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Abstract

This paper presents some recent developments on the use of quantitative structure–activity relationships (QSAR) based on biological
calorimetry. The calorimetric biological potency can be measured for structurally related compounds whose activity would not be easily
determined with less accurate and precise methods. A series of antimicrobial hydrazides was assayed against two different cultured cell
systems,Escherichia coliandSaccharomyces cerevisiae. The direct demonstration of a similar mode of action for the two biological systems
was achieved with the use of calorimetry. The measured values were described in terms of 3D molecular interaction fields (MIF) by means of
a recently developed GRID independent method (GRIND). The aim of this approach is to allow the analysis of a large number of quantitative
descriptors by using chemometric tools such as partial least squares (PLS). The correlation between chemical structures and changes in
bioactivity is described without the need for 3D molecular alignment according to a suitable conformational bioactive template. The proposed
model for these molecular interaction fields has revealed the importance of the stereo-electronic properties on the cells metabolism. Throughout
this paper, we describe the usefulness of the same cell systems in disclosing partitioning behaviour of study hydrazide antimicrobials employing
the diffusion technique of Taylor–Aris. Since this variable may be of utility in pharmacokinetic studies, we have modelled and predicted it
based on computed MIF and multivariate statistics by a procedure called GRID/VolSurf. This result was achieved with a small number of
VolSurf descriptors encoding a balanced range of hydrophilic–lipophilic properties.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It has been written that “science moves forward accord-
ing to what it can measure”, and at present, there appear
to be numerous promising advances among several analyti-
cal techniques that can be useful to describe drug–receptor
interactions[1]. Calorimetric techniques are very useful in
the field of medicinal chemistry for studying these interac-
tions on very small quantities of biological molecules[2].
The robustness and sensitivity of thermal analysis methods
[3] with automation, and the availability of reliable soft-
ware tools are especially useful for the behavioural study of
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bioactive substances, excipients[4,5], and delivery systems
[6]. Calorimetry is suitable for the investigation of the effect
of drugs on microorganisms and animal cellular systems,
and thus has been used as a method for the determination
of bioactivity [7,8].

A number of previous studies have been performed as-
sociated with the applicability to derive structure–activity
relationships (SAR), which can in turn help medicinal
chemists gain insight about the key interactions between
drug and its receptor, with the aim of producing new, more
powerful antimicrobials. On the other hand, studies sel-
dom showed the use of calorimetry in deriving quantitative
structure–activity relationships (QSAR), a field where it is
possible not only to set information on SAR, but also insight
into modes of action can be envisaged[9]. We have already
shown that QSAR based on biological calorimetry for a set
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of antimicrobial hydrazides acting againstSaccharomyces
cerevisiaeand Escherichia coliresulted in extrathermody-
namic relationships (involve the correlation between vari-
ables which, from a strictly thermodynamic standpoint, are
not related) between calorimetrically measured biopotencies
and partitioning using the same cell systems[9,10]. To the
best of our knowledge, the result reported was the first-ever
demonstration of an extrathermodynamic relationship be-
tween calorimetric drug potencies (calorimetrically based
dose–response curves) and two cell systems to behave in the
same way with respect to the importance of partitioning and
biopotencies. This meant that the same set of congeneric
compounds experienced a similar environment in the two
systems[10].

Biological calorimetry can also provide important pos-
sibilities for comparative QSAR. In order to gain a deeper
understanding of the relationships and the meaning of
parameters within the model it is necessary to establish
some kind of lateral validation. The validation step is a
major bottleneck, and can be accomplished by chemical
procedures using physicochemical organic reactions and by
means of biological systems[11]. Differences in binding
affinities can be experimentally determined from calori-
metric measurements. The isothermal calorimetric titration
of dimeric 2-amino-1,8-naphthyridine selectively bond to
the GG mismatch with 9-mer duplex d(CATCGGATG)2 is
enthalpy-controlled and supports the intercalation of both
naphthyridine rings into DNA base pairs[12]. Induction of
a remarkable conformational change in the human telomeric
sequence by the binding of naphthyridine dimer has also
been discussed in detail[13]. The relative binding energies
between 2,6-disubstituted amidoanthracene-9,10-dione and
2,6-disubstituted acridine chromophores, and the folded
human telomere DNA quadruplex were determined using
molecular simulation methods. Results were in general
agreement with binding enthalpies determined by isother-
mal calorimetry studies, thus supporting the hypothesis
that guanine quadruplexes are the primary target for telom-
erase inhibitors with extended planar chromophores[14].
Nonetheless, Frisch et al.[15] have shown that the use of en-
thalpies for the analysis of SAR appears to be complicated
by enthalpy–entropy compensation of weak intermolecu-
lar interactions, when studying the thermodynamics of the
interaction of barnase and barstar by titration calorimetry.
The changes in free energy, enthalpy, entropy, and heat ca-
pacity upon the binding of turkey ovomucoid third domain
OMTKY3 to alpha-chymotrypsin was reported by Filfil and
Chalikian [16]. They have observed that water molecules
are released to the bulk state upon the binding of OMTKY3
to �-chymotrypsin, which is entropy driven with a large,
unfavorable enthalpy contribution, thus highlighting the
binding protein–protein pattern recognition process through
calorimetric measurements.

