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Abstract

The non-parametric method of kinetic analysis using singular value decomposition of a matrix of data values, as proposed by Nomen and
Sempere, is applied to differential and integral analysis of non-isothermal results. It is demonstrated again that a correction has to be applied
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o obtain the correct value of the pre-exponential constantA, as in Part 1 of this series. The two methods are tested using simulated d
how very accurate retrieval of the starting values of activation energy and pre-exponential constants. A set of data for the decom
alcite under vacuum, treated non-isothermally, was taken from the ICTAC study of kinetic methods. The results obtained agree
ith those reported from the study.
2004 Elsevier B.V. All rights reserved.

eywords: Kinetic analysis; Non-parametric; Singular value decomposition; SVD; Non-isothermal; Simulated data; Calcite

. Introduction

Following the study of isothermal experiments in Part 1, a
imilar treatment is now given to non-isothermal experiments
nalysed by differential and integral methods. Simulated and
xperimental data was analysed using computer programs de-
eloped from these methods. The results for non-isothermal
xperiments are shown inTable 1.

. Non-isothermal experiments—differential analysis

.1. Applying SVD

Singular value decomposition of data arrays was applied
n the same manner as described in the previous papers on
his subject[1–5] and reported in Part 1. The basic equations

∗ Present address: 4 Hazelbadge Close, Poynton, Stockport SK12 1HD,
K. Tel.: +44 1625 874850; fax: +44 1625 874850.

E-mail address:rogerheal@yahoo.com (G.R. Heal).

from Part 1 still apply, but allowance now has to be made
the rising temperature, which leads the some terms ha
different meanings.

The difficulty in analysis arises because the data covα
from 0 to 1 and a wide temperature range. Because of th
ture of the experiment, the wholeα range is not available ov
all of the temperature range. The solution followed is as in
previous studies[1–5]. The total range of data was divid
up into submatrices, each enclosing a range of tempera
andα values covered by the experimental conditions. T
submatricesSof experimental data were then analysed
arately by the SVD procedure. This gave several setsU,
W andV matrices. As before, only the first columns w
required fromU andV and were designatedu andv. Also
only W(1) was of any significance and was designatedw.
The sets of values ofu andv were then combined into on
set by adding the second and subsequent sets to the fir
ter multiplying by suitable constants. To enable this, at l
one line of data must be common between successive b
Sempere et al.[1–4] used this amount of overlap of one li
between sets. In the present study a greater overlap was
040-6031/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2004.07.003
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Table 1
Non-isothermal experiments

Sample Starting simulation values Analysis results Isoconversional method

InputE
(kJ/mol)

InputA
(s−1)

AverageE
(kJ/mol)

Standard deviation
in E (kJ/mol)

OverallE
(kJ/mol)

A (s−1) E (kJ/mol) A (s−1)

Differential analysis
Simulated A2 130.0 1.0× 1013 130.007 0.188 130.011 1.009× 1013 130.001 1.008× 1013

Simulated A3 120.0 1.0× 1012 120.017 0.075 120.011 1.003× 1012 119.972 0.996× 1012

Calcite in vacuum
Overall – – 104.7 9.2 105.6 3.31× 107 105.8 2.57× 108

Low α 130.5
High α 109.5

Integral analysis
Simulated A2 130.0 1.0× 1013 129.996 0.007 129.994 0.997× 1013 As above As above
Simulated A3 120.0 1.0× 1012 120.009 0.037 120.020 1.005× 1012 As Above As Above
Calcite in vacuum

Overall – – 125.0 13.9 127.8 5.19× 108 As Above As Above
Low α 170.5
High α 109.3

Table of activation energies and pre-exponential factors found by analysis using SVD and isoconversional Arrhenius plot. The results from the simulated data
are given to more significant figures than would normally be justified to indicate the precision of the retrieval of the starting figures.

The second submatrix of data overlapped the first submatrix
by all of the lines, except for the first line of submatrixS1
and the last line of submatrixS2.

