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Abstract

The non-parametric method of kinetic analysis using singular value decomposition of a matrix of data values, as proposed by Nomen and
Sempere, is applied to differential and integral analysis of non-isothermal results. It is demonstrated again that a correction has to be applied
to obtain the correct value of the pre-exponential consdaials in Part 1 of this series. The two methods are tested using simulated data and
show very accurate retrieval of the starting values of activation energy and pre-exponential constants. A set of data for the decomposition of
calcite under vacuum, treated non-isothermally, was taken from the ICTAC study of kinetic methods. The results obtained agree reasonably
with those reported from the study.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction from Part 1 still apply, but allowance now has to be made for

the rising temperature, which leads the some terms having
Following the study of isothermal experiments in Part 1, a different meanings.

similar treatment is now given to non-isothermal experiments  The difficulty in analysis arises because the data cavers

analysed by differential and integral methods. Simulated andfrom 0 to 1 and a wide temperature range. Because of the na-

experimental data was analysed using computer programs deture of the experiment, the whalerange is not available over

veloped from these methods. The results for non-isothermalall of the temperature range. The solution followed is as in the

experiments are shown ifable 1. previous studie§l-5]. The total range of data was divided
up into submatrices, each enclosing a range of temperatures
anda values covered by the experimental conditions. These

2. Non-isothermal experiments—differential analysis submatricess of experimental data were then analysed sep-
arately by the SVD procedure. This gave several setg, of
2.1. Applying SVD W andV matrices. As before, only the first columns were

required fromU andV and were designatad andv. Also
Singular value decomposition of data arrays was applied only W(1) was of any significance and was designated
in the same manner as described in the previous papers o he sets of values af andv were then combined into one
this subjecf1-5] and reported in Part 1. The basic equations set by adding the second and subsequent sets to the first, af-
ter multiplying by suitable constants. To enable this, at least
* Present address: 4 Hazelbadge Close, Poynton, Stockport SK12 1HD,one line of data must be common between successive b_|0CkS'
UK. Tel.: +44 1625 874850; fax: +44 1625 874850. Sempere et a[1-4] used this amount of overlap of one line
E-mail addressrogerheal@yahoo.com (G.R. Heal). between sets. In the present study a greater overlap was used.
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Table 1
Non-isothermal experiments
Sample Starting simulation values Analysis results Isoconversional method
InputE InputA AverageE Standard deviation OverallE A(s ) E(J/mol) A(shH
(kJ/mol) (sh (kJ/mol) in E (kJ/mol) (kJ/mol)
Differential analysis
Simulated A2 130.0 1.6 1013 130.007 0.188 130.011 1.009¢ 10 130.001 1.008¢ 10'3
Simulated A3 120.0 1.6 102 120.017 0.075 120.011 1.003 102  119.972 0.996¢ 102
Calcite in vacuum
Overall - - 104.7 9.2 105.6 3.31x 10’ 105.8 2.57x 1¢¢
Low « 130.5
High o 109.5
Integral analysis
Simulated A2 130.0 1.6 1018 129.996 0.007 129.994 0.99% 1043 As above As above
Simulated A3 120.0 1.6 1012 120.009 0.037 120.020 1.005¢ 102 As Above As Above
Calcite in vacuum
Overall - - 125.0 13.9 127.8 5.19x 108 As Above As Above
Low o 170.5
High o 109.3

Table of activation energies and pre-exponential factors found by analysis using SVD and isoconversional Arrhenius plot. The results from the simulated dat:
are given to more significant figures than would normally be justified to indicate the precision of the retrieval of the starting figures.

The second submatrix of data overlapped the first submatrixlast experimental, on that line. The quantithaT could be

by all of the lines, except for the first line of submatfx set during the calculation and was chosen so that, consider-
and the last line of submatriX. ing the temperature ranges across one line, the number of

T, values produced was 20-30. The number used sometimes
2.2. Interpolation along the data curves had to be adjusted to other values to get correct overlap of