In drug design, the study of protein–ligand interactions
is one of the most important methods for the understanding
of the SAR. The activity of N-2-phenylthioguanine HSV1

TK inhibitors was determined with kinetic measurements
of thymidine phosphorylation by Folkers et al.[17]. They
measured the interaction energies between thymidine and
HSV1 TK via calorimetry, and reported binding to occur
spontaneously since it was enthalpy driven. Raffa et al. have
used isothermal calorimetry to characterize the reversible in-
hibition of cytidine 2′-monophosphate (2′-CMP) binding to
RNase-A[18]. They have demonstrated that enthalpy-driven
interactions may assist the design of small-molecule in-
hibitors. Calorimetry was also used to measure the change
in enthalpy for the scission of calf thymus DNA (ct-DNA)
induced by adriamycin® (ADM, doxorubicin). Liang et al.
[19] have shown that calorimetry is a useful method to
describe both the binding constant and the standard ther-
modynamic parameters for the binding of ADM, a potent
anthracycline antibiotic active against many cancers and
has been used in clinical medicine for many years for the
scission of calf thymus DNA.

In QSAR studies and computer-aided molecular de-
sign, the information contents of descriptors increase in
the following sequence: element-level, structural formulae,
electronic structure, molecular shape, intermolecular, and in-
teraction descriptors. Every subsequent class of descriptors
normally covers information contained in the previous-level.
It is, however, practically impossible to cover all the features
of a molecular structure in terms of any single class of de-
scriptors. Therefore, it is recommended to optimize the num-
ber of descriptors used by means of appropriate statistical
procedures and characteristics of structure–property models
based on these descriptors[20]. In the search for new meth-
ods of obtaining partition coefficients, we have modified the
Taylor–Aris diffusion technique to allow the direct measure-
ment of logP (octanol–water partition coefficient) within the
cell system itself. This technique was successfully applied
to two different cell systems, and an extrathermodynamic
equation between logP for E. coli andS. cerevisiaeseemed
to be a promising way of obtaining this parameter directly
from them[21]. Prior to the synthesis of a myriad of com-
pounds with described biological activities, it might be inter-
esting to create libraries of compounds with certain defined
properties. When biological properties can also be included
at least as a non-supervised descriptor, the definition of the
chemical and biological space is of prime importance. Thus,
this paper is intended to show that biological calorimetry,
as a method for determining biopotencies of antimicrobials,
can be the base input for obtaining physicochemical de-
scriptors. This has been accomplished by using 3D QSAR
methods, namely GRIND/GRID and GRID/VolSurf.

2. Experimental

2.1. Calorimetric measurements

A flow calorimeter (LKB type 10700-1; LKB Produkter
AB, S-161 25 Bromma 1, Sweden) fitted with a flow-through
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calorimetric vessel (0.5 mL working volume) was used
throughout. The thermostatic air bath was maintained at
37◦C in a room kept at 25± 0.2 ◦C. The voltage was am-
plified with a Keithley 150B microvoltammeter (nominal
setting of 3�V equivalent to 43.2�V full scale deflection).
The power-time curves were recorded on a potentiometric
recorder. The glucose buffer solution used for the calori-
metric medium was phosphate buffer, pH 7.0 containing
172 g L−1: d-glucose, 1.80; K2HPO4, 3.68; KH2PO4, 1.32;
made to volume with distilled water. 45 mL of glucose
buffer was added to 3 ml DMSO in a three-necked vessel,
thermostated and stirred at 37◦C in a bath external to the
calorimeter. This volume of DMSO was necessitated by
the working solubility limits of the higher homologues. A
pump rate of 0.78 mL min−1 was used (calculated from an
independent volume of reaction medium expelled over a
time of five minutes). The ampoule of cells was removed
from a liquid nitrogen cryostat, thawed in a water bath at
37◦C for three minutes and shaken for one min. Five min-
utes after commencement of thawing, 0.5 mL of the cell
suspension was pipetted into the reaction vessel. One min
later, 1.5 mL of DMSO (carrying the appropriate amount
of study compound to give the final concentration as re-
quired in the reaction vessel or control blank), was added
to the mixture, with continuous stirring to promote homo-
geneity of the reaction mixture. Thus, the total volume of
the incubation medium was 50 mL. This medium flowed
through the calorimeter and the heat change associated with
the metabolism of glucose, under the particular conditions
of each assay, was registered. The flow calorimeter was
washed out after each incubation with water followed by
thermostatted glucose buffer prior to the establishment of
each reaction loop. The calorimeter was left overnight in
10% RBS solution—a commercial surfactant.

