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Reliable determination of freeze-concentration using DSC
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Abstract

The objective of this study was to determine the feature of a DSC endotherm that can be most reliably used to determine the composition
of a freeze-concentrate. Samples (3–10 mg) of sucrose in water (0–60%, w/v) were frozen and then heated (at 0.2–2.0◦C/min) on a DSC. The
peak (Tpeak) and offset (Toffset) temperatures were obtained from the melt endotherms. A freezing point osmometer was also used to determine
the freezing point depression of sucrose solutions. Two theoretical models were developed, one that describes melting in a one-component
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ystem (ice) with a heterogeneous temperature distribution, and a second model, which describes melting in a binary system (suc
ith a homogeneous temperature distribution. Modeling Laboratory (MLAB) was used to simulate melt endotherms using the two
ray’s theory for analysis of dynamic thermal measurement (1968), the end of the melting occurs at the peak of the endotherm fo
uch sharper recovery to the baseline than that observed experimentally. Our theoretical model for one- and two-component syste

hat the melting continues beyond the peak resulting in a delayed recovery to the baseline as experimentally observed. Both e
nd simulatedTpeak andToffset (also defined as the return to the baseline after completion of the peak) increased with an increasing
xtrapolation of the experimentalToffset to a zero scan rate yielded a value of the equilibrium melting temperature,Tm, which is closer to
ccepted literature values and osmometry data than did the extrapolation ofTpeak. NeitherTpeak norToffset reliably (at a finite scan rate) defi

he multicomponent freezing point. Rather, an extrapolation ofToffset to a zero scan rate gives the most reliable measure of freezing poin
SC. Simulation of DSC endotherms supports this conclusion and also exhibits the same trends as observed from experiment.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Freeze-drying is the process of choice to stabilize many
arenteral antibiotics, peptides and proteins[1]. Ice forma-

ion during the freezing step in a freeze-drying process results
n the increase in concentration of the dissolved solutes. This
rocess, known as freeze-concentration, may lead to changes

n pH, aggregation, phase separation, and other destabi-
izing processes[2]. To better understand the destabilizing

echanisms that occur during freeze-concentration, the
omposition of the freeze-concentrate must be well-defined
t all relevant temperatures. The composition of the freeze-

∗ Corresponding author. Tel.: +1 860 486 2136; fax: +1 860 486 4998.
E-mail address:robin.bogner@uconn.edu (R.H. Bogner).

concentrate for a formulation can be calculated from
equilibrium liquidus curve of the phase diagram if kno
To resolve the effect of pure freeze-concentration on sta
of frozen protein or antibiotic solutions, one can study
isothermal degradation kinetics of unfrozen formulation
a concentration same as that of the freeze-concentrate
fined by the liquidus curve. Thus, an accurate determin
of the freeze-concentrate has significant implications in
study of the stability of frozen proteins and antibiotics du
freeze-drying.

Glucose, sucrose, trehalose, and other sugars are w
used as bulking agents and stabilizers in lyophilized
mulations. The universal quasi-chemical (UNIQUAC)[3]
and universal functional activity coefficient (UNIFAC)[4]
models have been utilized to predict freezing points of bi

040-6031/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2004.06.017
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Nomenclature

dh/dt heat generated by the sample during melting
�h0 heat of fusion of ice present in the DSC sample
�Hf heat of fusion of ice per gram
(dQ/dt)r heat flow to the reference during melting
(dQ/dt)s heat flow to the sample during melting
dTr/dt scan rate or heating rate,S
dTs/dt rate of change of sample temperature with time
�Tf freezing point depression
�Tmelt difference betweenToffset andTonset for pure

water
a1 coefficient 1 for the binary system inEq. (17)

and is used in fitting of the model to describe
DSC data

a2 coefficient 2 for the binary system inEq. (17)
and is used in fitting of the model to describe
DSC data

A00 parameter in evaluation of area,A(z)
A01 parameter in evaluation of area,A(z)
A(z) area of the ice:water interface in the HTD

model
C constant inz(m) empirical equation
C2 constant inz(m) empirical equation
Cice heat capacity of ice
C̄l

p specific heat of water
Cr heat capacity of the reference pan
Cs sample heat capacity (includes heat capacity of

the sample pan)
Cw(m) effective heat capacity of water
C0

w initial value ofCw
h height of ice sample in sample pan assuming a

cylindrical geometry in the HTD model
H̄0

1 partial molal enthalpy of water before dilution
of the freeze-concentrate

H̄1(m′) partial molal enthalpy of water after dilution of
the freeze-concentrate where the new compo-
sition of the freeze-concentrate ism′

k thermal conductivity of water
Kf cryoscopic constant
m0 mass of the ice sample in the HTD model
m mass of water
monset molality of the maximal freeze-concentrate
msolution molality of a solution inEq. (2)
n1 number of moles of solvent (water)
n2 number of moles of solute
nm number of moles of water in the freeze-

concentrate following dilution
r radius of ice sample in sample pan assuming a

cylindrical geometry in the HTD model

R thermal resistance and is same as total thermal
resistance,RT which is a sum ofR0 andRs(m)
used in the one-component model

R0 thermal resistance across the DSC:aluminum
pan interface

Rs(m) sample thermal resistance
S scan rate (heating rate)
Tf furnace temperature
Tl mean temperature of water inEq. (24)
Tmelt temperature of melt end =Tonset+ St
Tr reference pan temperature
Tr0 reference pan temperature at time zero, i.e.,

start of the scan
Ts sample pan temperature
T0 freezing point of pure water
Tm freezing point of a solution of molality (m)
Tonset onset melting temperature in a two-

(or a multi-) component system
Tz ice temperature
X̄0

2 mole fraction in the freeze-concentrate before
the onset of melting in the incorporation of the
heat of dilution effect inEq. (14)

X̄F
2 mole fraction in the freeze-concentrate after all

ice is melted in the incorporation of the heat of
dilution effect inEq. (14)

z thickness of the water layer surrounding ice in
Fig. 1

Zs(m) derivative ofRs with respect tom, dRs/dm

sugar–water systems. Another model based on solute/solvent
interaction corrections was used to account for non-ideal
freezing point depression and extend freezing point depres-
sion theory to the high concentration range[5]. Even though
such models are useful for defining the liquidus curve of
simple carbohydrate–water systems, they are less useful for
studying pharmaceutical systems, which are compositionally
more complex.

Prior to the development of calorimetric techniques, the
liquidus curve was constructed by careful visual observation
of the end of melting[6]. Such measurements were often very
slow and tedious. The freezing point depression for aque-
ous solutions of carbohydrates and/or other solutes reported
in the widely used International Critical Tables are based
on such traditional measurements performed in the late 19th
and early 20th centuries[7–9], and are cited routinely in the
thermal literature even today[10]. With the development of
other methods such as osmometry, refractometry[11], DTA
[12–14], and DSC[15,16], freezing point determination has
become easier and faster.

