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Analysis of the area of material really tested by TMA
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Abstract

Deformation distribution within the specimen beneath the thermomechanical analysis (TMA) probe, found by using the finite element
method (FEM), depends mainly on penetration depth, specimen thickness and diameter as well as on radius of the probe tip when the
Poisson’s ratio influences it just slightly. For standard radius of the tipRo = 1 mm, most deformation is distributed in a material layer up to
0.5 mm thick independently on elastic modulus of a polymer at a glassy state. It is caused by the fact that maximal penetration depth for the
polymers usually equals to about 0.05 mm. Because of this, the contact surface area is less than 0.17 mm2 for the standard radius of the tip. This
evidences that predominantly the specimen volume equal to 0.5 mm× 0.17 mm2 (depth× area) is tested by the TMA at compression mode.
For Ro = 5 mm is tested the layer 2.5 mm thick. This makes possible to evaluate the material properties in the zone of different thickness
depending on radius of the tip.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The thermomechanical analysis (TMA) is based on mea-
surements of the specimen’s deformation under very low
load at scanned temperature giving the thermomechanical
curve (TMC) [1–4]. It allows the evaluation of the glass
transition temperature[5–7], which is higher than that de-
termined by positron annihilation spectroscopy (PALS)[8]
and DSC[9], but a little lower than that determined by DMA
[9]. In many cases, transition temperatures from TMA suit
well to those found by other techniques[10]. In addition,
the thermal expansion coefficient[9,11–13], the softening
temperature[14] and, according to some scientists, both the
crosslinking degree (based on equilibrium elastic modulus)
[15,16], and the average number of degrees of freedom of
polymer segments between crosslinks[17] could be eval-
uated by TMA. Thermomechanical contribution, which is
due to a variable physical contact area for a probe tip, is
dominant in the microthermal response of polymers[18]. It
means that TMA is commonly used till now in the polymer
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processing industry in spite of some limitations[19,20],
which are also related with the loading conditions[21] and
some uncertainty of the area of materials really tested.

The TMC could be approximated as lines with several
breaks separating the apparently linear segments with var-
ied slopes, what informs about an existence of material
regions with different thermal expansion properties. It is
assumed that they have very complex structures, includ-
ing higher-level arrangement than molecular one. From this
curve, it is possible to evaluate the transition temperatures.
Morphology with two or three amorphous regions, most
likely interpenetrating, and more ordered portion for the
studied polymers has been found by using a novel ver-
sion of TMA [22]. These regions are not divided in space;
they represent several types of interactions, which coexist
in polymers. They differ in the transition temperatures up
to 200◦C and related interaction energies equal tokT (k is
Boltzmann’s constant andT is temperature) as well as com-
pactness, what should influence the distribution of additives
within the polymer matrix.

In order to evaluate the equilibrium elastic modulusE∞,
and to locate the plateau of high-elasticity as accurate as pos-
sible by using the TMA device, the measuring of specimen’s
thermal expansion at compression mode has to be done at
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Fig. 1. Schematic illustration of the TMA testing device: 1, probe hemi-
spherical tip; 2, specimen; 3, base.

low load. The deformation should be kept within the range
of polymer elasticity. This deformation should not exceed
5% of the radius of a probe with a hemispherical tip, usu-
ally Ro = 1 mm (Fig. 1); it is measured with accuracy of
5 nm [23]. Usually, the probe of 2 mm in diameter is made
of quartz—the material with much higher elastic modulus
and very low coefficient of thermal expansion when com-
pared to the tested specimen. The contact surface area be-
tween the probe and the specimen varies from almost point
(at a glassy state) up to approximately 0.17 mm2 (at rubbery
or visco-elastic states). It means that the information about
polymer properties on this varied area is averaged. Simul-
taneously, for the thinnest PS film with clearly detectable
response (25 nm), the glass transition temperature is 20◦C
below its bulk value[24] what suggests some differences
to appear in a structure of successive material layers. This
fact evidences that it is very important to know how thick
polymer layer is really tested by TMA.