2.2. The role of calorimetric output in drug design

One of the major problems of quantifying the relationship
between chemical structure and activity is that the measure-
ments of biological properties (i.e., IC50, Ki , etc.) have to
be accurate and reproducible within the experimental error.
In fact, this is critical because many data sets consist of data
collected from different studies (several sources), and there-
fore, there is no simple way of determining the quantitative
relationship between the results obtained from different
sources. Experiments must be meticulously designed to
yield statistically valid data, producing sets of compounds
that cover diverse chemical space, mapped onto biological
space. QSAR modelling is the most successful method for
analyzing experimental data for biological applications.
However, it must be emphasized that the use of inappro-
priate biological activity data will not afford good-quality
models. Experimental protocols involve the preparation of
cultured cell systems, their frozen maintenance and recov-
ery, were errors and all sorts of problems in incorporating
high-level chemical and biological knowledge can possibly

occur. There are two possible (out of many) errors that
deserve to be noted: the quantitative nature of the measure-
ment and the recognition that all compounds share a similar
mode of action. The reliability of experimental data must be
ascertained because such errors may not be easily detected
after a model is conceived, mainly because they repre-
sent the sum of individual measurement errors. Biological
calorimetry is efficient (least prone to errors), fast, and re-
producible to better than 3%. In vitro screening can be car-
ried out in complex and defined medium using frozen cells.
Calorimetric output can reveal both biocide or biostatic
properties of compounds from calorimetric output curves,
and this is very important in order to control therapeutic
drug dosage. Consistence of the data can be readily checked
from derived experimental curves. An advantage of the use
of biological calorimetry was observed in the antimicrobial
hydrazide series (Fig. 1). The compounds were ranked in
ascending order of potency according to their structural and
chemical characteristics (substitution at the 4-position of
the aryl ring inp-X-C6H4-C(O)NHNHC(O)Ph,Table 1), as
follows: C6H5 t-Bu, C5H11, Br, OMe, Me, NO2, H.

The results shown inFig. 1 suggest that calorimetric
biopotencies can be quantitatively measured, and thus seem
to be an excellent choice for use in QSAR studies.Fig. 1a
and c clearly shows that the interaction of the study hy-
drazide antimicrobials can be ranked in potency order ac-
cording to substitution at the 4-position of the aryl ring. The
Fig. 1b and dalso demonstrates that these interactions re-
sulted in a graded response over a limited range of drug
concentrations. Though this is not surprising, it does indi-
cate the concentration time-related response for such small
subunit moiety allocations. The antimicrobial endpoints of
interest can be readily seen from the calorimetric outputs
shown inFig. 1a and c. Each graded curve identifies the low-
est concentration of a single compound at which response
for a specific organism is inhibited (zero-order kinetics), thus
reflecting its “biostatic activity”. Results from this screen-
ing revealed the antimicrobial activity of these compounds
against the two cell systems. Moreover, it is also feasible to
evaluate the inner relationship between the modes of action
for the same series of compounds against the two cell sys-
tems.Fig. 2 shows that the straight lines are quasi-parallel
with slopes of 0.342–0.598 forS. cerevisiaeand 0.276–0.520
for E. coli.

3. Theory and calculations

3.1. The Almond method

Almond [23] is a computational program that was de-
veloped for the generation, analysis, and interpretation of
GRIND (GRid-INdependent Descriptors), a relatively new
generation of alignment independent 3D-molecular descrip-
tors[24]. These find application in 3D QSAR, QSAR, virtual
screening, design of combinatorial libraries, binding site and



286 M.L.C. Montanari et al. / Thermochimica Acta 417 (2004) 283–294

Fig. 1. Calorimetric outputs observed within the series of hydrazides (8) C6H5, (7) t-Bu, (6) C5H11, (5) Br, (4) OMe, (3) Me, (2) NO2, (1) H (a and c,
Table 1); compound 1 with A, control; concentration (�mol L−1) B, 1.716; C, 2.017; D, 2.145; E, 2.318; F, 2.619 withS. cerevisiaeand E. coli (b and
d). Adapted from[9] and [22]: see text for explanation.

