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Abstract

The non-parametric method of kinetic analysis using singular value decomposition of a matrix of data values, as proposed by Nomen and
Sempere, is applied to isothermal experiments. It is demonstrated that a correction has to be applied to obtain the value of the pre-exponential
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onstantA. The differential analysis method is extended to integral analysis and, when tested using simulated data, shows ve
etrieval of the starting values of activation energy and pre-exponential constants. A set of data for the decomposition of calcite und
reated isothermally was taken from the ICTAC study of kinetic methods. The results obtained agree reasonably with those report
tudy.
2004 Elsevier B.V. All rights reserved.
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. Introduction

The use of the non-parametric method of analysis, using
ingular value decomposition (SVD) of a matrix, has been de-
cribed by Sempere, Nomen and Serra[1–4] and commented
n by Sewry and Brown[5]. The technique was also one of

hose used in the ICTAC kinetics project[6]. A recent pa-
er byŠvadĺak et al.[7] has applied the NPK method to the
rystallisation of anatase in amorphous TiO2. The values of
ctivation energy and pre-exponential factors obtained com-
are favourably with those obtained by conventional analysis
ethods.
The application of kinetics in thermal studies may be di-

ided up by (a) technique for the experiment and (b) method
f analysis. Under (a) the experiment may be carried out un-
er isothermal or non-isothermal conditions. Under (b) the
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analysis of the data may be by a differential or integral ca
lation. These experimental techniques and two calcula
may thus be combined to give four overall methods. In
eral terms, the non-isothermal experiment is easier to
out (with less doubt about the sample temperature), but
more difficult to analyse by an integral calculation.

The NPK technique, as described in Refs.[1–5], seem
to be specifically only applied to one of the four meth
described above, namely non-isothermal experiment an
ferential calculation, but was developed from the ana
of a set of isothermal experiments. There is no reason
the general principles should not be applied to the othe
methods. This study is to extend the technique to the a
the methods.

In Part 1 isothermal experiments will be studied and n
isothermal ones in Part 2.

Integral calculations are to be preferred over differen
ones, because the data, as obtained from a thermal ba
is integral in nature and requires no processing. The d
ential calculation requires the determination of the grad
040-6031/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2004.07.004
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Table 1
Isothermal experiments

Sample Starting simulation values Analysis results Isoconversional method

InputE (kJ/mol) InputA (s−1) OverallE (kJ/mol) A (s−1) E (kJ/mol) A (s−1)

Differential analysis
Simulated A2 130.0 1.0× 1013 130.039 1.0119× 1013 129.891 0.9728× 1013

Calcite in vacuum – – 221.9 1.44× 1011 211.7 2.98× 1010

Integral analysis
Simulated A2 130.0 1.0× 1013 130.0008 1.0005× 1013 As above As above
Calcite in vacuum – – 223.6 1.20× 1011 As above As above

Table of activation energies and pre-exponential factors found by analysis using SVD and Isoconversional Arrhenius plot. The results from the simulated data
are given to more significant figures than would normally be justified to indicate the precision of the retrieval of the starting figures.

Fig. 1. Isothermal decomposition of calcite at 535◦C (data from
CCVISO.TXT[6]): (�) experimental data; (—) fitted line; (- - -) derivative
curve.

of the raw data. Since data from a thermal balance is inher-
ently ‘noisy’, the process of differentiation by a curve-fitting
routine leads to an exaggeration of the ‘noise’ into random
fluctuations and enhanced error in the results[8,9]. This is
illustrated inFig. 1, which is taken from the data used in
the ICTAC kinetic study[6], and is for the decomposition
of calcite at 535◦C. The experimental or integral data looks
reasonably smooth. The differentiated data, shown as a main
peak, has developed fluctuations appearing as several super-
imposed peaks.

The analysis of each method will be studied in turn. Sim-
ulated and experimental data was analysed using computer
programs developed from these methods. The results for
isothermal experiments are shown inTable 1.