Cubic or cylindrical specimens of 1.2–5 mm in height and
1–5 mm in width or diameter (preferably 1.5 and 2 mm, re-
spectively) are used for measurements at compression mode.
These specimens are moulded or cut from the plates of the
polymeric material. Surfaces contacting the base of the ther-
mostatic chamber of the instrument and a measuring probe
should be parallel each other.

The TMA methodology is based on a simplified model
of polymer network with physical junctions and/or chem-
ical crosslinks. Polymers are tested in solid state and
visco-elastic state, what is described in detail elsewhere
[22,23,25]. This methodology reduces most of limitations
of generally used previous version[1–4], but it is not proved
sufficiently till now. Because of this, the aim of current
work is to make some progress in this area.

The thickness of really tested polymer layer determines
also the characteristics of molecular and topological struc-
tures evaluated by the novel version of TMA[22]. To date,
however, we did not found any reliable information about
its evaluation. Finding it is a fundamental problem because
for semi-crystalline materials and filled composites, the

structure of successive layers of the specimen varies depend-
ing on their location toward outer surface, and it depends
on conditions of the specimen manufacturing.

Some researches believe that TMA evaluates the av-
eraged characteristics of the all specimen[22,23]. Other
supposes that only a skin layer of the specimen is tested.
Basing on continuous mechanics, it is expected that distri-
bution of deformation when the TMA probe contacts the
specimen depends on physical properties of the material,
especially on its elastic modulus, the Poisson’s ratio, and
spectrum of relaxation times. In order to determine the
thickness of polymer layer really tested both Hertz equation
and, next, computer simulation based on the finite element
method (FEM) has been used and the results are described
below.

2. Numerical experiments

2.1. Materials and loading conditions

Elastic modulus for polymeric materials usually varies
from 2 MPa (in a high-elastic state) to 3000 MPa (in a glassy
state), and the Poisson’s ratio varies from 0.3 to 0.5. Also, in
the calculations it was accepted that the size of cylindrical
specimens was assumed to be 1 or 3 mm in height and 3 or
5 mm in diameter, respectively. The measuring probe should
compress the specimen along their common axis. The radius
of the probe tip used in the calculations was equal to 1
(standard), 2 or 5 mm, respectively.

2.2. Methodology

To calculate elastic modulusE based on penetration depth
H of the TMA probe, Hertz equation has been used[25–28]:

E = 3(1− ν2)P

4R
1/2
o H3/2

(1)

whereν is the Poisson’s ratio;P, the load; andRo is the
radius of the hemispherical tip of the probe.

In order to determine the distribution of local defor-
mation in the specimen beneath the probe, the FEM[28]
has been applied. This numerical method is often used
for the approximate solution of complex engineering and
scientific problems. The basic idea of the method is to
find a solution of a complicated problem by replacing it
by a simpler one. The region of solution is considered as
built up of many small, interconnected sub-regions called
finite elements. In each element, a convenient approximate
solution is assumed and the conditions of overall equilib-
rium of the structure are derived. The satisfaction of these
conditions will yield an approximate solution for the de-
formation and stresses. Moreover, FEM analysis provides
a very controlled manner of evaluating the force–distance
response for various types of hard/soft domain/matrix com-
binations. Also, various geometries of probe tip can be
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Fig. 2. Deformation of the specimen beneath the quartz probe tip with
radiusRo = 1 mm, probe displacement 0.05 mm, elastic modulus of the
probe 94,000 MPa, elastic modulus of the specimen 360 MPa.