2.2. Interpolation along the data curves

Before choosing the position of these blocks of data, in-
terpolation was carried out on the experimental data. First in-
terpolation was taken along each data set at one heating rate.
A step size of 0.01 forα did not always lead to consistent
submatrices, that is, covering the required width of tempera-
ture and overlapping with other submatrices. It was found to
be better to use smaller steps ofα of 0.005 from 0.1 to 0.95.
For the lower region belowα = 0.1 and aboveα = 0.95 a step
size of 0.001 was used. Interpolation was carried out along
the original data curves to give the temperaturesTe at which
these values ofα were produced. At the same time the gradi-
ents (dα/dT)e were calculated and stored for the same point
on the curves. These gradients were multiplied by the heating
rateβ in K s−1 for the particular experiment. This converted
the gradients to (dα/dt)e. As in Part 1, either a cubic fit with a
quadratic fit at the top end was used, or a polynomial equation
with variable degree and number of points.

2.3. Interpolation across the data

give
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last experimentalTe on that line. The quantity�T could be
set during the calculation and was chosen so that, consider-
ing the temperature ranges across one line, the number of
Ti values produced was 20–30. The number used sometimes
had to be adjusted to other values to get correct overlap of
the submatrices. Interpolation was then carried out to obtain
new values of gradient at theseTi points. The new data across
a line could also be used in an isoconversional calculation,
because it should fit an Arrhenius plot. Therefore, before the
interpolation, the logs of the gradients were taken and the re-
ciprocal of theTe values. These quantities should fit a straight
line. In case the fit was not exact, a quadratic equation was
also tested for the interpolation. However, the results were not
as good as for the linear equation, because small fluctuations
were exaggerated to give a poor fit. The coefficients of the
linear equation were used to get an interpolated value at 1/Ti

points and the antilog taken to obtain a new gradient (dα/dt)i.
The gradient of the linear fit was also used to obtain a value of
isoconversional activation energy. As well as�T, the width
of the data set in the submatrix,nrange, could be chosen,
as could the number of lines in the submatrix,nlines. If this
were too high, then there would be insufficient data across
each line to fill the submatrix to produce a continuous set.
If it were too low the results from each submatrix would be
inaccurate. Trial and error had to be used to select�T,nrange
a d
t
T tion,
w
f lies
e d
u
c was
a he
e al
It is assumed that the total set of curves fit together to
two-dimensional data surface. The independent vari

re temperature andα. The dependant variable is gradi
dα/dt)e. Taking lines across the surface at constantα values
second interpolation was then made. A step in temper
f �T was chosen and a starting value ofTi. To get the star

ng Ti, the firstTe value on that line was rounded up to
earest multiple of�T. Steps ofTi were then taken acro

he line and stopped when the nextTi would exceeded th
ndnlines. The interpolated values of (dα/dt)i corresponde
o M in Eq. (6) of Part 1 and were a function ofTi andα.
his matrix of values was then used in the SVD calcula
ithin each submatrix. The decomposition ofM into two

unctions without prior knowledge of the functions app
xactly as in Part 1, Section 2.1. As the steps ofα progresse
p the curves, this gave a complete set ofE values, which
ould be examined to see if any change in mechanism
ppearing. A minimum ofnlines = 5 lines was used. At t
nds of the data set, whereα is low or high, the experiment
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curves run nearer to horizontal. In these regions it is not pos-
sible to choose submatrices that overlap correctly. The “adap-
tive NPK method” used in Refs.[1–5] was used in that the
height of the submatrix,nlines, was reduced in this region to
three lines only. For clarity in presentation, only the values
of activation energy and pre-exponential constant are shown
at intervals ofα of 0.01. If the end regions were important
the results from the full set ofα could be output. A listing
of the individualE values from each submatrix was made, so
that they could be examined for scattered values at the ends.
Provision was made to exclude these points, leading to a re-
stricted range ofα values as is shown in results in subsequent
plots.

To make up a complete set of values ofu andv to use over
the whole range of the experiment, a scaling procedure had
to be used as explained in the previous papers[1–5]. The first
set ofu andv were left as calculated from the first submatrix
S1. The second value inu from data submatrixS1, (u2)s1,
and the first value from the submatrixS2, (u1)s2, was used to
calculate a correction factora2:

a2 = (u2)s1

(u1)s2
(1)

Thena2 was used to correct the scale of all the remaining
values in (u)s2 so that the results joined up with those from
t
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3. Non-isothermal experiments—integral analysis

3.1. Applying SVD

Before integrating Eq. (2) of Part 1, timet has to be re-
placed by temperatureT using the equation:

dT = β dt (4)

whereβ is the heating rate in K s−1.
The new equation may now be integrated:∫
dα

f (α)
=

∫
A

β
e−E/RT dT (5)

The left-hand side producesg(α) the integral rate equation.
On the right-hand side, the substitutionX=E/RTis usually
made. In several steps this reduces the equation to:

g(α) = AE

Rβ

X∫
X0

e−XX−2 dX (6)

whereX0 is the value ofX at the start of the experiment.
The integral cannot be determined analytically but is usually
written:

p
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he first submatrix

escaled(ui)s2 = a2 · (ui)s2, i = 2, n (2)

heren is the number of lines of data in a submatrix. For
rst submatrix it is implied that the correction is applied w
1 = 1.