the submatrices. Interpolation was then carried out to obtain

Before choosing the position of these blocks of data, in- new values of gradient at theggpoints. The new data across
terpolation was carried out on the experimental data. Firstin- a line could also be used in an isoconversional calculation,
terpolation was taken along each data set at one heating ratebecause it should fit an Arrhenius plot. Therefore, before the
A step size of 0.01 for did not always lead to consistent interpolation, the logs of the gradients were taken and the re-
submatrices, that is, covering the required width of tempera- ciprocal of theTe values. These quantities should fit a straight
ture and overlapping with other submatrices. It was found to line. In case the fit was not exact, a quadratic equation was
be better to use smaller stepsaobf 0.005 from 0.1t0 0.95.  alsotested for the interpolation. However, the results were not
For the lower region below = 0.1 and above =0.95astep  as good as for the linear equation, because small fluctuations
size of 0.001 was used. Interpolation was carried out alongwere exaggerated to give a poor fit. The coefficients of the
the original data curves to give the temperaturigat which linear equation were used to get an interpolated value at 1/T
these values af were produced. At the same time the gradi- points and the antilog taken to obtain a new gradient (da/dt)
ents (do/dTy were calculated and stored for the same point The gradient of the linear fit was also used to obtain a value of
onthe curves. These gradients were multiplied by the heatingisoconversional activation energy. As well A3, the width
ratef in K s~ for the particular experiment. This converted of the data set in the submatrimrange, could be chosen,
the gradients to (de/df) As in Part 1, either a cubic fitwitha  as could the number of lines in the submatriknes. If this
guadratic fit at the top end was used, or a polynomial equationwere too high, then there would be insufficient data across

with variable degree and number of points. each line to fill the submatrix to produce a continuous set.
If it were too low the results from each submatrix would be
2.3. Interpolation across the data inaccurate. Trial and error had to be used to seAdGinrange

andnlines. The interpolated values of (de/dtprresponded

Itis assumed that the total set of curves fit together to give to M in Eq. (6) of Part 1 and were a function of anda.
a two-dimensional data surface. The independent variablesThis matrix of values was then used in the SVD calculation,
are temperature ang. The dependant variable is gradient within each submatrix. The decomposition Mf into two
(da/dt)e. Taking lines across the surface at constavélues, functions without prior knowledge of the functions applies
a second interpolation was then made. A step in temperatureexactly as in Part 1, Section 2.1. As the steps pfogressed
of AT was chosen and a starting valueTefTo get the start-  up the curves, this gave a complete seEofalues, which
ing T;, the firstTe value on that line was rounded up to the could be examined to see if any change in mechanism was
nearest multiple oAT. Steps ofT; were then taken across appearing. A minimum oflines = 5 lines was used. At the
the line and stopped when the n&stwould exceeded the  ends of the data set, whereés low or high, the experimental
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curves run nearer to horizontal. In these regions it is not pos- 3. Non-isothermal experiments—integral analysis
sible to choose submatrices that overlap correctly. The “adap-
tive NPK method” used in Ref$1-5] was used in that the  3.1. Applying SVD
height of the submatrixlines, was reduced in this region to
three lines only. For clarity in presentation, only the values  Before integrating Eq. (2) of Part 1, timehas to be re-
of activation energy and pre-exponential constant are shownplaced by temperaturBusing the equation:
at intervals ofe of 0.01. If the end regions were important
the results from the full set af could be output. A listing d7 = gdr (4)
of the individualE values.from each submatrix was made, so whereg is the heating rate in K.
that t'h'ey could be examined for scattereq values gt the ends. The new equation may now be integrated:
Provision was made to exclude these points, leading to a re-
stricted range of values as is shown in results in subsequent [ da _ / A o E/RT g7
plots. fle) B

To make up a complete set of valuesuandv to use over ) ) )
the whole range of the experiment, a scaling procedure had ' N€ left-hand side producege) the integral rate equation.
to be used as explained in the previous pafiers]. The first On the right-hand side, the subsntutm:FE/RT_ls usually
set ofu andv were left as calculated from the first submatrix Made. In several steps this reduces the equation to:
S;. The second value in from data submatrixs;, (U2)s1, X

(5)

i AE
and the first value f_rom the submatfy, (u1)sp, was used to gla) = 25 e Xx2dy ©)
calculate a correction factep:
Xo
~ (U)e (1) where Xg is the value ofX at the start of the experiment.
S

The integral cannot be determined analytically but is usually
Thenay was used to correct the scale of all the remaining written:
values in (u}z so that the results joined up with those from

the first submatrix x X o2
p(X) = fe‘ X cdx @)
rescaled(sp = a2 - (Uj)sp, i=2,n (2) %o
wheren is the number of lines of data in a submatrix. For the so
first submatrix it is implied that the correction is applied with AE AE E
=1. = —p(X)= — J— 8
=1 o) = %2000 =200 (1) @

This was repeated for each submatrix data set, obtaining a
newa; value each time. The rescaled valuesiofrom all of In a set of non-isothermal experiments, at various heating
the submatrices were then combined into one vaetoirhe rates, the experimental quantities ard andg. These could
v vector quantities also require scaling and at the same timebe separated frorig. (8)to form:
multiplying by the value ofw for the particular submatrix.