Today DSC has, in fact, become the method of choice
for the determination of freezing point depression and for
the construction of the liquidus curve of the phase diagram
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[15–19]. Blond et al. used the peak temperature to define
the melting temperature[16]. Ablett et al. [15] and Wang
and Haymet[17] determined the peak temperature at several
heating rates and extrapolated the peak temperature to a zero
heating rate. Tan and Man determined the offset (also defined
as the return to the baseline) after melting at several heating
rates and extrapolated the offset temperature to zero heating
rate to distinguish between vegetable oil products[19]. None
of the authors justified the use ofTpeakor Toffset, nor the ex-
trapolation to a zero heating rate as the accurate marker for
the end of melting. For the purposes of constructing an accu-
rate phase diagram from which one can calculate a reliable
value for freeze-concentration, the true end of melting must
be clearly defined. The determination of the concentration of
the maximal freeze-concentrate,C′

g, and its glass transition
temperature,Tg

′, have been the focus of several published
reports[15,20–23]. In contrast, the focus of our work is to
characterize the equilibrium freeze-concentrate well above
theTg

′ where the glass:crystalline interface is not a compli-
cating factor.

Several attempts have been made to better understand
and define the features of the DSC peak in a melt endotherm
[24–27]. Work on melting in one-component systems has
been largely based upon the model proposed by Gray[28].
Gray’s theory for melting in a DSC assumes uniform melting
and therefore, homogeneous sample temperature throughou
the melting process. An important result of this model is
that melting is completed at the peak followed by an almost
instantaneous recovery to the baseline, a phenomenon tha
is not observed experimentally. Popa and Segal analyzed
the DSC melt endotherms of pure ice using functions tra-
ditionally employed in spectroscopic and chromatographic
signal processing to describe peak broadening and shape
differences due to varying heating rate and sample mass
[24]. Their results document a peak broadening and shift
in Tpeak with both increasing heating rate (1–5◦C/min) and
increasing sample mass (1.8–10.8 mg). While their treatment
is somewhat empirical, the authors convincingly discuss
the analogy of increasing sample mass in a DSC sample
pan to sample load on a chromatographic column. Thermal
lag is identified as the cause for both peak broadening and
shift.

Wang and Harrison explored the effect of thermal lag by
mixing polyethylene with indium to increase the thermal lag
during the melting of indium, which resulted in peak broad-
ening and peak shift[25,27]. These results again implicate
the thermal lag as a key determinant of peak shape that was
missing from Gray’s original theory. Further, Wang and Har-
rison modeled the thermal lag by treating the sample as a
series of shells, each with a resistance and heat capacity tha
varied linearly with distance from the sample surface to it’s
interior[26]. The simulated melt endotherms were generated
by summation of the melting of successive shells each mod-
eled using Gray’s theory. The simulated endotherms were
similar in peak shape and temperature to the experimentally
generated melting curve. Each of these studies attempted to

quantify the effect of the thermal lag on the peak temperature
and peak shape. However, none have attempted to determine
the relationship of the peak temperature or other endotherm
feature to the true end of melting, the feature needed to define
a freeze-concentrate.

The objectives of the present study were to model the ef-
fect of a solute on the DSC endotherm and to model melting
of a one-component system in a DSC pan without Gray’s
simplifying assumption of a homogeneous temperature. An
attempt was made to identify the feature of the DSC thermo-
gram that best correlates with the end of the melt and use that
feature to construct a phase diagram for sucrose in water to
define the composition of the freeze-concentrate.

2. Experimental

Crystalline sucrose of analytical grade was used as
received (Lot #98H03291) (Sigma Chemical Co., St. Louis,
MO, USA). Distilled, deionized water was used for prepara-
tion of sucrose solutions. A differential scanning calorimeter
(2920 Modulated DSC, TA Instruments, New Castle, DE,
USA) in the standard mode and equipped with a refrigerated
cooling system (TA Instruments, New Castle, DE, USA)
was employed for this study. A Universal Analysis Program
( sed
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Version 1.11A, TA Instruments, New Castle, DE) was u
or monitoring and processing heat flow-temperature cu
luminum sample pans (TA Instruments, New Castle,
SA) were used for holding the sample during the D

uns. Prior to use in the experiment, the aluminum p
ere cleaned with methanol and sonicated in methy
hloride for 15 min to remove coatings, if any, on
ans and air dried. Using this procedure, it was ea

o spread the sample solution evenly on the pan su
s a thin film and ensure a good thermal contact

he pan.
Solutions of sucrose in water (10–60%, w/v) were

ared at room temperature. Samples (3–10 mg) were
erred to aluminum DSC pans using a 25�L microsyringe
nd spread as a film using tweezers, and sealed he
ally. Nitrogen gas (flow rate, 50 mL/min) was used for
ell purge, and helium (flow rate, 150 mL/min) was used
he refrigerated cooling system. The DSC was calibrate
◦C/min using indium and water as standards. All sam
ere cooled to−50◦C at a rate of 5◦C/min and heated
rogrammed rates (0.2–2.0◦C/min). In addition, a freezin
oint osmometer (3MO Plus Advanced Micro-Osmome
dvanced Instruments, Inc., Norwood, MA, USA) was u

o determine the freezing point depression of sucrose
ions.

MLAB software (Modeling Laboratory, Civilized Sof
are, Bethesda, MD, USA) was used to simulate endoth
ccording to the models developed below. Comparisons
imulations with the experimental thermograms were us
dentify the endotherm feature that best represents the e

elting.
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3. Theory

3.1. Extension of Gray’s theory to multicomponent
systems

Based on the principle of operation of a heat flux DSC,
Gray [28] developed an expression for the DSC power re-
quired during melting of a sample,

dh

dt
= Ts − Tr

R
+ (Cs − Cr)

dTr

dt
+ Cs

d(Ts − Tr)

dt
(1)

where dh/dtis the heat generated by the sample during melt-
ing,R is the thermal resistance,Ts is the sample temperature,
Tr is the reference temperature,Cs is the heat capacity of the
sample,Cr is the heat capacity of the reference, and, dTr/dt
is the scan rate. The term (Ts − Tr)/R corresponds to DSC
power. Gray’s theory assumes that the sample temperature
remains constant and uniform during melting. However, in a
multicomponent system, the melting point increases as melt-
ing proceeds and lowers the solute concentration in the liquid.
The effect of the time dependence of the melting point on the
shape of the endotherm is evaluated here by modifying Gray’s
theory. In the initial development of the model, the heat of
dilution is assumed to be negligible.