This was repeated for each submatrix data set, obtain
ewai value each time. The rescaled values ofui from all of

he submatrices were then combined into one vectoruT. The
vector quantities also require scaling and at the same
ultiplying by the value ofw for the particular submatri
he same values ofai may be used because:

escaled(vi)s2 = (vi)s2

a2
· (w)s2, i = 2, n (3)

he correction of the values for the first submatrix is includ
.e. multiplying by (w)s1 and dividing bya1 = 1. The vvalues
re combined into a continuous setvT. In Eq. (2) of Part 1

emperatureT varies continuously with timet in one experi
ent. However, the generation of the total set ofuT andvT

alues is equivalent to a data surface with axesT andα and
hus in Eq. (3) of Part 1,h(T) is equivalent to the totalvT
ector andf(α) was equivalent to totaluT. The log of the tota
et ofvT values was plotted against 1/T in an Arrhenius plot
ny deviation from a straight line was noted as a poss
hange in mechanism. The gradient yielded an overall v
f E. As in Part 1, the values inuT were plotted againstα to
heck against standard curves to determine the mech
eing obeyed. Finally the intercept was corrected as in
8) and (9) of Part 1, Section 2.2.1.
(X) =
X0

e−X X−2 dX (7)

o

(α) = AE

Rβ
p(X) = AE

Rβ
p

(
E

RT

)
(8)

n a set of non-isothermal experiments, at various he
ates, the experimental quantities areα, T andβ. These coul
e separated fromEq. (8)to form:

= 1

g(α)

AE

R
p(X) (9)

omparison with Eq. (6) of Part 1 shows that� is now an ar
ay of values corresponding toM. The spatial representatio
f the set of experiments is a surface of values of (dαe
ith axesTe andα, but can equally well be represented
surface of values of� with axes ofTe andα. The inter-

olation across the surface for a singleα value may then b
ade, using as data the set of experimentalβ values and th

xperimentalTe values. Trials were made of various inter
ation equations. The best fit was still taking the log of
ependent variableβ and the reciprocal of the independ
ariableTe. A good linear fit was produced with this da
ut a quadratic fit was marginally better and so was ado
his interpolation for constantTi values producedβi. There

s, of course, no experimental meaning to values ofβi, but
here is no mathematical reason why they should not be
hey could be defined as the heating rate at which the sa
ould have had to be heated to achieve a particularα value,
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at a particular temperature. Comparing Eq. (9) and Eqs. (3)
and (6) of Part 1,f(α) is replaced by 1/g(α) andh(T) by

h(T ) = AE

R
p(X) = v (10)

Theu vector contains a set of 1/g(α) values andv contains
a set of values of (AE/R)p(X), one for each temperatureT.
Although the Arrhenius equation is invoked to enable the
function v = (AE/R)p(X) to be obtained, the matrix of�
values may still be resolved intou andvwithout prior knowl-
edge of these functions. Therefore the method is still NPK in
nature.

The next problem is thatp(X) cannot be found by inte-
gration. There are, however, approximation equations for its
value, of varying precision, which are reviewed in Refs.[7,8].
The most precise set of values is probably given by Cheby-
shev polynomials[7]. The precision of the value ofp(X) may
be increased, at the expense of speed, by using more terms in
the equation, as explained in Ref.[7]. In this application, a
reasonable compromise for the number of terms used was 15
and that seemed to produce good enough agreement for the
simulated data. However, a higher number of terms would be
required ifp(X) had to be evaluated with low values ofX, i.e.
a low value ofE and high temperature.