Table 1
Values of calorimetric potencies and Taylor–Aris partitioning of hydrazides againstE. coli and S. cerevisiaea

X log IC50(Ec)
b log IC50(Sc) logPTA(Ec)

c logPTA(Sc) πTA(Ec)
d πTA(Sc)

H 2.280 2.140 −1.094 −0.894 0 0
NO2 2.38 2.216 −1.140 −0.944 −0.05 −0.05
Me 2.540 2.260 −0.956 −0.782 0.138 0.112
OMe 2.600 2.326 −1.001 −0.833 0.093 0.061
Br 2.730 2.473 −0.879 −0.693 0.215 0.207
C5H11 3.050 2.620 −0.652 −0.439 0.442 0.455
t-Bu 3.214 2.753 −0.799 −0.516 0.295 0.378
C6H5 3.240 2.900 −0.787 −0.532 0.307 0.362

a All values have been previously determined[9,10,21].
b The concentration of drug required to diminish 50% of cell metabolism measured as the heat flow rate by calorimetry.
c logPTA is the Taylor–Aris diffusion technique of partitioning.
d � values calculated from:π = logPTA(X) − logPTA(H).
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Fig. 2. Dose–response curves forS. cerevisiae( ) and E. coli ( ) (BR
means biological response).

selectivity studies, and in a variety of fields that require fast
and accurate description for molecular structure. GRIND is
insensitive to the position and orientation of the molecular
structures in the space. From this perspective, there is a clear
advantage of eliminating the need for determination of 3D
molecular alignment according to a suitable conformational
template (assumed to be the bioactive conformation), one
of the most difficult and time consuming steps of the tradi-
tional 3D QSAR methods, such as comparative molecular
field analysis (CoMFA) and comparative molecular simi-
larity indices analysis (CoMSIA)[25]. GRIND is based on
molecular interactions fields (MIF)[26], which are gener-
ated using the program GRID, and represent the ability of a
ligand to interact with a receptor. In ALMOND, the standard
procedure involves three GRID[27] probes: the hydropho-
bic probe (DRY), the carbonyl oxygen (O) and the amide
nitrogen (N1). These probes represent strong non-covalent
interactions found in the biological targets (e.g., enzymes,
receptors). When the three probes are used, the metric de-
scribing the series includes two distinct correlograms (auto-
and cross-correlograms) of up to six blocks ofX variables.
The three auto-correlograms are DRY–DRY (hydrophobic);
O–O (hydrogen bond donor); and N1–N1 (hydrogen bond
acceptor); while the three cross-correlograms are DRY–O
(hydrophobic and hydrogen bond donor); DRY–N1 (hy-
drophobic and hydrogen bond acceptor); and O–N1 (hydro-
gen bond donor and hydrogen bond acceptor). The assembly
of these variables, usually less than a hundred per compound,
constitutes the standard molecular description that can be
used directly for the chemometric analysis. TheX-matrix
generated can be scaled using raw, remove baseline, or nor-
malized block-wise methods. Some of the most common
methods within chemometrics are principal component
analysis (PCA) and partial least squares (PLS). PCA is most
suitable for data overview while PLS for quantitative mod-
eling, analysis and prediction. PCA[28] is a technique used
to summarize and describe the information contained in the