evaluated, except for the case of an infinitely sharp inden-
ter; the resulting point contact loading causes numerical
instabilities in the finite element solution. In the consid-
ered contact problem (seeFig. 1), quadrilateral and axially
symmetrical finite elements have been used because of
axial symmetry of the problem. The finite elements in
the specimen are squares with the side equal to 0.01 mm,
and the probe was meshed by the quadrilaterals shaped
very close to square in the region of maximal stresses.
A non-linear and iterative method with using the specific
contact (gap) elements, because the discussed problem is
non-linear one, has been applied. The contact area of the
two bodies being in touch also varies when the applied
external load is changed. Thus, the gap elements do not
allow for the mutual penetration of the meshes of the two
bodies. The gap elements transmit the loads between the
probe and the specimen. InFig. 2, a sectional view of de-
formed finite element mesh at the contact surface of the
probe and the specimen is presented. Because the con-
tact surface of the probe deflects a little, the real probe
displacement is greater than that for a case of a rigid
probe.
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Fig. 3. Dependency of radius of the contact surface between the probe tip of the TMA device and the specimen for varied both elastic modulus and the
Poisson’s ratio.

3. Results

3.1. Influence of elastic modulus and Poisson’s ratio on
penetration depth

To calculate radiusa of a contact surface beneath a probe
of the TMA device and a polymer specimen Hertz equation
for elastic semi-space was used. The probe has a hemispher-
ical tip with radius 1 mm. InFig. 3, the radius of the con-
tact surface was expressed as a relative value; it means it is
divided by its magnitude obtained forE = 1 MPa,ν = 0.
This makes that the vertical variable in the diagram is di-
mensionless and the results are independent of units. The
maximal displacement of the probe equals to 0.05 mm. It is
seen that the changes in a relative radius of a contact sur-
face are substantial only for elastic modulus below 1 GPa.
For higher elastic modulus value, what is typical for rigid
or highly filled polymers in a glassy state, this radius de-
creases; the ratio of such variation tends to zero for infinite
value of elastic modulus. Such displacement and low mag-
nitude of elastic modulus are usually observed at the end of
high-elastic deformation of the specimen at the TMA test
at compression mode. Simultaneously, one should remem-
ber that relaxation properties of the tested materials are not
taken into account in well known Hertz solution of a contact
problem.

The Poisson’s ratio changing within the interval between
0 and 0.5 influences slightly (Fig. 3) the radius of a contact
surface of the probe tip and the specimen. It evidences that
for the Poisson’s ratio between 0.3 and 0.5 (usually observed
interval), and elastic modulus in the characteristic range for
polymeric materials, there is no reason to take into account
the influence of such changes on deformation distribution
within the specimens tested. These calculations have been
performed using Hertz solution of a contact problem with
the assumption that the thickness of material layer deformed
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Fig. 4. Dependency of the depth beneath the centre of symmetry of
a contact surface of the probe tip and specimen at which verticalσz,
horizontalσx, and effectiveσeff stresses are reduced to 10% of maximal
magnitude ofσz on the Poisson’s ratio.

by the hemispherical tip is infinitely large. However, this
condition is not fulfilled for the TMA test. Because of this,
some error of evaluation was introduced. In order to reduce
it and to make analysis deeper, it is needed to apply the
other methods, i.e. the FEM as it is presented in all Sections
below.

3.2. Influence of Poisson’s ratio on local stress distribution

In second simulation, it has been assumed that both
thickness and diameter of the specimen are infinitely large.
Radius of the probe tipRo was chosen to be 1 mm. From
calculations, it has been found (Fig. 4) that local verticalσz

and effectiveσeff stresses, in rubbers and engineering plas-
tics, beneath the contact area of the probe tip are reduced
up to 10% of maximal magnitude of vertical stressσz at the
distancez equal to about 3a. This depth is directly propor-
tional to radiusa of a loaded surface. Horizontal stressσx

reaches this magnitude on the depth within 0.4 and 0.8 of the
radius of the contact surface. The results are low dependent
on the Poisson’s ratio and independent on elastic modulus.