The calculations were first applied to the subset of data in
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Fig. 1. Flow diagram covering part of the computer program dealing with
the iterative determination ofEandA in the case of non-isothermal data with
integral analysis.

way gives:

AT = v
(E/R)p(Xi)

(12)

This produced new values ofAT for each temperature. The
mean of these values gave a new value ofA for the outer
iteration. The outer iteration was now repeated with the new
E andA, again using the inner iteration to adjustXT to match
p(XT) to pe(X). In practice only five loops of the outer iteration
were required to produce convergence to constant values of
ach submatrix alone. Since the Chebyshev polynomials
he value ofp(X) for input values ofE andT, andEq. (10)
ontainedEandA in the first term, iterative methods had to
evised. These consisted of an inner and an outer iter
he section of the computer program dealing with thi
epresented by a flow diagram inFig. 1. For the outer iteratio
tandard starting values ofE and A were used, namelyE
100,000 J mol−1 andA = 1010 s−1, respectively, with th

xperimental temperaturesTi. These were used to calcul
E/R.Eq. (10)was transposed and used with the experime

esults held inv to obtain experimental values ofpe(X)

e(X) = h(T )

AE/R
= v

AE/R
(11)

ach temperatureTi was used in turn and with a single va
xtracted from the vectorv. The quantityXT was given the
ominal value of 30 andp(XT) was calculated by Chebysh
olynomials. The value ofp(XT) was compared withpe(X)

rom Eq. (11), for one temperatureTi. XT was adjusted up o
own in steadily decreasing steps, in the inner iteration,

he twop values agreed to better than 10−12. The final value
f XT was then the value ofX to fit Eq. (11). The procedu
as repeated for the other temperatures in the set. SinXT
E/RTi, a plot could then be made ofXT against 1/Ti and the
radient wasE/R. This is not an Arrhenius plot so the grad

s positive, not negative, here. The value ofE obtained the
ecame the new value ofE for the next step of the out

teration. This new value ofE was then also used at ea
emperatureTi to obtain valuesXi = E/RTi and thusp(Xi) by
hebyshev polynomials again. TransposingEq. (10)anothe
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Fig. 2. Differential analysis of non-isothermal data. Arrhenius plot of ln(v),
i.e. ln(rate) vs. 1/Tfor simulated data for mechanism A2, i.e. Eq. (13) of
Part 1. The individual plots for the submatrices are superimposed, but only
the first and last and two intermediate points are shown for each. Also only
every fifth submatrix line is shown for clarity. Various symbols are used for
each submatrix.

E andA. These final values ofE andA were then the result
of the SVD method.

The calculation was repeated for the other submatrices
of data. The individual values ofE and A were output to
see if there were any changes of mechanism. Also the mean
values ofE andA were determined. The data produced in
the individual vectorsui andvi from the submatrices could
also be combined into one set using scaling factorsai and
bi as explained for differential analysis above. The quantity
vT was then used asv in Eqs. (10) and (11). The iteration
procedures were then repeated over the whole data set. This
gave single overall values ofE andA. These quantities are
of limited significance if the mechanism has changed during
the reaction. The reciprocal of the result in vectoruT was
used asg(α) to match to theoretical equations by a plot of
each theoretical, rescaledgt(α) againstα to determine the
mechanism.

The value ofA obtained in these calculation required cor-
rection, after theg(α) equation that fits had been determined,
as explained in Section 2.2 of Part 1 for integral isothermal
data.

4. Testing with simulated data

this
t .

4

Eq.
( alues
o , 1.3
a he
w the
s r-
r and is

Fig. 3. Variation of activation energy withα for non-isothermal data. Com-
parison of differential and integral analysis. Simulated data for mechanism
A2, i.e. Eq. (13) of Part 1. (�) Differential analysis, (—) integral analysis.

almost a perfect straight line.Fig. 3shows the variation inE
obtained from these individual SVD analyses. A slight fluc-
tuation inE is shown at the highestα values. This is presum-
ably due to the inaccuracies of the smoothing/differentiation
technique. Attempts were made to improve this region, using
other curve-fitting techniques, but the fluctuations could not
be removed. The mean value of theseE values was obtained.
Data from a selected range ofα values were combined as a
single SVD calculation and plotted inFig. 4, leading to an
overall activation energy. The plot off(α) versusα for the
experimental points, compared with the theoretical equation,
was the same as Fig. 3, Part 1, for the isothermal data, with
the same degree of fit. However, the ordinate scale was dif-
ferent. Clearly Eq. (13) of Part 1 is the correct fit. A corrected
value of A could then be obtained. Also, the isoconversional
results across the data surface at eachα value were used for
individual Arrhenius plots.