The same values @ may be used because: g = %A_EP(X) 9)
gle) R
(Vi)s2 .
rescaled(¥s; = a: “(w)sp, i=2n 3) Comparison with Eq. (6) of Part 1 shows tifiais now an ar-

ray of values corresponding M. The spatial representation
The correction of the values for the first submatrixis included, of the set of experiments is a surface of values of (de/dt)
i.e. multiplying by (wk; and dividing byag = 1. The walues  with axesTe ande, but can equally well be represented as
are combined into a continuous sat In Eq. (2) of Part 1 a surface of values g8 with axes ofTe anda. The inter-

temperaturd varies continuously with timein one experi-  polation across the surface for a singlealue may then be
ment. However, the generation of the total setpfandvr made, using as data the set of experimefitalues and the
values is equivalent to a data surface with akesda and  experimentalle values. Trials were made of various interpo-
thus in Eq. (3) of Part 1h(T) is equivalent to the totalr lation equations. The best fit was still taking the log of the

vector and(«) was equivalent to totalr. The log of the total  dependent variablg and the reciprocal of the independent
set ofvr values was plotted againsfTlih an Arrhenius plot.  variableTe. A good linear fit was produced with this data,
Any deviation from a straight line was noted as a possible but a quadratic fit was marginally better and so was adopted.
change in mechanism. The gradient yielded an overall value This interpolation for constar®; values produceg;. There

of E. As in Part 1, the values imr were plotted against to is, of course, no experimental meaning to valueg,otut
check against standard curves to determine the mechanismhere is no mathematical reason why they should not be used.
being obeyed. Finally the intercept was corrected as in Egs.They could be defined as the heating rate at which the sample
(8) and (9) of Part 1, Section 2.2.1. would have had to be heated to achieve a particubalue,
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at a particular temperature. Comparing Eq. (9) and Egs. (3)
and (6) of Part 1f(«) is replaced by 1/g(«) ank(T) by

W) = 55 px) = v (10
The u vector contains a set of 1/g(«) values andontains

a set of values of (AE/R)p(X), one for each temperature
Although the Arrhenius equation is invoked to enable the
function v = (AE/R)p(X) to be obtained, the matrix @f
values may still be resolved intoandv without prior knowl-

edge of these functions. Therefore the method is still NPK in
nature.

The next problem is thgd(X) cannot be found by inte-
gration. There are, however, approximation equations for its
value, of varying precision, which are reviewed in REfs3].

The most precise set of values is probably given by Cheby-
shev polynomial§7]. The precision of the value @i(X) may

be increased, at the expense of speed, by using more terms in
the equation, as explained in R§T]. In this application, a
reasonable compromise for the number of terms used was 15
and that seemed to produce good enough agreement for the

simulated data. However, a higher number of terms would be

FROM SVD OUTPUT

E=1{00,000
A=10"5"

v
STARTING VALUES
J mol”!

FOR EACH T; CALCULATE

Eq.(11)
p,(X) = V/(AE/R) a
l X1=30
ADJUST X IN
DECREASING STEP SIZE
USE CHEBYSHEV TO GET
p(XT) INNER

ABS(p(X1)-
p(XN<10

ITERATION

required ifp(X) had to be evaluated with low valuesXfi.e.
a low value oft and high temperature.
The calculations were first applied to the subset of data in

each submatrix alone. Since the Chebyshev polynomials give

the value ofp(X) for input values o andT, andEq. (10)
containedE andAin the first term, iterative methods had to be
devised. These consisted of an inner and an outer iteration
The section of the computer program dealing with this is
represented by a flow diagranfiyg. 1. For the outer iteration,
standard starting values & and A were used, namelf

= 100,000 Jmot! andA = 10'9s71, respectively, with the
experimental temperaturds. These were used to calculate
AE/R.Eqg. (10)was transposed and used with the experimental
results held irv to obtain experimental values p§(X)

_ h(T) v
PeX) = 2E/R = AE/R

(11)

Each temperatur§ was used in turn and with a single value
extracted from the vector. The quantityXt was given the
nominal value of 30 and(X) was calculated by Chebyshev
polynomials. The value gb(X7) was compared witlpe(X)
from Eq. (11), for one temperatuiie. Xt was adjusted up or
down in steadily decreasing steps, in the inner iteration, until
the twop values agreed to better than 8. The final value

of X1 was then the value of to fit Eq. (11). The procedure
was repeated for the other temperatures in the set. Since
=E/RT;, a plot could then be made ¥f against 1/Tand the
gradientwa&/R. Thisis not an Arrhenius plot so the gradient
is positive, not negative, here. The valuetbbbtained then
became the new value & for the next step of the outer
iteration. This new value oE was then also used at each
temperaturd; to obtain values; = E/RT; and thup(X;) by
Chebyshev polynomials again. Transpoditg (10)another