X-matrix. The PCA decomposes theX-matrix as the product
of two similar matrices. These are the loading matrix (P) and
the score matrix (T), which contains information about the
variables and the objects, respectively. PCA is a very useful
technique for understanding the distribution and differences
of the objects, as well as the variables that contain similar or
completely independent information. The PCA information
is best represented by the 2D and 3D scores and loading
plots of the matrices obtained, which represent the relative
position of the objects and the original variables, respec-
tively, in the space. As described above, PCA is a technique
of multiple variables that deals only withX-variables. PLS,
on the other hand, is a regression technique that generalizes
and combines features from PCA and multiple regression
[29]. It is particularly useful when one needs to predict a
set of dependent variables from a large set of independent
variables (i.e., predictors). In PLS regression, theX block
of independent variables (descriptors) is correlated with the
Y vector (activity) in such a way that the projected coordi-
natesT are good predictors ofY. In this case, the biological
activities are included in the decomposition procedure. The
goal of PLS regression is to build a model that will be able
to predictY from X and to describe their common structure
[30]. The best model obtained should be useful to calculate
reliable predictions ofY values for new molecules, not in-
cluded in the model. It is important to note that the PLS (not
PCA) regression method can deal with the kindX-matrices
used in 3D QSAR studies. In the present case, theX-matrix
contains much less objects (molecules) than variables, and
the use of multiple linear regression (MLR) is not appro-
priate. PLS decomposes theX-matrix as the product of two
smaller matrices,P andT, in a similar way to that of PCA.
The main difference is that PCA obtains PCs that represent
at best the structure of theX-matrix, while PLS obtains
the latent variables (LVs) that represent the structure of the
X and Y matrices, maximizing the fitting between theXs
and Ys [31]. Selecting the correct number of LVs (dimen-
sionality) and testing the predictive power of the model is
of critical importance in PLS. The predictive ability of a
regression model is evaluated usually through an internal
cross-validation (CV). This procedure creates reduced mod-
els (where some of the objects are removed), and are used to
predict theYvariables of the objects held out. The regression
model is usually validated through an internal leave-one-out
(ideally, leave-two-out or leave-some-out) cross-validation
procedure, a useful tool to verify its ability for future pre-
dictions. In general, the parameters used to assess the statis-
tical quality of the model are the correlation coefficientr2

and the cross-validated correlation coefficientq2 (r2
cv). The

CV is a valuable technique because it performs an internal
validation of the model and obtains an estimation of the
predictive ability without the help of external data sets. As
for PCA, the best way to examine the information from PLS
is to plot the matrices obtained. The 2DT–U score plots
represent objects in the space ofX-scores (T) against the
Y-scores (U). It gives an idea of the correlation between the
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Xs and theYs obtained in the model for each one of the LVs.
The 2D and 3D loading plots represent the original variables
in the space of latent variables (P), while the 2D and 3D
weight plots represent original variables in the space of the
weights (W), which in turn, represent the coefficients that
multiply theXs to best fit theYs. Therefore, the loading best
represents the first constraint used to build the PLS model
(X-matrix), while the weights best represents the second
constraint used to build the PLS model (the fitting of theYs).

3.2. The GRID/VolSurf method

This powerful computer-automated approach has been
used to correlate 3D MIF with physicochemical and phar-
macokinetic properties[32–34]. Firstly, it generates MIF by
using GRID program[27,35–37], then it treats the fields ac-
cordingly by producing descriptors that encode the informa-
tion content from the chosen water and hydrophobic probes.
VolSurf has the advantage of producing descriptors (Table 2)
using the 3D information embedded in any map. VolSurf
is also alignment independent and conformation insensitive.
The VolSurf transformation is fast and its results are easy to
interpret. The descriptors have a clear chemical meaning and
are lattice-independent. Work reported herein demonstrates
the usefulness of the method in describing the partition coef-
ficients obtained from Taylor–Aris diffusion technique[21].

There is a chemical interpretation of VolSurf descrip-
tors, which is outlined here. However, readers are referred
to the specialized literature on this subject for a more de-
tailed description[38]. The interaction of molecules with
biological membranes is mediated by surface properties.
These properties are determined from the size, shape, elec-
trostatics and hydrophobicity obtained from calculations.
Size and shape descriptors encode molecular volume, sur-
face, globularity and the ratio volume/surface, and they

Table 2
Description of VolSurf Descriptors[38]

VolSurf number code Definition

1 V Volume: total volume (computed at 0.25 kcal mol−1)
2 S Surface: total surface (computed at 0.25 kcal mol−1)
3 R Rugosity: total volume/total surface
4 G Globularity: surface of the compound divided by the surface of a sphere with the same volume
5–12 W1-W8 Volume of interaction with the H2O probe at−0.2, −0.5, −1.0, −2. 0, −3.0, −4.0, −5.0, and−6.0 kcal mol−1 levels
13–20 IW1-IW8 Integy moment: proportional to the distance between the barycentre of the surface and the volume of interactions with

the H2O probe at the above energy levels
21–28 CW1-CW8 Capacity factor: volume of interaction with the H2O probe divided by the surface
29–31 Min1-Min3 Energy minima: the first three energy minima interactions
32–34 D12, D13, D23 Distance: the distances between the energy minima
35–42 D1-D8 Volume of interaction with the DRY probe at−0.2, −0.4, −0.6, −0.8, −1.0, −1.2, −1.4, and−1.6 kcal mol−1 levels
43–50 ID1-ID8 Integy moment: proportional to the distance between the barycentre of the surface and the volume of interactions with

the DRY probe at the different energy levels
51–52HL1, HL2 Balances of the hydrophilic-hydrophobic interactions, measured at−4 and−0.8 kcal mol−1