The analysis was repeated using the equation tested by
Sewry and Brown[5]. This was equation A3 (mechanism 15
of Ref. [12] in Part 1), in the usual nomenclature:

dα

dt
= A e−E/RT (1 − α)[− ln(1 − α)]2/3 (13)

F (
i art
1
s

A second computer program was written in Fortran77,
ime to carry out the analysis of the non-isothermal data

.1. Non-isothermal data by a differential analysis

Non-isothermal simulated data for mechanism A2,
13) of Part 1, was generated with the same starting v
f E andA as above, using heating rates of 1.0, 1.1, 1.2
nd 1.4 K s−1. The value of�T chosen was 0.1 K and t
idth of the submatrix (nrange) was 25. The height of
ubmatrix (nlines) was 5.Fig. 2shows the superimposed A
henius plots, obtained from the separate submatrices,
ig. 4. Differential analysis of non-isothermal data. Arrhenius plot of lnv),
.e. ln(rate) vs. 1/Tfor simulated data for mechanism A2, i.e. Eq. (13) of P
. The plot is for the total data after combining all of thev values from the
ubmatrices. Only every fifth point is shown for clarity.
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Fig. 5. Integral analysis of non-isothermal data. Simulated data for mech-
anism A2, i.e. Eq. (13) of Part 1. SuperimposedX = E/RTvs. 1/Tplots for
individual submatrices. Only the first and last and two intermediate points
are shown for each submatrix. Also only every fifth submatrix is shown for
clarity. Various symbols are used for each submatrix.

The values ofE andA used in the simulation were as in Ref.
[5], i.e. 120 kJ/mol and 1.0× 1012 s−1 with heating rates of 1,
2, 5, 10 and 20 K min−1. The value of�T chosen was 0.1 K,
nrange was 15 andnlines was 5. The analysis was carried
in the same manner as for the A2 data above and the results
also shown inTable 1. The value ofA is much closer to the
simulation starting value than that obtained by Sewry and
Brown, presumably because of the correction here applied to
the intercept.

4.2. Non-isothermal data by an integral analysis

In this analysisX has to be plotted against 1/T and this is
shown inFig. 5for the whole set of submatrices and a mean
value ofE determined. The data in a selected range was then
put into the iteration calculation. Only a small number of
outer iterations are required, which is shown inFig. 6by the

F echa-
n a-
t nd
s f the
i osed
s bols
a

fact that only the points of the first two lines are separate,
the points on subsequent lines appear to be coincident. The
gradient ofFig. 6 yielded an overallE value. The plot of
g(α) againstα for experimental and theoretical data was the
same as Fig. 5 for isothermal data in Part 1 and shows Eq.
(13) of Part 1 fitted as expected. Again the ordinate scale
was different. The corrected value ofA could then be found.
The variation ofE with α for this method is also shown in
Fig. 3 and shows no variation at the highα end, unlike the
differential method. The isoconversional results are the same
as for the differential method.

5. Testing with experimental data

5.1. Non-isothermal data by a differential analysis

The method was applied to the data from the ICTAC ki-
netic study[6]. The non-isothermal data used was for the de-
composition of calcite in vacuum (called CCVKPM.TXT).
The heating rates were 1.8, 2.5, 3.5, 5.0, 6.2 and 10 K min−1.
For this analysis, trials proved that a�T of 2 K was suitable.
The bestnrange value was 20 and thenlines chosen was again
5. The individual Arrhenius plots are shown inFig. 7. From
the gradients of these plots the variation ofE with α is ob-
t d,
t t
a
b ation
s Ref.
[ ots
f of the
v lso
a .1
a
h
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ig. 6. Integral analysis of non-isothermal data. Simulated data for m
ism A2, i.e. Eq. (13) of Part 1. Combinedv results from all of the subm

rices used in the iterative process. (♦) First step of the iteration, (�) seco
tep of the iteration, (�) third step of the iteration, (×) fourth step o
teration, (*) fifth step of the iteration. The upper line shows superimp
ymbols showing rapid convergence to the final line. Not all of the sym
re drawn at each 1/Tpoint to make the plot clearer.
ained and shown inFig. 8. If the submatrix data is combine
he resulting single plot is shown inFig. 9. An attempt to fi
n equation in thef(α) versusα plot in Fig. 10was difficult
ecause of the fluctuations in the plot. The nearest equ
howing the general shape was A2 (mechanism 14 from
12], Eq. (13) from Part 1). The individual Arrhenius pl
or the isoconversional data were also made. Because
ariation inE across the wholeα range, the method was a
pplied over two very restrictedα ranges, from 0.0 to 0
nd 0.9 to 1.0. These results appear inTable 1as lowα and
ighα.