LINEAR REGRESSION FOR
X VERSUS I/T;
E - R x GRADIENT
OUTER
ITERATION
FOR ALL T CALCULATE
X; = E/RT, GET p(X.) BY
i Eq.(12)
CHEBYSHEV
_ Ay = VIER)Yp(X)
CALCULATE NEW A AS
MEAN OF A VALUES
NUMBER OF O
ITERATIONS >
>5 TRANSFER NEW E
TRANSFER NEW A

CONTINUE PROGRAM

Fig. 1. Flow diagram covering part of the computer program dealing with
the iterative determination &andA in the case of non-isothermal data with
integral analysis.

way gives:
_ v
~ (E/R)p(X))

This produced new values &f for each temperature. The
mean of these values gave a new valueAdbr the outer
iteration. The outer iteration was now repeated with the new
E andA, again using the inner iteration to adjXstto match
p(%t) to pe(X). In practice only five loops of the outer iteration
were required to produce convergence to constant values of

At (12)
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Fig. 2. Differential analysis of non-isothermal data. Arrhenius plot of)in( Fig. 3. Variation of activation energy withfor non-isothermal data. Com-
i.e. In(rate) vs. 1/Tfor simulated data for mechanism A2, i.e. Eq. (13) of  parison of differential and integral analysis. Simulated data for mechanism
Part 1. The individual plots for the submatrices are superimposed, but only A2 i.e. Eq. (13) of Part 1. (A) Differential analysis, (—) integral analysis.
the first and last and two intermediate points are shown for each. Also only

every fifth submatrix line is shown for clarity. Various symbols are used for almost a perfect straight lin€ig. 3shows the variation ik

each submatrix. obtained from these individual SVD analyses. A slight fluc-
tuation inE is shown at the highestvalues. This is presum-
ably due to the inaccuracies of the smoothing/differentiation
: ___technigue. Attempts were made to improve this region, using
The calculgtloln. was repeated for the other submatrices ,,q curve-fitting techniques, but the fluctuations could not
of data. The individual values d& and A were output to be removed. The mean value of thé&ealues was obtained.

see if there were any changes of mechanism. Also the meary i, from a selected range @fvalues were combined as a
values ofE and A were determined. The data produced in single SVD calculation and plotted Fig. 4, leading to an

the individual vectorsl; andv; from the submatrices could overall activation energy. The plot éfx) versusa for the
also be combmed Into one set using scaling facgprand . experimental points, compared with the theoretical equation,
b; as explained for dlfferentlal analysis above. Th_e quantity a5 the same as Fig. 3, Part 1, for the isothermal data, with
vt was then used asin Egs. (10) and (11). The iteration o same degree of fit. However, the ordinate scale was dif-
procedures were then repeated over the whole data set. Th'?erent. Clearly Eq. (13) of Part 1 is the correct fit. A corrected

gave _smglg oygrall va!ues & andA._These quantities are  yalue of A could then be obtained. Also, the isoconversional
of limited significance if the mechanism has changed during .. its across the data surface at eashlue were used for
the reaction. The reciprocal of the result in veatgrwas individual Arrhenius plots

used agy(«) to match to theoretical equations by a plot of The analysis was repeated using the equation tested by

each theoretical, rescalefl(«) againste to determine the Sewry and Browif5]. This was equation A3 (mechanism 15

mechanism. , , i ) of Ref. [12] in Part 1), in the usual nomenclature:
The value ofA obtained in these calculation required cor-

rection, after thg(«) equation that fits had been determined, do

E andA. These final values & andA were then the result
of the SVD method.

o e E/RT(q _ N\ _\12/3
as explained in Section 2.2 of Part 1 for integral isothermal d Ae (1= a)=In( = )] (13)
data.
1.50
1.00 &S
4. Testing with simulated data 0.50 \\
A second computer program was written in Fortran77, this s %99 X
time to carry out the analysis of the non-isothermal data. < -0.50
hermal data by a differential anal e BN
4.1. Non-isothermal data by a differential analysis
y y -1.50
Non-isothermal simulated data for mechanism A2, Eq. -2.00
(13) of Part 1, was generated with the same starting values 1.90E-03 2.00E-03 2.10E-03 2.20E-03
of E andA as above, using heating rates of 1.0, 1.1, 1.2, 1.3 1Temperature (K")

