600. In addition, the curve of PEG-200 is always positive, whereas PEG-600 presents negative values of the heat of mixing over the whole range of the molar fraction. The curves of PCA + PEG-200 and PCA + TETG practically overlap, since the molecular weights of the glycols are 200 and 194, respectively, and PEG-200 samples have a small value of polydispersity (Table 1).

Table 3

Least-squares parameters, a_k , Eq. (3), and standard deviations, $\sigma(H_m^E)$, Eq. (4), of glycols and (polyethylene)glycols containing propylene carbonate at 308.15 K

Mixture	a_0	a_1	a ₂	a_3	a_4	$\sigma(H_{\rm m}^{\rm E})$ (J mol ⁻¹)
Propylene carbonate $+$ ethylene glycol	5597.7	-2321.3	1976.0	-241.1	3632.5	3.4
Propylene carbonate $+$ diethylene glycol	3430.0	-1312.2	2807.2	-1782.5	395.1	2.3
Propylene carbonate $+$ triethylene glycol	2870.2	-935.7	1933.8	-2836.0	849.3	2.8
Propylene carbonate $+$ tetraethylene glycol	1905.6	-876.2	248.3	-1924.4	1748.0	3.5
Propylene carbonate $+$ propylene glycol	6350.4	-1862.5	4413.8	-242.7	2180.2	3.5
Propylene carbonate $+$ PEG-200	1850.6	-466.2	412.6	-3158.7	2884.6	3.0
Propylene carbonate $+$ PEG-300	471.5	-868.8	-756.5	-1408.6	3028.5	1.2
Propylene carbonate $+$ PEG-400	-214.7	-610.0	-1065.8	-654.4	2482.9	1.7
Propylene carbonate $+$ PEG-600	-1655.9	-392.2	75.5	658.1		2.1

Fig. 2. Excess molar enthalpies, H_m^E , for binary mixtures of PEG-200 $(1) + PPCA (2) (①)$, PEG-300 $(1) + PPCA (2) (④)$, PEG-400 $(1) + PPCA$ (2) (\blacksquare), PEG-600 (1)+PPCA (2) (\blacktriangle), at 308.15 K. Solid curves represent Redlich–Kister equation.

An analysis of the experimental data can give some insights into the interactions between the components. If the H_{m}^{E} of a binary system at $x_1 = 0.5$ is approximated to the following equation:

$$
H_{\rm m}^{\rm E} \propto +E_{22} - 2E_{12} \tag{6}
$$

where E_{ij} is the interaction energy between molecules i and j . The term E_{11} takes into account mainly the cooperative hydrogen bonding between the terminal O–H groups of the glycol. However, as the number of ethereal groups in the chain increases, the interaction between the O–H groups must compete more and more with the interaction between the hydroxyl and the ethereal O atom. Since the latter type of interaction is weaker than the former, an increase of the chain length of the (oxyethylene)glycols leads to decreasing of the term E_{11} and a consequent lowering of the heat of mixing. However, propylene carbonate (component 2) has a large vaporization enthalpy (65 kJ mol⁻¹) and a large dipole moment (4.94 D) in agreement with the net charges calculated by us for the non-hydrogen atoms of PCA (Fig. 3). Moreover, X-ray diffraction data [14–16] give evidence of interactions of the type $C-H \cdots O$, in which PCA is involved through the oxygen atom of the C=O group. As a consequence, it is reasonable to admit that the term E_{22} gives a significant contribution to the H_{m}^{E} of the mixtures studied. Actually, literature quotes studies on the self-association of the PCA [17,18].

As to the term E_{12} of Eq. (6), the intermolecular pattern can be mainly referred to the H-bonds formed between the terminal O–H groups of the glycol and the C=O group of the propylene carbonate. Except for the PPG–PCA mixtures, the contribute of the term E_{12} to the heat of mixing can be

Fig. 3. Molecular conformation of PCA showing the net charges (*e*) resulting from the extended Hückel approximation (crystallographic coordinates from [19]).

roughly considered constant for the binary systems studied. However, the data of Fig. 1 show that H_{m}^{E} of PPG–PCA mixture is larger than that of EG–PCA. This can be explained admitting that in PPG, the term −2*E*¹² gives a minor contribution to the heat of mixing, due to the steric hindrance of the met[hyl grou](#page-3-0)p that screens the adjacent oxygen atom.

Acknowledgements

The authors thank Mr. Gianni Bragaglia (ISOF-CNR, Bologna) for his valuable technical assistance in measurements.

References

- [1] S. Ottani, D. Vitalini, F. Comelli, C. Castellari, J. Chem. Eng. Data 47 (2002) 1197.
- [2] F. Comelli, S. Ottani, R. Francesconi, C. Castellari, J. Chem. Eng. Data 47 (2002) 1226.
- [3] S. Ottani, R. Francesconi, F. Comelli, C. Castellari, Thermochim. Acta 401 (2003) 87.
- [4] F. Comelli, S. Ottani, R. Francesconi, C. Castellari, J. Chem. Eng. Data 48 (2003) 995.
- [5] M. Fermeglia, J. Lapasin, J. Chem. Eng. Data 33 (1988) 415.
- [6] G. Douheret, A. Pal, J. Chem. Eng. Data 33 (1988) 40.
- [7] B.V. Naidu, K. Rao, K.C. Subha, J. Chem. Eng. Data 47 (2002) 379.
- [8] C. Dethlefsern, A. Hvidt, J. Chem. Therm. 17 (1985) 193.
- [9] E. Müller, D. Pasmussen, J. Chem. Eng. Data 36 (1991) 214.
- [10] G. Moumonzias, D.K. Passapoulos, G. Ritzoulis, Chem. Eng. Data 36 (1991) 20.
- [11] P. Monk, I. Vadsö, Acta Chem. Scand. 22 (1968) 1842.
- [12] R. Francesconi, F. Comelli, J. Chem. Eng. Data 31 (1986) 250.
- [13] J. Gmehling, Chem. Eng. Data 38 (1993) 143.
- [14] K.I. Okamoto, J.R. Kirchhoff, W.R. Heineman, E. Deutsch, M.J. Heeg, Polyedron 12 (1993) 749.
- [15] A. Shibata, T. Yamaguchi, Inorg. Chim. Acta 265 (1997) 197.
- [16] W. Preetz, J.G. Uttecht, Z. Naturforsch, Teil B 53 (1998) 93.
- [17] I.S. Perelygin, I. Itkulov, I.G. Krauze, Russ. J. Phys. Chem. (Engl. Transl.) 66 (2) (1992) 302.
- [18] I.S. Perelygin, J. Struct. Chem. (Engl. Transl.) 38 (2) (1997) 218.
- [19] N. Perchenet, A. Simon, Z. Anorg. Allg. Chem. 619 (1993) 98.