53 A Amphiphilic moment
54 CP Critical packing
55 POL Molecular polarizability
56 MW Molecular weight

are explained inTable 2. Descriptors of hydrophilic re-
gions include a molecular envelope that is accessible to
and attracts water molecules, and capacity factors that are
represented by the hydrophilic surface per total molecu-
lar surface unit. Capacity factors are proportional to the
concentration of exposed polar groups compared to the
total surface area and are often relevant in membrane par-
titioning in which solvation–desolvation processes are of
critical importance. The interaction energy (integy) mo-
ments express, like dipole moments, the unbalance between
the centre of mass of a molecular and the barycentre of
its hydrophilic regions[39]. The integy moment is calcu-
lated for both hydrophilic and hydrophobic regions. For
the first, they are vectors pointing from the centre of mass
to the centre of the hydrophilic regions, whereas for the
latter they measure the unbalance between the centre of
mass of a molecule and the barycentre of the hydrophobic
regions. The high integy moments depicted in this study
(Fig. 3) suggest a concentration of hydrated region in one
part of the molecule, that is, theN,N-diacyl hydrazine
moiety (–C(O)–NHNH–C(O)–). The hydrophilic–lipophilic
balance is the ratio between the hydrophilic and the hy-
drophobic regions. In the study, molecules possess rather
a hydrophilic predominance (Fig. 3). The descriptors of
hydrophobic regions are molecular envelopes generating
attractive hydrophobic interactions. All calculations were
performed on a R10000 O2 Silicon Graphics workstation.

4. Results and discussion

Table 1shows the values of both calorimetric potencies
and Taylor–Aris partitioning for the hydrazides studied. We
have analyzed the possibility of quantifying the relationship
between the antimicrobial hydrazides and the cell systems.
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Fig. 3. Log PTA partitioning of hydrazide antimicrobials onS. cerevisiae. The PLS coefficients plots show that there must be a hydrophobic–hydrophilic
compensation that allows hydrazide antimicrobials to partitioning from solution to within cell system.

Eq. (1) shows that the log 1/IC50 (S. cerevisiae) values[9]
are linearly correlated with those of log 1/IC50 (E. coli) [10].

Relationship betweenE. coli andS. cerevisiae

log
1

IC50
(Ec)= 1.368(±0.13)log

1

IC50
(Sc)− 1.605(±0.48)

(n = 8, r2 = 0.978, s= 0.06, F = 269.69, r2cv = 0.938)

(1)

Eq. (1) indicates the existence of an extrathermodynamic
relationship between the antimicrobial activity and the two
cellular systems. The magnitude of the slope might be a
consequence of similar modes of action (Fig. 2), including,
for example, transport processes or binding interactions with
receptors. Following this, we have tested the hypothesis that
these hydrazides possess a similar transport process for both
E. coli andS. cerevisiae, as shown inEq. (2).

Relationship between log P(TA)Ec and log P(TA)Sc

logP(TA)E.c. = 0.833(±0.05)logP(TA)S.c.− 0.323(±0.05)

(n = 8, r2 = 0.955, s= 0.038, F = 128.40, r2
cv = 0.931)

(2)

Hydrophobic properties do not differ much in the cell
systems, since the environment in which transport takes
place is similar. Consequently, a similar physicochemical
environment should influence the binding modes of these
hydrazides to the two cell systems. From the viewpoint of
the Hansch–Fujita approach[40], it is well known in QSAR
studies that the biological responses elicited by active com-
pounds are correlated with a combination of hydrophobic,
steric and electronic properties. However, a number of
models do not consider the 3D alignment of the molec-
ular structures. Moreover, chemical descriptors applied
to biological calorimetric measurements and Taylor–Aris
partitioning are rarely seen or used. One way of dealing
with this is by means of ligand pharmacophore generation
when calculating alignment-independent 3D molecular de-
scriptors[41], such as those implemented in the Almond
(GRIND) method. Therefore, we have used this approach
for the description of measured calorimetric biopotencies.
This was accomplished by carrying out the 3D generation
of three MIF using the hydrophobic (DRY), N1 (amide
nitrogen as hydrogen-bond donor) and O (carbonyl oxygen
as hydrogen-bond acceptor) GRID probes (for all hydrazide
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Table 3
Almond-PLS results of the model developed for the series of antimicrobial hydrazides