and 1.4Ks1. The value ofAT chosen was 0.1K and the _ _ . . :
idth of the submatrix (nran e) was 25. The height of the Fig. 4. Differential analysis of non-isothermal data. Arrhenius plot of)in(
wi 9 : 9 i.e. In(rate) vs. 1/Tor simulated data for mechanism A2, i.e. Eq. (13) of Part

submatrix (nlines) was %:ig. 2shows the superimposed Ar- 1. The piot is for the total data after combining all of thealues from the
rhenius plots, obtained from the separate submatrices, and iSubmatrices. Only every fifth point is shown for clarity.
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335 fact that only the points of the first two lines are separate,
&~ the points on subsequent lines appear to be coincident. The
33.0 gradient ofFig. 6 yielded an overalE value. The plot of
f 0(x) againstx for experimental and theoretical data was the
£ 325 same as Fig. 5 for isothermal data in Part 1 and shows Eq.
E ff (13) of Part 1 fitted as expected. Again the ordinate scale
2.0 was different. The corrected value Atould then be found.
)xf The variation ofE with « for this method is also shown in
315 Bzz/f"' Fig. 3and shows no variation at the highend, unlike the
310 . . . differential method. The isoconversional results are the same

1.95E-03 2.00E-083 2.05E-03 2.10E-03 2.15E-03 as for the differential method.

1/Temperature (K")

Fig. 5. Integral analysis of non-isothermal data. Simulated data for mech- 5 Testing with experimental data
anism A2, i.e. Eq. (13) of Part 1. Superimposéd E/RTvs. 1/Tplots for
individual submatrices. Only the first and last and two intermediate points
are shown for each submatrix. Also only every fifth submatrix is shown for
clarity. Various symbols are used for each submatrix.

5.1. Non-isothermal data by a differential analysis

The method was applied to the data from the ICTAC ki-
The values of andA used in the simulation were as in Ref, "€tic Study[6]. The non-isothermal data used was for the de-
[5],i.e. 120 kJ/mol and 1.8 101251 with heating rates of 1, composn'lon of calcite in vacuum (called CCVKPM.TXT).
2, 5,10 and 20 K min'. The value ofAT chosen was 0.1K, The h(_eatlng rat_es were 1.8,2.5,35,5.0,6.2and 1(_) K fain
nrange was 15 andlines was 5. The analysis was carried For this analysis, trials proved thamT of 2K was swtable._
in the same manner as for the A2 data above and the resultsThe beghrgnge value was 20 and thines chosgn was again
also shown irTable 1. The value o is much closer to the > 1he€ individual Arrhenius plots are shownfig. 7. From

simulation starting value than that obtained by Sewry and the gradients of these plots the variationEoiith « is ob-

Brown, presumably because of the correction here applied totained a”‘?' ShO_WH IRig. 8: Ifthe submatrlx datais combln_ed,
the intercept. the resulting single plot is shown Fig. 9. An attempt to fit

an equation in th&«) versusux plot in Fig. 10was difficult
because of the fluctuations in the plot. The nearest equation
showing the general shape was A2 (mechanism 14 from Ref.
[12], Eqg. (13) from Part 1). The individual Arrhenius plots
for the isoconversional data were also made. Because of the
variation inE across the whole range, the method was also
applied over two very restricted ranges, from 0.0 to 0.1
and 0.9 to 1.0. These results appeafable 1as lowa and

4.2. Non-isothermal data by an integral analysis

In this analysisX has to be plotted againstTland this is
shown inFig. 5for the whole set of submatrices and a mean
value ofE determined. The data in a selected range was then
put into the iteration calculation. Only a small number of
outer iterations are required, which is showriig. 6 by the

higha.
34.0
0.50
32.0 E‘s\
EN
30.0 0.00 N
£ \_
§ 28.0 < -0.50 AN
o
26.0 -1.00 X
24.0
-1.50 \\
22.0 . . ‘
1.99E-03 2.04E-03 2.09E-03 2.14E-03 2.19E-03 2.00
1/Temperature (K™ 1.10E-03 1.15E-03 1.20E-03 1.25E-03 1.30E-03

1/Temperature (K")
Fig. 6. Integral analysis of non-isothermal data. Simulated data for mecha-
nism A2, i.e. Eq. (13) of Part 1. Combinedesults from all of the subma- Fig. 7. Differential analysis of non-isothermal data. Arrhenius plot of
trices used in the iterative proces$) First step of the iteration, ((J) second In(v), i.e. In(rate) vs. 1/For non-isothermal data for calcite under vacuum
step of the iteration, (A) third step of the iteration, (x) fourth step of the (CCVKPM.TXT [6]). The individual plots for the submatrices are super-
iteration, (*) fifth step of the iteration. The upper line shows superimposed imposed, but only the first and last and two intermediate points are shown
symbols showing rapid convergence to the final line. Not all of the symbols for each. Also only every fifth submatrix line is shown for clarity. Various
are drawn at each 1fJoint to make the plot clearer. symbols are used for each submatrix.
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0.00 0.20 0.40 0.60 0.80 1.00
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ACTIVATION ENERGY kdJ/mol