We further assume that the ideal solution relationship is
v
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wheremonsetrepresents the molality of the maximal freeze-
concentrate, andTonset represents the onset of melting in a
two- (or a multi-) component system and is determined by the
freezing point depression of the freeze-concentrate. Assum-
ing that the freeze-concentrate contains 18% water[22,23],
the concentration of sucrose in the freeze-concentrate is cal-
culated to be 13.3m. UsingEq. (6)with Kf = 1.9, the value
of Tonsetwas determined to be approximately−25◦C.

The integral of dhover allt yields the total heat of fusion
of the ice present,�h0. Therefore,Eq. (1)is integrated and
rearranged to provide an equation,

�h0 = (Cs − Cr)Stmelt + Cs[(Ts − Tr)tmelt
− (Cs − Cr)t0]

+ 1

R

tmelt∫
t0

(Ts − Tr) dt (7)

whereS is the scan rate, dTr/dt.
In addition, equating (1) and (5) yields,

−dTs

dt
= (T0 − Ts)2

[K + Cs(T0 − Ts)2]

(
Ts − Tr

R
− CrS

)
(8)

Eqs. (7) and (8)are solved simultaneously to obtain the time,
tmelt, at which melting is complete in a two-component sys-
tem. The simulation involves an energy balance where the
T is the temperature at which the calculated�h fromEq.
( s
t
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Tf = T0 − Tm = Kfmsolution (2)

heremsolution= n2 × 1000/wis the molality of the solution
0 is the freezing point of pure water,Tm is the freezing
oint of a solution at a molality,msolution,Kf is the cryoscopi
onstant,n2 is the number of moles of solute, andw is the
ass of water. During melting, the sample temperature iEq.

1), Ts, is equal toTm in Eq. (2). The rate of change ofTm
or Ts) with time is described in terms of the rate of cha
f the mass of water,w, with time.

dTs

dt
= (T0 − Ts)

d ln w

dt
(3)

lso,

dh

dt
= −�Hf

dw

dt
(4)

here�Hf is the heat of fusion of ice.
Combination ofEqs. (2)–(4)yields,

dh

dt
= K

(T0 − Ts)2
dTs

dt
(5)

here

= �HfKfn2 × 1000

n the formulation of the model, it was assumed that the m
ng starts att = 0. The temperature corresponding tot = 0 is
onsetand is determined by

Tf = T0 − Tonset= Kfmonset (6)
melt 0
7)becomes equal to the known value of�h0, and determine
he end of melting. Further, numerical integration ofEq. (8)
s a function of time yields DSC power, (Ts − Tr)/R, versu

ime fromt0 to tmelt, the time at which melting is complet
Prior to the onset of melting and after the end of melt

h/dt= 0, and Eq. (1)becomes,

d(Ts − Tr)

dt
= −Ts − Tr

RCs
− S

(
1 − Cr

Cs

)
(9)

q. (9)is used to describe the time dependence of (Ts − Tr)
efore the onset of melting and after the end of melting

FromEqs. (8) and (9), the DSC power curves for fro
ucrose:water solutions can be obtained as a function of
ower curves as a function of temperature are obtained

he scan rate, which relates time,t, to temperature,T.

.1.1. Estimation of thermal resistance using pure wate
For a one-component system, the end of melting,tm, can

e obtained fromEq. (1)by integration of dh fromt = t0 to
= tm to obtain the value for heat of fusion,�h0, which can
lso be calculated from the knowledge of total mass o
nd�Hf (heat of fusion of ice). Knowing the scan rateS,

he temperature at which the last crystal of ice melts,Tmelt, is
btained using,Tmelt = Tonset+ St. The value of (Ts − Tr)0 is
equired in the integration ofEq. (1). At time zero, meltin
as not yet begun; therefore dh/dtand d(Ts − Tr)/dt in Eq.
1) are zero, which yields,

Ts − Tr)0 = −RS(Cs − Cr) (10)

he values ofS,Cs andCr are known. However, one mu
alibrate for thermal resistance,R, which is accomplished b
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analyzing melt data for pure water.Eq. (1)can be rewritten
for pure water whereTs = T0, and dTs/dt = 0. Integration of
the resulting equation from the onset of ice melt,t = t0 (or
Tonset= 0◦C), to the end of melting,t = tm (orTmelt) followed
by solving forRyields,

R = − �T 2
melt

2S(�h0 + Cs�Tmelt)
(11)

where�Tmelt is the difference betweenToffset andTonsetfor
pure water. Since the value ofRshould be the same for multi-
component systems as for pure water, the value ofR calcu-
lated fromEq. (11)was substituted inEqs. (7)–(9)to de-
termineTmelt and generate the DSC power curve for frozen
sucrose:water solutions.

3.1.2. Incorporation of the heat of dilution effect
In the preliminary development of the model, we assumed

that the contribution of the heat of dilution to the total heat
generation is negligible. The purpose of this subsection is
to develop equations to account for the effect of the heat of
dilution on the shape of the melt endotherm. We evaluate the
melting of ice to form water, which then dilutes the freeze-
concentrate. In this discussion,n1 andn2 represent moles of
water in the freeze-concentrate and the solute, respectively.
As stated earlier, heat generation occurs in two steps,
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mole fraction in the freeze-concentrate before the onset of
melting. Therefore,Eq. (14)becomes
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= �Hf +

(
XF

2

XF
1

) X0
2∫

XF
2

(H̄0
1 − H̄1(X2))

X2
2

dX2 (15)

where the notation “F” refers to the final state when all ice
is melted. RearrangingEq. (15), we defineY

Y =
(

X2

X1

)(
�Hf − �H

nm

)
=

X0
2∫

XF
2

(H̄0
1 − H̄1(X2))

X2
2

dX2

(16)

DifferentiatingYwith respect to dXF2 yields

dY

dXF
2

= − (H̄0
1 − H̄1(XF

2))

(XF
2)

2
(17)

From experimental DSC data for the heat of melting of
various frozen sucrose:water solutions,Y is evaluated as a
function ofXF

2 and numerically differentiated. That is,�H
is the area of the ice melt endotherm wherenm moles of ice
melt andXF

2 is the concentration of the final solution thus
formed. An empirical function
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1) melting of ice to form dn1 moles of water, where th
differential heat is,

dHmelt = �Hf dn1, and (12)

2) dilution of the freeze-concentrate by dn1 moles of wate
where the new composition of the freeze-concentra
m′. Using the Gibbs–Duhem equation, the differen
heat requirement is

dHdil = dn1(H̄1(m′) − H̄0
1) (13)

where H̄0
1 and H̄1(m′) represent the partial molal e

thalpies of the dn1 moles of water before and after t
dilution of the freeze-concentrate, respectively.