ig. 7. Differential analysis of non-isothermal data. Arrhenius plo
n(v), i.e. ln(rate) vs. 1/Tfor non-isothermal data for calcite under vacu
CCVKPM.TXT [6]). The individual plots for the submatrices are sup
mposed, but only the first and last and two intermediate points are s
or each. Also only every fifth submatrix line is shown for clarity. Vari
ymbols are used for each submatrix.



G.R. Heal / Thermochimica Acta 426 (2005) 23–31 29

Fig. 8. Variation of activation energy withα for non-isothermal data. Com-
parison of differential and integral analysis. Non-isothermal data for calcite
decomposition under vacuum (CCVKPM.TXT[6]). (�) Differential analy-
sis, (♦) integral analysis.

Fig. 9. Differential analysis of non-isothermal data. Arrhenius plot of ln(v),
i.e. ln(rate) vs. 1/Tfor calcite under vacuum (CCVKPM.TXT[6]). The plot
is for the total data after combining all of thev values from the submatrices.
Only every fifth point is shown for clarity.

Fig. 10. Differential analysis of non-isothermal data.f(α) vs.α. The data is
for calcite decomposition under vacuum (CCVKPM.TXT[6]). The theoret-
ical f(α) are for mechanism A2, i.e. Eq. (13) of Part 1. The experimental and
theoretical data are superimposed. (�) Experimentalf(α), (—) theoretical
f(α) (rescaled data).

Fig. 11. Integral analysis of non-isothermal data. The data is for calcite
under vacuum (CCVKPM.TXT[6]). SuperimposedX = E/RTvs. 1/Tplots
for individual submatrices. The plots for the submatrices are superimposed,
but only every fifth submatrix is shown for clarity. Various symbols are used
for each submatrix.

5.2. Non-isothermal data by an integral analysis

When this analysis was applied to the same data as in
Section 5.1, the individualX versus 1/Tplots produced are
shown inFig. 11.

The lower line shows superimposed symbols showing
rapid convergence to the final line. Not all of the symbols are
drawn at each 1/Tpoint to make the plot clearer leading to a
variation inE also shown inFig. 8. There is much less fluc-
tuation compared to the differential analysis. The combined
submatrices produced (Fig. 12) and show the outer iteration
as defined inFig. 1. Again many points are superimposed
after the first two lines, because of the rapid convergence.
When the plot inFig. 13was made ofg(α) versusα, the fit
of the experimental data to any single mechanism was diffi-
cult, but the nearest seemed to be again A2, Eq. (13) of Part
1. The random variations or loops in the plot had gone and
there was fair agreement, except perhaps at the highest values
of α.

F alcite
u
s
s f
t

ig. 12. Integral analysis of non-isothermal data. The data is for c
nder vacuum (CCVKPM.TXT[6]). Combinedv results from all of the
ubmatrices used in the iterative process. (♦) First step of the iteration, (�)
econd step of the iteration, (�) third step of the iteration, (×) fourth step o
he iteration, (*) fifth step of the iteration.
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Fig. 13. Integral analysis of non-isothermal data.g(α) vs. α. The data is
for calcite under vacuum (CCVKPM.TXT[6]). The theoreticalg(α) are for
mechanism A2, i.e. Eq. (13) of Part 1. The experimental and theoretical data
are superimposed. (�) Experimentalg(α), (—) theoreticalg(α) (rescaled
data).

6. Conclusions

Table 1shows, as in Part 1, that for simulated data the
methods described retrieve the values ofE andA with rea-
sonable precision. In this case, differential and integral anal-
ysis methods give much the same precision. Identification of
the correct kinetic equation was again clear for the simulated
data.