Fig. 8. Variation of activation energy withfor non-isothermal data. Com-
parison of differential and integral analysis. Non-isothermal data for calcite
decomposition under vacuum (CCVKPM.TX8]). (2) Differential analy-

sis, (¢) integral analysis.

0.00

-0.50 A\A\%h"z%

-1.00 -
M“m‘

-1.50
R"\A\

-2.00 &

In{v)

-2.50
1.15E-03 1.20E-03 1.25E-03 1.30E-03

1/Temperature (K")

Fig. 9. Differential analysis of non-isothermal data. Arrhenius plot of)in(
i.e. In(rate) vs. 1/Tor calcite under vacuum (CCVKPM.TX[B]). The plot
is for the total data after combining all of thevalues from the submatrices.
Only every fifth point is shown for clarity.

o
o)

i
o)

7 5
1.0 7 AAA
3

0.0 T T T T
0.00 0.20 0.40 0.60 0.80 1.00
alpha

w
o)

f(alpha)

n
o

Fig. 10. Differential analysis of non-isothermal dde) vs.«. The data is

for calcite decomposition under vacuum (CCVKPM.T}6I). The theoret-

ical f(«) are for mechanism A2, i.e. Eg. (13) of Part 1. The experimental and
theoretical data are superimposed) Experimentalf(«), (—) theoretical

f(«) (rescaled data).

24.0

22.0

20.0

X=E/RT

18.0

16.0

14.0 -
1.10E-03 1.15E-03 1.20E-03 1.25E-03 1.30E-03
1/Temperature1/K

Fig. 11. Integral analysis of non-isothermal data. The data is for calcite
under vacuum (CCVKPM.TXT6]). Superimpose® = E/RTvs. 1/Tplots

for individual submatrices. The plots for the submatrices are superimposed,
but only every fifth submatrix is shown for clarity. Various symbols are used
for each submatrix.

5.2. Non-isothermal data by an integral analysis

When this analysis was applied to the same data as in
Section 5.1, the individuaX versus 1/Tplots produced are
shown inFig. 11.

The lower line shows superimposed symbols showing
rapid convergence to the final line. Not all of the symbols are
drawn at each 1/point to make the plot clearer leading to a
variation inE also shown irFig. 8. There is much less fluc-
tuation compared to the differential analysis. The combined
submatrices produced (Fig. 12) and show the outer iteration
as defined irFig. 1. Again many points are superimposed
after the first two lines, because of the rapid convergence.
When the plot inFig. 13was made ofj(«) versusy, the fit
of the experimental data to any single mechanism was diffi-
cult, but the nearest seemed to be again A2, Eg. (13) of Part
1. The random variations or loops in the plot had gone and
there was fair agreement, except perhaps at the highest values
of a.

27.0 e

25.0

E/RT

23.0

X=

21.0

17.0 T T

1.15E-08 1.20E-03 1.25E-03 1.30E-03

1/Temperature (K”)

Fig. 12. Integral analysis of non-isothermal data. The data is for calcite
under vacuum (CCVKPM.TXT6]). Combinedv results from all of the
submatrices used in the iterative proce$s.Kirst step of the iteration[1)
second step of the iteratiom)] third step of the iteration,X) fourth step of

the iteration, (*) fifth step of the iteration.
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Fig. 13. Integral analysis of non-isothermal dajéx) vs.«. The data is Fig. 14. Analysis of isothermal data for calcite under vacuum

for calcite under vacuum (CCVKPM.TX[B]). The theoreticaf)(c) are for (CCVISO.TXT [6] as used in Part 1 of this study). The data is divided

mechanism A2, i.e. Eq. (13) of Part 1. The experimental and theoretical datainto groups of five lines taken from the data matvixand treated to SVD

are superimposed. (A) Experimentglr), (—) theoreticalg(«) (rescaled individually, leading to a plot of the individual values of activation energy

data). againstw. The differential and integral results are compared. (—) Integral
analysis, (- - -) differential analysis.