The total heat generated, dH, is the sum of dHmelt and
Hdil . Dividing dHby dn1 yields

dH

dn1
= �Hf + (H̄1(m′) − H̄0

1) (14)

he difference in partial molal enthalpies inEq. (14)can be
etermined from the total heat absorbed in melting a ser

rozen solutions at various solute concentrations as desc
elow.

Eq. (14) is integrated over the range of ice melt
etween the limits 0 andnm, where nm represents th
aximum number of moles of water generated by
elting in the freeze-concentrate following dilution. Furth

he concentration units are converted from molality, m
ole fraction,X noting that whennm = 0, X2 = X0

2, the
dY

dXF
2

= a1

(1 + a2X
F
2)

2
(18)

as found to give a good fit to the experimental data w
1 anda2 are coefficients determined by a fit ofEq. (18)to
he data.

The contribution of the effect of heat of dilution on t
otal heat generated in the melting of ice, dH/dni, is obtained
rom manipulation ofEqs. (14), (16)–(18)to give,

dH

dni

= �Hf − a1X
2
2

(1 + a2X2)2
(19)

o include the heat of dilution modification in the prelimin
odel, the termK in Eq. (5)is now expressed as a functi
f the independent variable,X2,

(X2) = Kfn2 × 1000

(
�Hf − a1X

2
2

1 + a2X
2
2

)
(20)

q. (20)includes the effect of heat of dilution on the total h
enerated during melting and may be used to simulat
SC power curves for frozen sucrose solutions as a fun
f time or temperature as described byEqs. (7) and (8), exce
ow the termK is not a constant.

.2. Extension of Gray’s theory to a heterogeneous
ample temperature distribution

Gray’s theory for melting in one-component systems
umes uniform sample temperature during melting, w
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Fig. 1. Schematic of the DSC reference pan and the sample pan where,Tr

is the reference pan temperature,Ts is the sample pan temperature,Tz is the
ice temperature, andz is the thickness of the water layer surrounding the ice.

yields the result of the end of melting occurring at the peak of
the melt endotherm. Gray’s theory also shows that the signal
decay in DSC power toward the baseline from the peak occurs
so rapidly that the extrapolated offset temperature of the melt
endotherm differs only slightly from the endotherm peak.
However, experimentally one observes that the decrease to
the baseline is much slower than predicted from Gray’s the-
ory. We hypothesize that the difference between theory and
experiment is due to a temperature gradient that exists across
the sample. In addition, we hypothesize that as the ice melts
from both the bottom and the sides of the original ice mass
in a DSC pan, the ice:water interfacial area decreases.

The objective of this section is to evaluate the tempera-
ture at which melting is complete in a one-component sys-
tem where a temperature gradient and contracting sample
geometry are built into the model. The model is confined to
a one-component system to keep the treatment simple.Fig. 1
shows a schematic of a sample of water and a reference pan
in a heat-flux DSC. It is assumed that the ice sample contacts
the aluminum pan only at the bottom and the sides of the
pan. Thus, melting proceeds from the bottom and the sides
of the pan. The thickness of the water layer surrounding the
ice, denotedz, increases as melting proceeds (Fig. 1). As ice
melting occurs, it is assumed that the temperature profile over
distance within the water layer is linear, while the temperature
o

an,
(

(

w e
p SC
f ty
o

Similarly, the heat flow to the sample, (dQ/dt)s, may be
written as(

dQ

dt

)
s
= Tf − Ts

R0
(22)

whereTf is the DSC furnace temperature,Ts is the sample
pan temperature, andR0 is the thermal resistance from the
DSC furnace to the pan:sample interface.

Heat flow to the sample, (dQ/dT)s as long as some water
is present, can also be expressed as(

dQ

dt

)
s
= Ts − Tz

Rs
(23)

whereTz is the ice temperature andRs is the thermal resis-
tance across the water layer in the sample.

Assuming that the ice temperature remains constant dur-
ing melting and that both the pan and water temperatures
increase as the furnace temperature increases, heat flow to
the sample during melting can be written as(

dQ

dt

)
s
= �Hf

dm

dt
+ mCl

p

dTl

dt
+ Cr

dTs

dt
(24)

whereCl
p is the specific heat of water,m is the mass of water,

andCr is the heat capacity of the DSC pan. The first term on
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a or the
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m
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a ed.
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(
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f the ice is assumed to be a constant,Tz (Fig. 1).
As in Gray’s theory, heat flow to the reference p

dQ/dT)r, can be described as

dQ

dt

)
r
= Tf − Tr

R0
= Cr

dTr

dt
(21)

hereTf is the DSC furnace temperature,Tr is the referenc
an temperature,R0 is the thermal resistance from the D

urnace to the pan:sample interface,Cr is the heat capaci
f the pan and dTr/dt is the scan rate.
he right hand side represents the heat flow for melting o
nd the second and third terms are heat capacity terms f
ater and the pan, respectively. Since a linear temper
rofile with distance over the water layer is assumed
ean temperature of the water,Tl , is (Tz + Ts)/2. With Tz

onstant, dTl /dt = (dTs/dt)/2. Thus,mCl
p dTl/dt in Eq. (24)

ecomes (m/2)Clp dTs/dt.
The DSC power, (Ts−Tr)/R0, is obtained from subtractio

f Eq. (24)from Eq. (21)to obtain,

Ts − Tr

R0
= �Hf

dm

dt
+ (Cw(m) + Cr)

d(Ts − Tr)

dt

+Cw(m)S (25)

hereCw(m) is substituted for (m/2)Clp.
Eq. (25)is a differential equation in two dependent v

bles, (Ts − Tr) andm, with independent variable,t. With
n equation for dm/dtthe system can be completely defin
o obtain the needed expression,Eq. (22)is set equal toEq.
23), and differentiated with respect to time to obtain

dTs

dt
+ Rs

R0

dTs

dt
+ Ts

R0

dRs

dt
= dTz

dt
+ Rs

R0

dTf

dt
+ Tf

R0

dRs

dt
(26)

here

dRs

dt
= dRs

dm

dm

dt
= Zs(m)

dm

dt
(27)

n which Zs(m) represents the derivative ofRs with respec
o m. A detailed discussion on the determination ofRs as a
unction of mass of ice melted is included in a laterSection
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3.2.1. Recognizing that dTf /dt= dTr/dt=Sand d(Ts − Tr)/dt
= dTs/dt− S, we substituteEq. (27)into Eq. (26)to obtain

dm

dt
= (R0 + Rs(m))

(Tf − Ts)Zs(m)

d(Ts − Tr)

dt
+ R0S

(Tf − Ts)Zs(m)
(28)