For experimental data, a main point of interest is in identi-
fying the equation obeyed. These papers are intended to cover
the mathematics of the methods and not to be a study of pos-
sible mechanisms. For this reason, attempts are only made
to fit the standard equations for known mechanisms. No at-
tempt is made to fit with non-standard exponents because this
has been covered elsewhere[6,9–12]. Figs. 7 and 8 of Part 1
show that it is not easy to fit a kinetic equation for fluctuating
data. However, Fig. 9 of Part 1 for integral analysis, makes
the decision much easier. ComparingFigs. 10 and 13of Part
2 shows the same point.

The four methods of calculation, described in Parts 1 and 2,
lead to single overall values of activation energy. The mech-
anism may change during the experiments, asα changes,
as does temperature. It is too simplistic to just declare one
value forE without investigating a change inE over the set
of experiments. The non-isothermal data had to be split into
s
e s
n ner,
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Fig. 14. Analysis of isothermal data for calcite under vacuum
(CCVISO.TXT [6] as used in Part 1 of this study). The data is divided
into groups of five lines taken from the data matrixM and treated to SVD
individually, leading to a plot of the individual values of activation energy
againstα. The differential and integral results are compared. (—) Integral
analysis, (- - -) differential analysis.

great deal of fluctuation and there is not much point in quot-
ing a single overall value forE. Integral analysis shows an
almost constantE, so it may be reasonable to quote a single
overall value.

A similar comparison may be made for non-isothermal
results from SVD inFig. 8.

These results show that integral analysis is the preferred
method. Even the result for simulated data, treated to differ-
ential analysis, shows some fluctuation at highα (Fig. 3). It
has been suggested by Burnham[10] that these oscillations,
in the calcite experiments, may be due to fluctuation in the
temperature control system of the apparatus used to produce
the data and not to fluctuations in mechanism. This may be
true for isothermal data, but since a similar effect is seen
for rising temperatures, slight changes in mechanism must at
least be suspected. InFig. 8, the integral analysis shows a def-
initely decreasing value ofE, so quoting a single value forE is
pointless, except perhaps when calculation methods are being
compared[6]. The values ofE differ greatly between isother-
mal and non-isothermal, but should agree unless mass and
heat transfer effects are present or there is a change in mech-
anism. Maciejewski[9] has pointed out that the ICTAC study
isothermal data covers a temperature range of only 35◦C, but
the non-isothermal a range of 193◦C, which will lead to op-
portunity for a change in mechanism in the second case. It
m from
5 set
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m ing
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v per-
i a
t nued
t or
fi mal
ubmatrices, so the opportunity was taken to calculateE for
ach submatrix and to plot the results againstα. There wa
o need to divide up the isothermal data in a similar man
ut it was decided that variation inE should also be invest
ated here. The data could be treated as an isoconver
et and a value ofE obtained for each line across the data,
onstantα. It was thought more appropriate to use the S
ethod, because this would give a degree of smoothing
set of five lines, as for the non-isothermal case. Sinc

on-isothermal data was divided into steps of standardα val-
es, five lines at a time, the same was done for the isoth
ata. The result, when differential and integral analysis
sed, is compared inFig. 14. Differential analysis shows
l

ay also be noted that the isothermal data cover a range
15 to 550◦C. The starting temperatures quoted for the
f non-isothermal data cover the range 496–545◦C. Thus the
on-isothermal experiments only just reach into the iso
al range.Fig. 8 shows a value of activation energy ris

owards lowerαvalues. The value did not reach the isother
evel, but it might if the calculation had continued to loweα
alues, which would imply lower temperatures for the ex
ment. Unfortunately the lowest value forα given in the dat
ables was for 0.01, so the calculation could not be conti
o lower values ofα. Examining only the integral results f
tting a mechanism, there is a closer fit for the isother
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Fig. 15. Variation of activation energy with� for differential and integral
analysis, isothermal and non-isothermal data. Simulated data for two simul-
taneous first order reactions (SIMISO.TXT and SIMKPM.TXT from Ref.
[6]). (♦) Non-isothermal data, differential analysis, (�) non-isothermal data,
integral analysis, (�) isothermal data, differential analysis, (×) isothermal
data, integral analysis.

result (Fig. 9, Part 1) than non-isothermal (Fig. 13, Part 2).
This suggests again a mechanism change in the second case.
The results for these sample data, which appear in tables in
Ref. [6], show a wide range of variability according to the
methods employed and the workers carrying out the calcu-
lation. However, the present results for non-isothermal de-
composition of calcite under vacuum agree with the result by
Nomen and Sempere (SVD method), in that paper, in respect
to the value ofE, but not ofA. The results for the isothermal
data are more consistent in Ref.[6] and agree mostly with
the results obtained here.