2. Isothermal experiments—differential analysis

2.1. Applying SVD

The basic kinetic equation is:

dα

dt
= kf (α) (1)

whereα is fraction reacted at timet, k the rate constant and
f ny

possible equations have been suggested and details of their
derivation given[10–12]. If several experiments are carried
out at various temperatures, thenkmay be replaced according
to the Arrhenius equation:

dα

dt
= A e−E/RT f (α) (2)

whereE is activation energy andA the pre-exponential factor.
The purpose of kinetic analysis is to findE, A and which

kinetic functionf(α) is being obeyed, the so-called kinetic
triplet. Eq. (2)may be rewritten as:

dα

dt
= h(T )f (α) (3)

Here, h(T) is a function of temperature and represents
Ae−E/RT . The experimental variables areα andT. The prin-
ciple of the NPK method is to separate the effects of the
experimental variables on a total set of data, leading the sep-
aration of the functionsh(T) andf(α). This should lead to
completely independently finding the values ofE andA and
the functionf(α). To carry this out, a matrixM has to be filled
with values of dα/dt. The rows correspond to different values
of α and the columns correspond to different temperatures.
Each column is thus derived from one experiment. The basis
of the NPK method is that the set of dα/dtvalues inM may
b
a ntal
v tted
a d
t

M

w r
c

po-
s ee
m

M

I
v
(α) the kinetic equation obeyed, in its differential form. Ma
e separated into two independent functionsf andh without
ny prior knowledge of their connection to the experime
ariables. A consequence of the method is that ln(h) plo
gainst 1/Tleads to an activation energy andf may be use
o find the fit to a kinetic model.

The matrixM may be written in matrix notation as:

= fhT (4)

heref is a vector containing values off(α) andh is a vecto
ontaining values ofh(T).

The procedure known as SVD (singular value decom
ition) takes a matrix such asM and decomposes it into thr
atrices.

= UWVT (5)

f there arenexperiments carried out atn temperatures andm
alues ofα chosen, thenM is (m,n) in size,U is (m,n),V is
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(n,n) andW is a vector of size (n). In this application only one
element inW is significant,W(1), all other elements being
near to zero. This also means that only the first columns ofU
andVT are significant and all other elements may be ignored.
These sub-sets ofU andV are then vectors and may be called
u andv. SimilarlyW(1) may be calledw. The equation for
M then becomes:

M = uwv (6)

If M is filled with dα/dt values at sets ofα and tempera-
ture, then, after decomposition,u contains information on
the variation off(α) with α andv contains information on the
variation ofAe−E/RT with respect to temperature.

The older isoconversional method takes the contents of
the matrixM one line at a time. Since� is constant across
one line, then from the log form ofEq. (2):

ln

(
dα

dt

)
= ln(A) + ln( f (α)) − E

RT
(7)

Then a plot of the left-hand side versus 1/TgivesE from the
gradient and ln(A) + ln(f(α)) from the intercept. The function
f(α) has to be known to enable the particularα to be inserted
andA to be found.

In the present case, plotting the logarithm of the values
of v against 1/T, then using an Arrhenius analysis, allows
a
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w lt-
i cept

Ip. The antilog of this isAp. Then this single quantity has to
be corrected by multiplying byw andu(1) to restore the scale
and to give a corrected interceptAc.

Ac = Apwu(1) (8)

From Eq. (7) the intercept, when 1/Tequals zero, ln(Ac) is
ln(A) + ln(f(α)), which leads to:

Ac = Af (α1) (9)

To be able to find the correct value ofA now requires the
function f(α) to be known. The finding of the value ofA has
to be postponed until the correct function is determined.

In the present study, the vectoru contains the function of
α values giving the correct shape when plotted againstα; but
the scale is wrong. Rescaling to match the various theoret-
ical curves,ft(α), for each of the possible kinetic equations
allows a match to be made and a choice of equation. The
value off(α) was determined at the mid-point in the exper-
imental data inu. Also the mid-point value offt(α), from
the theoretical equations was found. The ratio of the mid-
point in f(α) to the mid-point inft(α) was called correction
factorF. The theoretical data was multiplied byF to make
the curves match perfectly at that point. The rescaling was
c set
o ed at
t test is
t
t ne if
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w A set
o ence
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ctivation energyE to be found from the gradient.