3.3. Influence of thickness and diameter of the specimen
on local deformation

In third simulation, it was assumed that radiusRo of a
hemispherical probe tip equals to 1 mm and diameterd of
the cylindrical specimen varies between 3 and 5 mm. Simul-
taneously, thicknessh of the specimen equals to 1 or 3 mm,
respectively.Fig. 5shows the curves, inside which the local
stresses are greater than 10% of their maximal magnitude. It
is concluded from this Figure that the thickness of material
layer, in which local stresses have reached the level below
10% of their maximal value at contact, is low dependent on
both the thickness of the specimen varied between 1 and
3 mm and on diameter of the specimen, when it is greater
than 3 mm. It evidences the fact that Hertz solution of a con-
tact problem is close to calculations based on the FEM for
the thickness of the specimen greater than 1 mm. So, we can
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Fig. 5. Dependency of the zone in which local stresses are >10% of max-
imal stresses during TMA test on the size of specimen tested, calculated
for E = 360 MPa,ν= 0.3, andRo = 1 mm; (—) specimen Ø3× 1 mm
and (- - -) specimen Ø5× 3 mm.

conclude that there is no need to test the specimens with the
thickness larger than 1 mm.

3.4. Influence of radius of the probe tip on local
deformation distribution

Radius of the hemispherical probe tip should influence
the distribution of stresses on the contact surface with the
specimen. Usually, this radius equals to 1 mm. It is expected
that varying this radius we can change the form of stress and
deformation distribution within the contact area. From the
results of fourth computer simulations withE = 360 MPa
andν = 0.3 (Fig. 6) it is concluded that the change of radius
of the probe tip fromRo = 1 mm (a usual case) toRo =
5 mm causes that the deformation zone increases substan-
tially. In Fig. 6, the curves, inside which the local stresses
are greater than 10% of their maximal magnitude are pre-
sented. This fact that the deformation zone increases sub-
stantially makes possible to evaluate the material properties
in the zone of greater thickness. For instance, in a case of
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Fig. 6. Dependency of the zone of specimen 1 mm thick in which local
stresses are >10% of maximal stresses during TMA test on the radiusRo

of the hemispherical probe tip calculated forE = 360 MPa,ν = 0.3, (—)
Ro = 1 mm, (- - -) Ro = 2 mm, (-·-·-) Ro = 5 mm.
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Fig. 7. Dependency of the penetration depth of the probe during TMA test on the location of the material layer with doubled elastic modulus in
comparison with a surface layer calculated forE = 360 MPa,ν= 0.3, andRo = 1 mm.

Ro = 1 mm, a layer of 0.5 mm thick is really tested, whereas
for Ro = 5 mm such a layer is about 2.5 mm thick. The
discussion above, concerns the homogeneous materials. For
sandwich-like materials, which layers differ in elastic mod-
ulus (very common case), the conclusions may be different.

3.5. Influence of a gradient of elastic modulus on
penetration depth

In fifth simulation, it was assumed that radius of the probe
tip equals toRo = 1 mm, the specimen is 1 mm thick and it
consists of 10 layers of 0.1 mm thickness each. Calculations
were performed under the assumption that one layer located
in different distance from the surface has elastic modulus
twice larger than other layers. Constituency of the tested
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Fig. 8. Relation between the penetration depthH of the probe and applied forceP for two-ply specimen.Eupper layer= 360 MPa,Elower layer = 720 MPa,
ν = 0.3, Ro = 1 mm.

material (Fig. 7) up to 0.5 mm of specimen thickness (about
two radii of the probe tip) expresses the fact that the location
of more rigid layer substantially influences the penetration
depth of the probe. Simultaneously, location of such rigid
layer between 0.5 and 1.0 mm from the loaded surface of
the sandwich-like specimen less influences the penetration
of the probe when compared with a case of homogenous
material. It means that the TMA is sensitive to differences
in elastic properties of the material if tested in a layer up to
0.5 mm thick only.

Next, a two-ply specimen has been analysed where the
elastic modulus of the lower layer is twice as large as that
for the upper one in contrast to the previous discrete results
presented inFig. 7. Here, a non-linear numerical simulation,
using the FEM has been performed, basing on the modified
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Fig. 9. Results of computer simulation by the finite element method aiming the determination of the exponent at the penetration depthH in order to get
a linear relation betweenH and P; case A, a single layer specimen; case B, whenh = 0.6 mm, and case C, whenh = 0.8 mm.