RearrangingEq. (21)yieldsTf − Ts = R0CrS− (Ts − Tr)
which is substituted intoEq. (28)to obtain

(
dm

dt

)
= (R0 + Rs(m))

Zs(m)[R0CrS − (Ts − Tr)]

d(Ts − Tr)

dt

+ R0S

Zs(m)[R0CrS − (Ts − Tr)]
(29)

At any temperature,Tr, the amount of ice melted,m, is ob-
tained by integration ofEq. (29). At the end of the ice melt,
the value ofm is denoted,m0, which is the initial mass of
ice. In the MLAB program, values ofm(T) are generated in
the solution of the differential equations, and the value of
Tmelt is the temperature as which m becomes equal tom0.
Further, substitution ofEq. (29)into Eq. (25)with rearrange-
ment yields

d(Ts − Tr)

dt
= − [(Ts − Tr)/R0S + Cw(m)S + �HfR0S/Zs(m)(R0CrS − (Ts − Tr))]

[C + C (m) + �H (R + R )/Z (m)(R0CrS − (T − T ))]
(30)
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the relationship,(
dQ

dt

)
s
= A(z)k

Ts − Tz

z
= Ts − Tz

Rs
(32)

Therefore,

Rs = z

kA(z)
(33)

The area,A(z) is evaluated in terms of the height,h and the
radius,r of the ice cylinder.

A(z) = πr2
0

(
1 − z

r0

)2

+ 2πr0h0

(
1 − z

r0

)(
1 − z

h0

)
(34)

The thickness of the water sample,z, was related to the
mass of water,m, by approximating the water volume as
the difference between the initial sample volume and the
volume of residual ice. The approximation is not exact as the
densities of ice and water differ. However, for the purpose of
keeping the model development simple at this point, it seems
reasonable to make the assumption. In general, since the
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ith the initial condition: (Ts − Tr)0 = −R0CiceS whereCice
s the heat capacity of ice.Eq. (30)applies when 0≤ t≤ tmelt
or when 0≤m≤m0) wheretmelt is the time at which melting
s complete as determined by the integration ofEq. (29).

After the completion of melting, dm/dt= 0,m=m0, Cw =
0
w, andEq. (25)becomes,

d(Ts − Tr)

dt
= − Ts − Tr

R0(C0
w + Cr)

− C0
wS

C0
w + Cr

(31)

he DSC power curves for one-component samp
an be obtained as a function of time by integration

qs. (30) and (31). DSC thermograms as a function of t
erature are obtained by using scan rate to transform timt,

o temperature,T.

.2.1. Determination of Rs as a function of m
The model was further refined to determineRs as a

unction of the amount of ice melted. Assuming a co
racting cylindrical geometry for the ice, the heat trans
ate to the sample, (dQ/dt)s was determined in terms of th
emperature gradient, (Ts − Tz)/z, the area of the ice:wate
nterface,A(z), and the thermal conductivity of water,k, using

Rs(m) = C

k{A01[1 − ((C1m + C2m2)/r0)][1 − ((C1m
s r

nitial sample height is less than the sample radius, the v
f z/r0 is less than unity at the end of melting. Thus, assum
qual densities for ice and water, the relationship betwem
ndz is

−
[
1 − z

r0

]2 [
1 − z

h0

]
− m

m0
= 0 (35)

herez is given by the positive roots ofEq. (35)for various
alues ofm. The shape of the functionz(m) described inEq.
35)can be approximated by,

(m) = C1m + C2m
2 (36)

hereC1 andC2 are empirical constants. SubstitutingEqs.
34) and (36)into Eq. (33)yields

C2m
2

2m2)/h0)] + A00[1 − ((C1m + C2m2)/r0)]2}
(37)

hereA00 = πr2
0 andA01 = 2πr0h0. The constants,C1 andC2

re obtained by solvingEq. (35)over the range of m value
n the model and the resulting “m,z” data pairs are fit toEq.
36)to defineC1 andC2. Eq. (37)is used to defineRs in Eqs.
29) and (30), allowing explicit description of the chang
eat flow due to a contracting cylindrical geometry.

. Results and discussion

The objective of this study was to construct the liqui
urve for frozen multicomponent solutions to accura
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Fig. 2. Comparison between experiment and theory with and without the effect of heat of dilution. The melt endotherm was simulated for a 5 mg sample of
30% (w/v) sucrose at 0.2◦C/min usingKf =2.6,R= 541 cal−1 ◦C s, andTr0 = −25◦C. The heat of dilution for a 30% (w/v) sucrose solution is 54 and 7 cal/g
at−25◦C and at the end of melting, respectively. The heat of dilution at the end of melting is much smaller for less concentrated sucrose solutions (0.25 cal/g
for 5% (w/v) sucrose). Despite the higher value at−25◦C, the heat of dilution does not qualitatively affect the shape of the endotherm when compared to the
endotherm simulated without the effect of the heat of dilution as observed in figure. The effect of temperature on the heat of fusion is given by�Cp(T− Tm)
and is 12.5 cal/g at−25◦C, which is smaller than the contribution of the heat of dilution to the total heat. Therefore, the effect of temperature on the heat of
fusion was ignored in the simulation of the melt endotherm.

define the composition of the freeze-concentrate. To achieve
that objective, we first set out to identify the feature of a DSC
melt endotherm that most correctly reflected the end of the
melt in a frozen solution.

4.1. Comparison of simulated melt endotherms from
Gray’s theory with experiment

Gray’s theory for melting in one-component systems was
extended to multicomponent systems to simulate the DSC
melt endotherm. A comparison of the experimental and sim-
ulated melt endotherms for 30% (w/v) sucrose shows good
agreement in the “peak smearing” region of the endotherms
(Fig. 2). However, a difference in the recovery of the DSC
power from the endotherm peak to the baseline is observed
when simulated endotherms are compared with experiment.
In the simulation that includes the heat of dilution, the peak
temperature,Tpeak, is shifted by +0.6◦C relative to the exper-
imental value. Further, in both simulations, the endotherm is
deeper and returns to the baseline within a 0.4–0.6◦C range
in temperature, whereas the recovery of the signal from peak
to baseline takes longer (+1.2◦C) experimentally.

It appears that even after the peak of the melt endotherm,
there is considerable demand for heat, which suggests that
the melting of ice is not complete at the peak. However,
t ice
h d on
G ime
d to

obtain an equation that describes the recovery of the DSC
signal from the peak to the baseline:

Ts − Tr = (Ts − Tr)maxexp

(
− t

RCs

)
(38)

Using an example of a 5 mg sample of pure ice whereRT =
541 cal−1 ◦C s andCs = 0.0174 cal/◦C, Eq. (38)predicts that
the signal is less than 1% of the maximum within a temper-
ature of 0.14◦C from the peak in reference temperature at
a scan rate of 0.2◦C/min versus 0.73± 0.02◦C as observed
experimentally.