Cell system Cross-validated Componentsc Non-cross-validated

r2
cv

a SDEPb r2d SDECe

S. cerevisiae 0.699f 0.024 1 0.862 0.016
E. coli 0.702f 0.030 1 0.853 0.210

a Cross-validation term for estimated prediction.
b SDEP= standard deviation of estimated prediction.
c All values computed with the first principal component only.
d Goodness-of-fit.
e SDEC= standard deviation of estimated calculation.
f Up to five random groups left out in order to derive final model.

derivatives). The 3D structures of the hydrazides used in
this study were generated with the Sybyl program[42] via
a systematic force field based conformational analysis. The
most stable conformation was taken from each set and sub-
jected to a full minimization. The optimization process was
performed using the Gasteiger-Hückel charges[43]. The
study was carried out for the biological responses elicited
by hydrazides againstS. cerevisiaeandE. coli.

The results inTable 3show that the MIF analyses ex-
plain the antimicrobial activities of the hydrazides, as well
as correlate them well (85%), with good predictive power
(about 70%), for bothS. cerevisiaeand E. coli. The rela-
tionships between biopotencies and the three different sets
of calculated descriptors were analyzed by PLS projection
to latent structures (Fig. 4). The goodness-of-fit shown in
Fig. 4was achieved with no conformational sampling of the
hydrazides. Thus, predictions of activity for this series of
analogues based on the molecular structure, MIF and bio-
logical data, can be put forward to illustrate the proposed ap-
proach. The calculated Almond parameters are suitable for
describing the physicochemical requirements for this con-
generic series in order for them to elicit biological activity
according with their 3D proposed pharmacophore models.

The most potent compounds have high positive values
of T1. The biopotencies are explained by all three sets of
descriptors calculated for the different interaction fields
(Fig. 5). The 3-Latent Variables model shown inFig. 5 is:
first block for DRY auto-correlogram, second for O and
third for N1. The PLS coefficient histograms for both cell
systems show that all hydrophobic (DRY–DRY, DRY–O,
DRY–N1) interaction energies correlate negatively with
activity, whereas the N1–N1 interaction energies are posi-
tively correlated with it. The N1 auto-correlogram has only
one peak, which corresponds to the interactions of the po-
lar carbonyl groups (–C(O)–) as hydrogen-acceptors, being
of similar importance for both cell systems. This suggests
why more polar antimicrobial hydrazides have higher po-
tencies as compared with those possessing lipophilicity
moieties.

In drug design and development, properties such as
ADME/Tox (absorption, distribution, metabolism, excre-
tion and toxicity) have to be considered at an early step
of the process to avoid loss of promising compounds at an

advanced stage of the research. Computational approaches
based on physicochemical parameters, and characterization
of the partitioning behaviour of substances in biphasic sys-
tems (e.g.,n-octanol/water, liposome/buffer,�logP) can be
used for modelling transport studies. Standardization of cell
cultures to be used for transport studies in the search of in
vitro models represents a great potential on passive transport
[44]. We have previously reported that partitioning via the
modified diffusion technique of Taylor–Aris (logPTA) [21]
is an important way of disclosing partitioning behaviour of
drugs in the same cell system used for measuring biopoten-
cies and transport properties. However, no physicochemical
parameter was ever depicted as a descriptor of logPTA.
Also, we envisaged a “hydrophobic” interaction for the
antimicrobial hydrazides in order to explore the usefulness
of such 3D fields in describing the elicited biological re-
sponses. Therefore, the interaction energies for hydrazides
were calculated with hydrophobic (DRY) and hydrophilic
(H2O) probes using the GRID program[27,35–37]. The
GRID program allows one to sample the potential energy
for putative interactions with various probes around a given
molecule. The logP can be described in terms of molec-
ular surface area or volume for instance.Eqs. (3) and (4)
established a relationship between logPTA, obtained for
the E. coli and S. cerevisiaecell systems, and the GRID
“hydrophobic” interaction energies, then mimicking the
role of logP in 3D QSPR (quantitative structure–property
relationships). All calculations used the most negative in-
teraction potential, which represents the best interaction
energy between the probe and the hydrazide molecules.