Newton–Raphson procedure (40 steps of increment of load
control parameter).Fig. 8 shows a relation between pene-
tration depthH of the probe and the applied axial loadP
at different thickness of the lower layer. The curve A (h=
0.0 mm) corresponds to the presentation given inFig. 1. As
one can see, the sub-dividing of the specimen into two lay-
ers, where lower one has higher elastic modulus, results in
a greater total rigidity of the specimen. The deformation de-
veloped by the same load is less then that of a single-layer
specimen. The greater thicknessh of lower layer the higher
is rigidity of the specimen.

The objective of a final investigation is analytical (by
Hertz method) and numerical (by the FEM) evaluation of
the relation between penetration depthH of the probe and
the applied loadP. The rearrangement of formula (1) gives

Hn = 3(1− ν2)P

4R
1/2
o E

, n = 3

2
(2)

It is obvious that the relation between penetration depthH
and forceP is non-linear one. Now the problem is: what
should be the value of the exponent atH in order to get a lin-
ear relation betweenHn andP. This exponent (denotedn) is
a measure of the differences between the analytical solution
by Hertz method (infinite elastic half-space) and numerical
solution by the FEM, where the considered specimen has
a limited size.Fig. 9 presents the same results as just dis-
cussed inFig. 8, but now the vertical axis isHn (it was H
in Fig. 8). Exponentn has been evaluated under condition
that the correlation coefficient betweenHn andP should be
not less than 0.9999. In this case, the curves inFig. 9 are
linearized. The following results have been obtained:n =
1.591 (case A, a single layer specimen),n = 1.662 (case
B, whenh = 0.6 mm), andn = 1.685 (case C, whenh =

0.8 mm). It means that the higher is coefficientn the higher
is the gradient of elastic modulus along the depth of the
specimen. Coefficientn for case A is greater thann = 1.5
in Hertz formula. This can be justified by the influence of
the boundary conditions at the model outer surfaces, which
otherwise, does not exist in Hertz solution. Then exponent
is much greater for cases B and C then that for case A, what
could result from the actual structure of the tested material.

4. Conclusions

Application of the FEM models with the considered ge-
ometries show that it is not possible for TMA testing to
resolve features smaller than the radius of the tip by force
imaging. The analyses show that when such a domain of
specimen size is large enough to be resolved, its effect is
limited to a region surrounding the domain. These analy-
ses define limitations on the depth and lateral distance away
from the point of indentation at which such domains can be
detected by the method.

The zone of deformation distribution beneath the TMA
probe tip contacting the specimen depends substantially on
elastic modulus of the tested material and only a little on
Poisson’s ratio. It has been calculated that most of defor-
mation is localized within a layer of material with thickness
equal up to two radii of the contact surface area. It means that
in the beginning of TMA test at compression mode, when
the elastic modulus is high (low temperature), the layer of
the tested material is very thin, and with temperature rise it
gets thicker up to 0.5 mm when a polymer is in a high-elastic
state. It has been accepted that maximal penetration depth
for all tested materials equals to about 0.05 mm. Because of
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this, the contact surface area is less than 0.17 mm2 for the
standard radius of the probe. However, the area is propor-
tional to the radiusRo of the probe tip for greater radii at
constant penetration depth. The influence of specimen thick-
ness and diameter on the deformation distribution is small.

For Ro = 5 mm the deformation zone increases substan-
tially in comparison with the case ofRo = 1 mm. This makes
possible to evaluate the material properties in the zone of
greater thickness when using greater radius of the tip.

References

[1] B. Wunderlich, Thermal Analysis, Academic Press, New York, New
Jersey, 1990.

[2] T. Hatakeyama, F.X. Quin, Thermal Analysis, Wiley, Chichester, UK,
1994.

[3] B.Y. Teitelbaum, Thermomechanical Analysis of Polymers (in Rus-
sian), Moscow Nauka Publishers, 1979.