4.1.1. Calculation of thermal resistance for
experimental and simulated endotherms

Thermal resistances,RT, R, andRs(m), were calculated
for experimental and simulated endotherms.RT values cal-
culated from experimental peak widths usingEq. (11)were
found to be remarkably similar even with a doubling of sam-
ple mass (Table 1). Additionally,RT values1 increased with
an increase in the heating rate. This increase in apparent re-
sistance is due to peak broadening in the data. It is likely that a
thermal lag in the sample rather than a change in the resistance
accounted for the peak broadening. Alternatively,Eq. (38)al-
lows for the calculation of resistance based solely on the re-

of
t 0 mg)
a
5

he conclusion from Gray’s theory is that once all the
as melted, the signal rapidly returns to baseline. Base
ray’s theory, the differential equation governing the t
ependence of (Ts − Tr) may be solved in closed form
1 RT was calculated usingEq. (11)after experimental determination
he width of the melt endotherm for different masses of pure ice (3–1
t different heating rates (0.2–2.0◦C/min). An average value ofRT =
41 cal−1 ◦C s was used in the simulation of the endotherms.
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Table 1
Comparison of thermal resistances,RT, R, andRs(m) in experimental and simulated melt endotherms

Sample/heating rate Experiment Simulation using the HTD model usingR0 = 500 cal−1 ◦C s

RT (Eq. (11)) (cal−1 ◦C s) R (Eq. (38)) (cal−1 ◦C s) Rs(m) (Eq. (37)) at T50% melting Rs(m) (Eq. (37)) at Tpeak

Ice: 5 mg
0.2◦C/min 644 (133)a 548 (145) 93 195
2.0◦C/min 726 (148) 1034 (224) 93 216

Ice: 10 mg
0.2◦C/min 585 (81) 1785 (711) 129 183
2.0◦C/min 734 (43) 1685 (272) 129 184
a Values in parenthesis are standard deviations.

turn of the peak to baseline, which according to Gray’s theory
occurs only after all melting has occurred. The resistance val-
ues calculated from experimental endotherms usingEq. (38)
are, in general, higher than those calculated usingEq. (11),
particularly for the larger sample mass. UsingEq. (37)from
the Heterogeneous Temperature Distribution (HTD) model,
the sample thermal resistance,Rs(m), was calculated at the
peak and also when 50% of the sample has melted.Rs(m) val-
ues increase only slightly with an increase in sample mass,
which explain the similarity in theRT values we observe in
Table 1. Also,Rs(m) values at bothTpeakand at the end of 50%
melting, are smaller thanRT values by about 500 cal−1 ◦C s,
confirming our use ofR0 = 500 cal−1 ◦C s for simulations
here. Simulations using the HTD model show that the sam-
ple resistances,Rs(m) increased with melting and continue
to increase even beyond the peak (Fig. 3). This also suggests
that the melting is not complete at the endotherm peak.

4.1.2. Recovery of peak signal to baseline: experiment
versus simulation

Gray’s theory predicts that the peak recovery to the
baseline should be almost instantaneous, a phenomenon

F ated fro

which is never observed experimentally. Our simulations of
the endotherm for frozen sucrose:water systems using Gray’s
theory exhibited a quick return to the baseline that was insen-
sitive to large changes in resistance (Fig. 2andTable 2). How-
ever, the experimental signal recovery to the baseline was
much longer (+0.7–5.0 s) than for the simulated endotherm.
Therefore, we conclude that the homogeneous temperature
model is insufficient. The demand for heat exceeds that which
is predicted by Gray’s theory, which assumes a homogeneous
temperature distribution in the sample. Since heat must flow
within the melted sample, temperature gradients must exist.
It appears that these gradients are significant as seen from the
melt endotherm obtained from experiment (Fig. 2) and from
the recovery of the peak signal to the baseline (Table 2).

4.1.3. Comparison of simulated melt endotherms from
HTD model with experiment

When Gray’s theory is modified to include a heteroge-
neous temperature distribution (HTD model) within the sam-
ple during melting, the simulated melt endotherms show a
better agreement with the return to the baseline data obtained
from experiment than those obtained using extended Gray’s
ig. 3. Comparison of sample thermal resistance,Rs(m) (cal−1 ◦C s) calcul
 m simulated melt endotherms of ice (3–10 mg) at 0.2◦C/min usingEq. (37).
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Table 2
Comparison of the recovery of the peak signal to the baseline in experimental and simulated melt endotherms

Sample/heating rate Experiment Simulation (Gray’s theory) Simulation (HTD)

◦C return to baseline
from peak

◦C return to baseline from peak ◦C return to baseline
from peak,R0

= 200 ◦C return to baseline
from peak,R0

= 500

Ice: 5 mg RT = 500b

0.2◦C/min 0.73 (0.02)a 0.06 0.50 0.50
2.0◦C/min 3.41 (0.22) 0.08 1.70 2.25

Ice: 10 mg RT = 1500b

0.2◦C/min 1.25 (0.16) 0.08 0.85 0.95
2.0◦C/min 5.14 (0.54) 0.12 3.25 4.00
a Values in parenthesis are standard deviations.
b The recovery of the peak signal to the baseline exhibited low sensitivity to small changes inRT. Therefore, a lowerRT value of 500 cal−1 ◦C s and a higher

RT value of 1500 cal−1 ◦C s were chosen to observe differences in peak signal recovery to the baseline.

Fig. 4. A comparison of the melt endotherms for 10 mg water at a heating rate = 0.2◦C/min sample obtained from DSC experiment and from simulation using
Gray’s theory atR= 500 cal−1 ◦C s and the Heterogeneous temperature distribution model atR0 = 500 cal−1 ◦C s. In the three examples shown above, the area
of the endotherm is always the same.

theory (Table 2). In addition, the melt endotherm simulated
using the HTD model exhibits a peak shape and a delayed
recovery similar to the experimental endotherm (Fig. 4). The
amount of ice melted at the peak of the endotherm was also
calculated (Table 3). Melting is not complete at the peak, ir-
respective of the value ofR0. However, the percentage of ice
melted at the peak increases with decreasing sample mass
and with an increase inR0. For 3 mg sample mass, 93% of
ice is melted at the peak in an endotherm generated usingR0
= 500 cal−1 ◦C s when compared to 77% of ice melted at the

Table 3
Percentage of total ice melted at the endotherm peak using HTD model

Mass of ice (mg) R0 = 200 cal−1 ◦C s R0 = 500 cal−1 ◦C s

Mass of ice melted (mg) Ice melted (%) Mass of ice melted (mg) Ice melted (%)

3 2.3 77 2.8 93
5 2.8 56 3.9 78
7 3.4 49 4.6 66

10 4.5 45 5.9 59

peak in an endotherm generated usingR0 = 200 cal−1 ◦C s
(Table 3). It appears that a higherR0 results in a more uni-
form temperature distribution across the sample, and a more
Gray’s theory-like endotherm. However, the amount of ice
melted at the peak is much lower at higher sample masses.
The HTD model resolves total thermal resistance,RT, into a
thermal resistance across the DSC furnace:sample pan,R0,
and a sample thermal resistance,Rs(m) (Fig. 3). The HTD
model clearly predicts that the melting continues beyond the
peak and a delayed recovery from peak to the baseline is
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observed, similar to experimental observations and contrary
to what is predicted using Gray’s theory. Additional results
from the HTD model are included inSection 4.2.