6. Conclusions

great deal of fluctuation and there is not much point in quot-
Table 1shows, as in Part 1, that for simulated data the ing a single overall value foE. Integral analysis shows an
methods described retrieve the value€aind A with rea- almost constani, so it may be reasonable to quote a single
sonable precision. In this case, differential and integral anal- overall value.
ysis methods give much the same precision. Identification of A similar comparison may be made for non-isothermal
the correct kinetic equation was again clear for the simulated results from SVD irFig. 8.
data. These results show that integral analysis is the preferred
For experimental data, a main point of interest is in identi- method. Even the result for simulated data, treated to differ-
fying the equation obeyed. These papers are intended to coveential analysis, shows some fluctuation at higgrig. 3). It
the mathematics of the methods and not to be a study of pos-has been suggested by BurnhHr@] that these oscillations,
sible mechanisms. For this reason, attempts are only maden the calcite experiments, may be due to fluctuation in the
to fit the standard equations for known mechanisms. No at- temperature control system of the apparatus used to produce
tempt is made to fit with non-standard exponents because thighe data and not to fluctuations in mechanism. This may be
has been covered elsewhe9—-12]. Figs. 7 and 8 of Part 1  true for isothermal data, but since a similar effect is seen
show that it is not easy to fit a kinetic equation for fluctuating for rising temperatures, slight changes in mechanism must at
data. However, Fig. 9 of Part 1 for integral analysis, makes least be suspected.Fig. 8, the integral analysis shows a def-
the decision much easier. Comparirigs. 10 and 13f Part initely decreasing value &, so quoting a single value f&ris
2 shows the same point. pointless, except perhaps when calculation methods are being
The four methods of calculation, describedin Parts 1 and 2, compared6]. The values ot differ greatly between isother-
lead to single overall values of activation energy. The mech- mal and non-isothermal, but should agree unless mass and
anism may change during the experimentspashanges, heat transfer effects are present or there is a change in mech-
as does temperature. It is too simplistic to just declare one anism. MaciejewsK9] has pointed out that the ICTAC study
value forE without investigating a change B over the set isothermal data covers a temperature range of oniC3but
of experiments. The non-isothermal data had to be split into the non-isothermal a range of 193, which will lead to op-
submatrices, so the opportunity was taken to calcudta portunity for a change in mechanism in the second case. It
each submatrix and to plot the results againsthere was may also be noted that the isothermal data cover a range from
no need to divide up the isothermal data in a similar manner, 515 to 550°C. The starting temperatures quoted for the set
but it was decided that variation Bshould also be investi-  of non-isothermal data cover the range 496-845Thus the
gated here. The data could be treated as an isoconversionaton-isothermal experiments only just reach into the isother-
set and a value @& obtained for each line across the data, i.e. mal rangeFig. 8 shows a value of activation energy rising
constantx. It was thought more appropriate to use the SVD towards lowet values. The value did notreach the isothermal
method, because this would give a degree of smoothing overlevel, but it might if the calculation had continued to lower
a set of five lines, as for the non-isothermal case. Since thevalues, which would imply lower temperatures for the exper-
non-isothermal data was divided into steps of standaval- iment. Unfortunately the lowest value fergiven in the data
ues, five lines at a time, the same was done for the isothermalables was for 0.01, so the calculation could not be continued
data. The result, when differential and integral analysis are to lower values ofv. Examining only the integral results for
used, is compared iRig. 14. Differential analysis shows a fitting a mechanism, there is a closer fit for the isothermal
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Fig. 15. Variation of activation energy with for differential and integral
analysis, isothermal and non-isothermal data. Simulated data for two simul-
taneous first order reactions (SIMISO.TXT and SIMKPM.TXT from Ref.
[6]). (0) Non-isothermal data, differential analysia,)(non-isothermal data,
integral analysis, (OJ) isothermal data, differential analysig, icothermal
data, integral analysis.

result (Fig. 9, Part 1) than non-isothermal (Fig. 13, Part 2).

This suggests again a mechanism change in the second cas
The results for these sample data, which appear in tables in

Ref. [6], show a wide range of variability according to the

methods employed and the workers carrying out the calcu-

lation. However, the present results for non-isothermal de-
composition of calcite under vacuum agree with the result by
Nomen and Sempere (SVD method), in that paper, in respec
to the value oE, but not ofA. The results for the isothermal
data are more consistent in Rg8] and agree mostly with
the results obtained here.

t

31

went up to a peak of 130 kJ mdl, i.e. well above the max-
imum possible of 120 kJ mot. Vyasovkin, in his Fig. 3 for
some other differential methods, also saw this. As he points
out, this must be faulty and is an artefact of the calculation.
The differential analysis of non-isothermal data gives results
that correctly lie all between 80 and 120 kJ mblHowever

the curve rises rather too steeply and turns to near horizontal
near too = 1. The shape is not as forecast by Vyasovkin in
his Fig. 2. Thus itis the differential methods that are suspect,
not the integral ones. Vyasovk|jh2] also comments on the
process of numerical differentiation of original data leading
to erroneous values of activation energy as suggested here
([8,9] in Part 1).