[4] D.M. Price, M. Reading, T.J. Levar, J. Thermal Anal. Calorimetry
56 (2) (1999) 673–679.

[5] D.Y. Tang, W.M. Qin, W.M. Cai, L. Zhao, Mater. Chem. Phys. 82 (1)
(2003) 73–77.

[6] K. Kurschnar, P. Strokriegl, P. Van de Vitte, Lub. J. Mol. Crystals
352 (2000) 735–744.

[7] J.W. Schultz, R.T. Pogue, R.P. Chartoff, J.S. Ullett, J. Thermal Anal.
49 (1) (1997) 155–160.

[8] T. Suzuki, T. Hayashi, Y. Ito, Mater. Res. Innovations 4 (5–6) (2001)
273–277.

[9] C.S. Wang, T.S. Leu, Polymer 41 (10) (2000) 3581–3591.

[10] W. Brostow, E.A. Faitelson, M.G. Kamensky, V.P. Korkhov, Y.P.
Rodin, Polymer 40 (6) (1999) 1441–1449.

[11] T.S. Leu, C.S. Wang, Polymer 43 (25) (2002) 7069–7074.
[12] B. Nandau, K.N. Pandey, G.D. Pandey, A. Singh, L.D. Kandpal,

G.N. Mathur, J. Thermal Anal. 64 (2) (2001) 529–537.
[13] H. Tang, X.G. Chen, Y.X. Luo, Eur. Polym. J. 33 (8) (1997) 1383–

1386.
[14] S.H. Hsiao, C.T. Li, J. Polym. Sci. Polym. Chem. 37 (10) (1999)

1435–1442.
[15] C. Konetschny, D. Galusek, S. Reschke, C. Fasel, R. Riedel, J. Eur.

Ceram. Soc. 9 (16) (1999) 2789–2796.
[16] Y.I. Matusevich, A.P. Polikarpov, L.P. Krul, High-Energy Chem.

33 (4) (1999) 224–228.
[17] A. Pizzi, R. Garcia, S. Wang, J. Appl. Polym. Sci. 66 (2) (1997)

255–266.
[18] V.V. Tsukruk, V.V. Gorbunov, N. Fuchigarni, Thermochim. Acta

395 (1–2) (2003) 151–158.
[19] R. Garcia, A. Pizzi, J. Appl. Polym. Sci. 70 (6) (1998) 1093–1109.
[20] R. Garcia, A. Pizzi, J. Appl. Polym. Sci. 70 (6) (1998) 1111–1119.
[21] K. Nakamura, E. Kinoshita, T. Hatakeyama, H. Hatakeyama, Ther-

mochim. Acta 352 (2000) 171–176.
[22] B. Jurkowska, Y.A. Olkhov, B. Jurkowski, J. Appl. Polym. Sci. 74 (3)

(1999) 490.
[23] Y.A. Olkhov, V.I. Irzhak, S.M. Baturin, RU Patent 2023255 (1989).
[24] V.V. Gorbunov, N. Fuchigarni, V.V. Tsukruk, High Perform. Polym.

12 (2000) 1–8.
[25] Y.A. Olkhov, B. Jurkowski, B. Jurkowska, Eur. Polymer J., in prepa-

ration.
[26] J.M. Gere, S.P. Timoshenko, Mechanics of Materials, second ed.,

PWS-Kent Pub. Company, Boston, 1994.
[27] J.M. Barton, Anal. Proc. 8 (10) (1981) 411.
[28] S.S. Rao, The Finite Element Method in Engineering, Pergamon

Press, New York, 1989.


	Analysis of the area of material really tested by TMA
	Introduction
	Numerical experiments
	Materials and loading conditions
	Methodology

	Results
	Influence of elastic modulus and Poisson's ratio on penetration depth
	Influence of Poisson's ratio on local stress distribution
	Influence of thickness and diameter of the specimen on local deformation
	Influence of radius of the probe tip on local deformation distribution
	Influence of a gradient of elastic modulus on penetration depth

	Conclusions
	References