4.2. Simulation of sample and instrumental effects on
melt endotherms from the HTD model

Further evaluations were carried out to determine whether
the peak shape features observed in a series of experimental
endotherms could be predicted using various instrumental
and sample parameters. Using the theory developed in
Section 3.2, we evaluated the effect of sample geometry,
thermal resistance across the DSC furnace and sample pan,

F
t
2
d
s
0

heating rate, and sample mass on the shape of the melt
endotherm and the position of the endotherm peak,Tpeak,
and, the temperature at which the signal returned to baseline,
Toffset (Fig. 5a–d).

The effect of sample geometry on the shape of the melt
endotherm and the position ofTpeak andToffset is shown in
Fig. 5a. A conventional sample pan geometry yields a fairly
broad peak as observed experimentally. It is not until the sam-
ple radius is double the conventional shape that the simulated
endotherm approaches Gray’s prediction of peak shape. Since
the sample is flatter, there is less heterogeneity in the temper-
ature distribution, and melting is complete at the peak under
these extreme conditions. However, using the conventional
ig. 5. (a) Effect of sample geometry on the shape of the melt endotherm
hermal resistance across the DSC furnace and the sample pan,R0, on the shape of
00 and 500 cal−1 ◦C s were used as the simulated endotherms generated usi
ata, respectively. (c) Effect of heating rate on the shape of the melt endothe
imulated melt endotherms, respectively. (d) Effect of the sample mass on t
.2◦C/min. “E” and “S” represent the experimental and simulated melt endot
of 10 mg ice atR0 = 500 cal−1 ◦C s at a heating rate of 0.2◦C/min. (b) Effect of
the melt endotherm of 10 mg ice at a heating rate of 0.2◦C/min.R0 values of

ng these values showed a reasonable agreement with experimental peak and offset
rm of 10 mg ice atR0 = 500 cal−1 ◦C s. “E” and “S” represent the experimental and
he shape of the melt endotherm of ice atR0 = 500 cal−1 ◦C s and a heating rate of
herms, respectively.
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Fig. 5. (Continued).

sample pan, it is observed that melting is not complete at
the peak. One may suggest the use of very small samples.
However, we have found that 3 mg aqueous samples do not
spread evenly over the bottom of the pan resulting in poorly
reproducible endotherms.

A thermal resistance value of 500 cal−1 ◦C s predicts a
peak width similar to the experimental endotherm (Fig. 5b),
whereas, a lower thermal resistance (200 cal−1 ◦C s) predicts
a peak temperature closer to the experimental value.Fig. 5c
shows an increase inTpeak, Toffset, and the peak area with
an increase in the heating rate for both simulated and ex-
perimental melt endotherms. Similarly, the simulatedTpeak,
Toffset, and the peak area increase with sample size as seen
experimentally. Thus, the HTD predicts the same effect of
heating rate and sample mass that is seen experimentally.
Furthermore, the HTD model shows that the end of melting
in a one-component system (ice) can occur beyond the peak
temperature in a melt endotherm.

4.3. Determination of freezing point depression from
DSC

As stated earlier, our interest lies in the determination of
the freezing point depression or end of melting in a frozen
solution so that the composition of the freeze-concentrate
can be defined. Conventionally,Tpeakis used to denoteTmelt.
However, since the results described above indicate thatTpeak
is generally not the feature associated with the end of melting
we analyzed both the use of theTpeak, and theToffset, the return
to the baseline as markers for the end of melting.Fig. 6shows
a comparison of the theoretically predicted end of melting,
Tm, with the experimentalToffsetandTpeak.Tm obtained from
simulation shows better agreement with experimentalToffset
than with experimentalTpeak values over a range of heating
rates (0.2–2.0◦C/min). However, there is a strong heating
rate dependency. It is obvious that an extrapolation to a zero
heating rate is required to obtain freezing point depression
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Fig. 6. Comparison of experimental offset and peak data with simulated data
for 30% (w/v) sucrose (5 mg). The simulated data points were obtained from
a melt endotherm simulated for a 5 mg sample of 30% (w/v) sucrose using
Kf = 2.6,R= 541 cal−1 ◦C s, andTr0 = −25◦C.

values that agree with the International Critical Tables (ICT)
data. The freezing point depression numbers from the ICT are
not calorimetrically obtained values. However, to this day, the
ICT data are accepted as the “gold standard” for equilibrium
freezing point depression values and use in the construction
of liquidus curves of carbohydrate–water systems.

Using experimental and simulated scans, an extrapolation
of eitherTpeak or Toffset to a zero scan rate predicted aTmelt
of zero for pure ice, irrespective of the sample mass or the
thermal resistance (data not shown). The convergence of all
extrapolated values to the true value argues further for the
extrapolation of DSC data to obtain better estimates of true
equilibrium values.

F tal offs (5 mg). The
r as thos

The heating rate dependence of the experimental offset
temperatures during the experiment was studied in more
detail (Fig. 7). The offset temperatures of water and con-
centrated sucrose solutions (≥30%, w/v) exhibit different
dependencies on the heating rate. A well-defined curva-
ture appears at much lower heating rates (0.05–0.2◦C/min,
data not shown) for water and more dilute sucrose solu-
tions (≤30%, w/v). The analysis of the experimental melt
endotherms for water samples and for sucrose solutions
(≤30%, w/v) show that an extrapolation function, which
is quadratic in the square root of scan rate, best fits the
data (Fig. 7). On the other hand, a linear dependency on
the heating rate is observed for more concentrated sucrose
solutions (≥30%, w/v). In addition, simulations of aque-
ous sucrose endotherms show exactly the same behavior
(scan rate dependency for less versus more concentrated
sucrose solutions) as the experimental results. Such analy-
sis has implications in the accurate determination of equi-
librium freezing point determination and the calculation
of the freeze-concentrate composition at different sub-zero
temperatures.