There are many other methods of analysis available for
these types of data, especially for the isothermal experiments,
see[6]. A recent papef13] has proposed combined kinetic
analysis allowing simultaneous analysis of experiments ob-
tained under any heating profile. It may be possible to apply
data from other heating profiles to the NPK method if the

(a‘ata from the individual submatrices can be combined into a

single matrix.

NPK analysis is of importance, as discussed by Sewry
and Brown[5]. These papers have shown that data may be
best analysed by integral analysis, but a differential technique
appears to give a more variable result.

Acknowledgement

It has been suggested that the use of integral methods may

introduce systematic errors into resulting values of activa-
tion energies. This may be true for overall activation energies
produced by combining all of the data from the experiment
into one SVD step. However, as shown above, the activa-
tion energy may vary during decomposition and it is better

Professor Michael Brown of Rhodes University, Graham-
stown, South Africa, kindly supplied the data from the ICTAC
kinetic study[6].

to use the results of separate submatrices and to show th&eferences

variation. In the present study each submatrix contained five

lines of data, so any error introduced would be restricted
to only a small range of time or temperature. The ICTAC
study [6] also included simulated data for two simultane-
ous, equally weighted, first order reactions. They were given
activation energie&; = 80 kJ mot 1, E;=120 kJmot?! and
pre-exponential factors 0% =10*min=1, A,=10min—1.
Vyasovkin[12] has presented an analysis of the results pro-
duced by the many workers taking part in the project and
using several different methods of calculation. The methods

detailed in the present two papers were applied to the same

data and the results are summariseBim 15. These may be
compared td-ig. 3in Vyasovkin's paper. The integral results

[1] 3. Sempere, R. Nomen, R. Serra, Thermochim. Acta 316 (1998)
37-45.

[2] J. Sempere, R. Nomen,
(1998) 933-943.

[3] J. Sempere, R. Nomen,
(1999) 843-849.

[4] J. Sempere, R. Nomen, R. Serra, J. Soravilla, Thermochim. Acta
388 (2002) 407-414.

[5] J.D. Sewry, M.E. Brown, Thermochim. Acta 390 (2002) 217-225.

[6] M.E. Brown, M. Maciejewski, S. Vyasovkin, R. Nomen, J. Sempere,
A. Burnham, J. Opfermann, R. Strey, H.L. Anderson, A. Kremm-
ler, R. Keuleers, J. Janssens, H.O. Desseyn, C.-R. Li, T.B. Tang,
B. Roduit, J. Malek, T. Mitsuhashi, Thermochim. Acta 355 (2000)
125-143.

[7] G.R. Heal, Thermochim. Acta 340/341 (1999) 69-76.

R. Serra, J. Therm. Anal. Calorimetry 52

R. Serra, J. Therm. Anal. Calorimetry 56

for both isothermal and non-isothermal data seem to be very [8] J.H. Flynn, Thermochim. Acta 300 (1977) 83-92.

close to the results produced by Vyasovkin’s own method,
which is essentially integral in nature. The shapes of the plot
of activation energy versusalso agree with the shapes fore-
castby Vyasovkinin his Figs. 1 and22]. The corresponding
differential analysis of isothermal data produced a curve that

[9] M. Maciejewski, Thermochim. Acta 355 (2000) 145-154.
[10] A.K. Burnham, Thermochim. Acta 355 (2000) 165-170.
[11] B. Roduit, Thermochim. Acta 355 (2000) 171-180.
[12] S. Vyasovkin, Thermochim. Acta 355 (2000) 155-163.
[13] L.A. Pérez-Maqueda, J.M. Criado, F.J. Gotor, Jaldk, J. Phys.
Chem. A 106 (2002) 2862—-2868.



	A generalisation of the non-parametric, NPK (SVD) kinetic analysis method
	Introduction
	Non-isothermal experiments-differential analysis
	Applying SVD
	Interpolation along the data curves
	Interpolation across the data

	Non-isothermal experiments-integral analysis
	Applying SVD

	Testing with simulated data
	Non-isothermal data by a differential analysis
	Non-isothermal data by an integral analysis

	Testing with experimental data
	Non-isothermal data by a differential analysis
	Non-isothermal data by an integral analysis

	Conclusions
	Acknowledgement
	References