Linear dependence of logPTA(E.c.) over 3D “hydrophobic”
interaction energies (kcal mol−1).

logPTA(E.c.) = −0.638(±0.075)DRY− 2.069(±0.118)

(n = 7, r2 = 0.921, s= 0.053, F = 58.04, r2
cv = 0.866)

(3)

Linear dependence of logPTA(S.c.)over 3D “hydrophobic”
interaction energies (kcal mol−1).

logPTA(S.c.) = −0.724(±0.006)DRY− 2.029(±0.011)

(n = 7, r2 = 0.948, s= 0.048, F = 91.28, r2cv = 0.920)

(4)
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Fig. 4. PLS plots for the correlation between the Almond descriptors (T1) and the measured biological potencies for the hydrazide series (U1). (A)S.
cerevisiae. (B)E. coli.

PLS analysis for all eight hydrazides resulted in quite rea-
sonable statistical parameters (r2 = 0.672 andr2

cv = 0.665),
with similar coefficients for both models, as described by
Eqs. (3) and (4). However, compound 7 (t-Bu substituent)
was left out (outlier), so improving the predictive power of
the models. These results led us to use a new method for
the modelling and prediction of pharmacokinetic properties
based on computed MIF. VolSurf descriptors provide di-
rectly interpretable maps for the H2O and DRY probes, LVs

can be extracted by applying PLS to the VolSurf descriptors
set, and the results are shown inTable 4. Hence, calculated
molecular properties from GRID 3D molecular fields of in-
teraction energies to correlate 3D hydrazide structures with
physicochemical and Taylor–Aris partitioning properties are
to be found inTable 4. The PLS plot for the first component,
based on the two sets of descriptors (H2O and DRY) forS.
cerevisiaeis shown inFig. 6. The first component (29.9% of
total variance) discriminates bulky moieties (C5H11, C6H5,
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Fig. 5. PLS partial weights of PC1 for the hydrazide calorimetric biopotencies against (A)S. cerevisiaeand (B) E. coli.

andt-Bu) from others. The bulk moieties have positive val-
ues of PC1, and higherπ-lipophilic Taylor–Aris constant
(Table 1). These can be seen from PLS coefficient plots
shown inFig. 3. The longer vertical bars indicate the contri-
bution of each single descriptor, while the shorter ones are

Table 4
VolSurf PLS results of the model developed for the eight antimicrobial hydrazides

System Crossvalidated Components Non-cross-validated

r2
cv SDEP r2 SDEC

LogPS.cerevisiae 0.614 0.110 1 0.889 0.059
LogPE.coli 0.512 0.106 2 0.932 0.040
πS.cerevisiae 0.608 0.111 1 0.887 0.059
πE.coli 0.524 0.107 2 0.931 0.041

Statistical parameters were defined inTable 3.

not important. Capacity factors, and to lesser extent low en-
ergy DRY integy moments and hydrophilic–lipophilic bal-
ance are inversely correlated with partitioning. This means
that when less polar groups are attached to the 4-position
of the hydrazide aryl ring (Fig. 2), logPTA values increases,
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Fig. 6. PLS plot derived from VolSurf descriptors for partitioning data.

hence they tend to be more lipophilic. The most hydrophilic
compound 2 (p-NO2) has a high positive capacity factor,
whereas the least one (compound 7,p-C5H11) has a high
negative capacity factor. Size and molecular shape descrip-
tors, water integy moments along with DRY hydrophobic
regions and high-energy DRY integy moments are positively
correlated with logPTA. It can be seen that compound 2 has a
lower positive integy moment (0.00 at−6.0 kcal mol−1) than
compound 7, which is 1.51 at the same interaction energy
level. Overall, the highly hydrated cell surface (Taylor–Aris
partitioning) may account for the balance of all molecu-
lar properties responsible for hydrazide antimicrobials parti-
tioning to within the cell system. Similar results were found
when logPE.coli values were used as dependent variable and
the same analyses could be drawn from them all.

5. Conclusions

Statistically significant 3D QSAR models were devel-
oped based on biological calorimetry. The GRID/Almond
and GRID/VolSurf proved to be useful methods leading
to insights into the antimicrobial hydrazide properties, and
Taylor–Aris partitioning through 3D molecular structures,
respectively. LogPTA and biological calorimetric potencies
can thus be used in QSAR and QSPR studies. In the dataset
employed, it is worth to note that the bulk of the structural
diversity lies in the nature of the substituent linked to the
4-position of the aryl ring. A more nearly suitable data set
for statistical modeling would require more structural diver-
sity and a larger number of compounds.

Biological calorimetry can be applied to the screening
of a variety of chemicals, and for sensitive differentiation

between related compounds, thereby generating a good and
reliable quantitative biological descriptor. Finally, it maybe
envisioned that many cell systems could be automated in
order to allow an array of “well-measured” and reliable
biological data that should be very useful in drug design,
high-throughput screening (HTS), and QSAR studies.
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