A comparison of the extrapolated offset and peak tem-
peratures with osmometry data and literature values (from
ICT) shows that the sample mass dependency and the heat-
ing rate dependency appear to dissipate upon an extrapolation
o ment
i re
v

4
f

u The
ig. 7. Comparison of the heating rate dependency of the experimen
esults obtained from the simulations (data not shown) are the same
et temperature for pure water, and 10% (w/v) and 30% (w/v) sucrose
e obtained from the experiment (shown above).

f Toffset to a zero scan rate (Table 4). Reasonable agree
s seen between extrapolatedToffset DSC data, the literatu
alues and the osmometry data.

.4. Determination of composition of the sucrose:water
reeze-concentrate using the liquidus curve

ExtrapolatedToffset andTpeak values fromTable 4were
sed to construct the sucrose:water liquidus curve.



162 B.S. Bhatnagar et al. / Thermochimica Acta 425 (2005) 149–163

Table 4
Comparison of extrapolated offset and peak temperature data with osmometry data and ICT values

Sucrose (%, w/v) Sample size (mg) ExtrapolatedToffset (◦C) ExtrapolatedTpeak (◦C) Osmometry (◦C) Literature values (◦Ca)

5 5 −0l5 −0l5 −0.3 (157.5 mOsm) −0.3

10 3 −0l8 (0.0)b −1l0 (0.2) −0.6 (327 mOsm) −0.6
5 −0l9 (0.2) −0l8 (0.1)
7 −1l0 (0.3) −0l8 (0.1)
10 −0l8 (0.1) −0l7 (0.1)

Meanc −0l9 (0.2) −0l8 (0.1)

20 3 −1l8 (0.2) −3l1 (0.4) −1.4 (766.0 mOsm) −1.3
5 −1l4 (0.0) −1l8 (0.2)
7 −1l9 (0.0) −2l3 (0.1)
10 −1l7 (0.1) −1l8 (0.1)

Mean −1l7 (0.3) −2l0 (0.3)

30 3 −2l8 (0.4) −4l3 (0.2) −2.4 (1289.8 mOsm) −2.2
5 −2l4 (0.2) −3l5 (0.2)
7 −2l0 (0.1) −3l0 (0.1)
10 −2l1 (0.1) −3l0 (0.2)

Mean −2l1 (0.2) −3l2 (0.3)

60 3 −10l8 (1.2) −11l6 (1.1) – −6.9
5 −8l6 (0.5) −9l7 (0.7)
7 −7l9 (0.6) −9l2 (0.5)
10 −7l4 (0.3) −8l7 (0.4)

Mean −7l9 (0.7) −9l2 (0.7)
a International Critical Tables of Numerical Data, Physics, Chemistry, and Technology. Vol. IV, 1928, data pooled from six sources, which differ by no more

than±5%.
b Values in parenthesis represent standard deviations.
c The values represent mean of the extrapolated offset or peak temperatures for sample sizes 5–10 mg.

liquidus curve generated using extrapolatedToffset (Fig. 8)
agrees much better with the liquidus curve from ICT
than does the one generated using extrapolatedTpeak
data.

Fig. 8. A comparison of experimentally determined liquidus curves using
DSC with the liquidus curve from the International Critical Tables based on
extrapolation of experimentalTpeak andToffset to a zero scan rate.

The effect of a lower freezing point depression on
accuracy in determination of composition of the freeze-
concentrate is shown inTable 5. The composition of the
freeze-concentrate at−5◦C was calculated for a multicom-
ponent system containing 2% (w/v) sucrose, 5�g/mL en-
zyme, and 0.05 M buffer. Additional experiments (data not
shown) showed that that the enzyme and the buffer exhib-
ited no effect on the freezing point depression of water.
Thus, a liquidus curve for a sucrose-water system could be
used to perform such calculations. The increase in concen-
tration upon freezing has been calculated using ICT as well
as extrapolatedToffset and Tpeak. For theToffset and Tpeak
data, the ranges of values shown represent the values ob-
tained using DSC data for sample masses varying between
5 and 10 mg.Table 5shows the range of values one can
obtain to define the composition of a freeze-concentrate.
Inaccurate determination of the freeze-concentrate compo-
sition can lead to misinterpretations in analysis of stabil-
ity data of drugs labile to freezing. It is obvious based
on experimental data and theory that the use of theToffset
data results in a freeze-concentrate composition that shows
a better agreement with the composition defined by the
ICT.



B.S. Bhatnagar et al. / Thermochimica Acta 425 (2005) 149–163 163

Table 5
Comparison of the composition of the freeze-concentrate at−5◦C for an enzyme:sucrose:buffer solution based on the sucrose–water phase diagram from DSC
Toffset andTpeak data and the International Critical Tables

Concentration prior to freezing Increase in concentration after freezing based on

International Critical Tables (ICT) ExtrapolatedTpeak ExtrapolatedToffset

X-fold increase in concentration
after freezing at−5◦C

25 18.7a–20.4b 21.5a–23.5b

Sucrose (%, w/v) 2 50 37.3–40.8 43.0–47.0
Enzyme (5�g/mL) 5 125 93.5–102.6 107.5–117.5
Buffer (0.05 M) 0.05 1.25 0.94–1.02 1.08–1.18

a The lower end of the range represents values of composition obtained using liquidus curve generated from melting of 5 mg DSC sample.
b The upper end of the range represents values of composition obtained using liquidus curve generated from melting of 10 mg DSC sample.

5. Conclusions

Our work on frozen sucrose solutions has shown that the
use of a randomly chosen heating rate and sample mass in
DSC studies results in freezing point depression values that
do not agree with the gold standard, i.e., the International
Critical Tables (ICT). Using freezing point osmometry, we
have determined that the ICT values are accurate even though
these measurements were performed prior to the development
of calorimetric methods in the late 19th and early 20th cen-
turies. Mathematical modeling proved to be of significant use
in the determination of the most suitable marker for the end of
melting (Tpeak versusToffset). The simulations based on our
simple one- and two-component models were not exactly in
agreement with the experimental endotherms, but exhibited
the same trends as observed from experiment. A further re-
finement of the models may in fact result in simulations that
are in better agreement with the experiment. The role of ther-
mal resistance in the determination of the position ofTpeak,
Toffset, recovery of the peak to the baseline and the shape of
the endotherm was studied using the HTD model. Further,
the sample mass and geometry are intricately linked to the
thermal resistance during melting and also affect the tem-
perature distribution in a melting sample with a contracting
cylindrical geometry as observed from the one-component
m ozen
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