It has been suggested that the use of integral methods may
introduce systematic errors into resulting values of activa-
tion energies. This may be true for overall activation energies
produced by combining all of the data from the experiment
into one SVD step. However, as shown above, the activa-
tion energy may vary during decomposition and it is better
to use the results of separate submatrices and to show the
variation. In the present study each submatrix contained five
lines of data, so any error introduced would be restricted
to only a small range of time or temperature. The ICTAC
study [6] also included simulated data for two simultane-
ous, equally weighted, first order reactions. They were given
activation energiesE1 = 80 kJ mol−1, E2=120 kJ mol−1 and
pre-exponential factors ofA1=1010 min−1, A2=1015 min−1.
V pro-
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u hods
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went up to a peak of 130 kJ mol−1, i.e. well above the max-
imum possible of 120 kJ mol−1. Vyasovkin, in his Fig. 3 for
some other differential methods, also saw this. As he points
out, this must be faulty and is an artefact of the calculation.
The differential analysis of non-isothermal data gives results
that correctly lie all between 80 and 120 kJ mol−1. However
the curve rises rather too steeply and turns to near horizontal
near toα = 1. The shape is not as forecast by Vyasovkin in
his Fig. 2. Thus it is the differential methods that are suspect,
not the integral ones. Vyasovkin[12] also comments on the
process of numerical differentiation of original data leading
to erroneous values of activation energy as suggested here
([8,9] in Part 1).

There are many other methods of analysis available for
these types of data, especially for the isothermal experiments,
see[6]. A recent paper[13] has proposed combined kinetic
analysis allowing simultaneous analysis of experiments ob-
tained under any heating profile. It may be possible to apply
data from other heating profiles to the NPK method if the
data from the individual submatrices can be combined into a
single matrix.

NPK analysis is of importance, as discussed by Sewry
and Brown[5]. These papers have shown that data may be
best analysed by integral analysis, but a differential technique
appears to give a more variable result.
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yasovkin[12] has presented an analysis of the results
uced by the many workers taking part in the project
sing several different methods of calculation. The met
etailed in the present two papers were applied to the
ata and the results are summarised inFig. 15. These may b
ompared toFig. 3in Vyasovkin’s paper. The integral resu
or both isothermal and non-isothermal data seem to be
lose to the results produced by Vyasovkin’s own met
hich is essentially integral in nature. The shapes of the
f activation energy versusα also agree with the shapes fo
ast by Vyasovkin in his Figs. 1 and 2[12]. The correspondin
ifferential analysis of isothermal data produced a curve
cknowledgement

Professor Michael Brown of Rhodes University, Grah
town, South Africa, kindly supplied the data from the ICT
inetic study[6].

eferences

[1] J. Sempere, R. Nomen, R. Serra, Thermochim. Acta 316 (1
37–45.

[2] J. Sempere, R. Nomen, R. Serra, J. Therm. Anal. Calorimetr
(1998) 933–943.

[3] J. Sempere, R. Nomen, R. Serra, J. Therm. Anal. Calorimetr
(1999) 843–849.

[4] J. Sempere, R. Nomen, R. Serra, J. Soravilla, Thermochim.
388 (2002) 407–414.

[5] J.D. Sewry, M.E. Brown, Thermochim. Acta 390 (2002) 217–22
[6] M.E. Brown, M. Maciejewski, S. Vyasovkin, R. Nomen, J. Semp

A. Burnham, J. Opfermann, R. Strey, H.L. Anderson, A. Krem
ler, R. Keuleers, J. Janssens, H.O. Desseyn, C.-R. Li, T.B.
B. Roduit, J. Malek, T. Mitsuhashi, Thermochim. Acta 355 (20
125–143.

[7] G.R. Heal, Thermochim. Acta 340/341 (1999) 69–76.
[8] J.H. Flynn, Thermochim. Acta 300 (1977) 83–92.
[9] M. Maciejewski, Thermochim. Acta 355 (2000) 145–154.
10] A.K. Burnham, Thermochim. Acta 355 (2000) 165–170.
11] B. Roduit, Thermochim. Acta 355 (2000) 171–180.
12] S. Vyasovkin, Thermochim. Acta 355 (2000) 155–163.
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