.2. Correction of the value of A after finding the
unction f(α) that fits

The previous papers on this subject[1–5,7] imply that
he intercept of this plot is ln(A), the pre-exponential c
tant. This is not so. The relative values inv are correct
o the correctE is found. However the absolute values
are not correct to yieldA. The scale of the quantities

othu andv are lost in the array decomposition proces
imilar decomposition method is described in the boo
alinowski and Howery[13]. The important point that the
ake on page 47 of their book[13] is that transformatio
f row and column factors to new reference axes is requ

o be the next step, before the results can be used. Thi
e thought of as a rescaling ofU andV. In the present cas

his is simplified because there is only a single value inW(1)
nd the fact thatu andv are vectors, not two-dimension
atrices. If all the values inv are multiplied byw and by a

ingle value fromu, then this restores the scale ofv to that
f the original dα/dtvalues. This is just applyingEq. (6)to
ingle values in the vectors. The obvious value ofu to use

s u(1). This refers to the value corresponding to the firα
alue, i.e.α1.

.2.1. Correction Method 1
The simplest method is to plot the original values of ln

ithout correction, against 1/Tand to only correct the resu
ng intercept as above. The plot yields a provisional inter
arried out in this way so that, on stepping through the
f theoretical equations, the experimental points remain

he same place on successive graphs. An alternative
o plot u (f(α) experimental) values againstft(α) (values for
he theoretical equations) which should form a straight li
he experimental and theoretical equations match. These
ere then repeated for each theoretical equation in turn.
f 28 kinetic equations to be used was taken from refer

12].

.2.2. Correction Method 2
In theory, the correction factorF also gives the correcte

re-exponential constant. Instead of correctingft(α) to match
(α), the reverse could be carried out, i.e. dividingf(α) values
y F should give values that matchft(α). The new quantit

(α)/Fgives rescaled values ofu. To preserveEq. (6)then thev
alues have also to be multiplied byF, i.e.M = (u/F)w(vF).
ombiningEqs. (8) and (9)producesA = Apwu(1)/f(α1).
he factorF then has the same value aswu(1)/f(α1). Thus
ultiplying the initial value of pre-exponential factor byF
ives the true value ofA, i.e.A = ApF. This works very wel

or the simulated data, where the experimental and theor
lots match exactly.

To summarise, Method 1 derives a correction factor fA
romw andu(1), while Method 2 derives the correction fro
he matching of experimental and theoreticalf(α) curves. Fo
xperimental data, such as inFig. 7, accurate matching
oo difficult, soF would only be very approximate. In th
ase the use of Correction Method 1 usingEqs. (8) and (9)is
referred.
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2.3. Interpolation along the data curves

The data requires differentiation and several methods were
tried and tested to see if the corresponding smoothing of the
original data produces results that compare correctly with the
original data. In some cases a cubic equation fit, changing to a
quadratic fit near the top end, was good enough. This worked
well enough for simulated data, but experimental data was
better treated by a polynomial fit, where the degree of the
equation and the number of points used, above and below the
fitted position, could be varied.

The treatment requires that dα/dtis determined at corre-
sponding values ofα for all the data curves. For this purpose
the gradients were calculated at standard values ofα from
0.01 to 0.99 in steps of 0.01.

3. Isothermal experiments—integral analysis

3.1. Applying SVD

If Eq. (1)is integrated at constant temperature this gives:
∫

dα

f (α)
=

∫
k dt or g(α) = kt (10)

V
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4. Testing with simulated data

A computer program was written in Fortran 77 to carry out
the analysis. This included a standard SVD algorithm taken
from the Netlib repository[14]. Also used, was a generator
program to simulate isothermal data.

The floating-point variables were declared as double pre-
cision to increase precision. Theα values transferred from
the simulation generator program to the analysis program,
via data files, were given to 20 significant figures. This is, of
course, far more precise than any thermal balance can pro-
duce, but was thought necessary to be able to prove how
accurately the starting values ofE andA were recovered.

4.1. Isothermal data by a differential analysis

Data for several of the kinetic equations mentioned in Refs.
[10–12]was created and tested using the above theory. The
activation energyE used in the simulation in most cases was
130 kJ/mol and the value ofA was 1013 s−1.

An example given is for equation A2 (mechanism 14 from
Ref. [12]), which is, in differential form:

dα

dt
= A e−E/RT (1 − α)[− ln(1 − α)]1/2 (13)

T nal-
y )
v e,
t es
i
g he fit
f plot
w
u he
r n
F ), the
v d.
T
W ue
o
a

F
l

arying temperature for a set of curves gives:

(α) = A e−E/RT t (11)

his may be transposed to:

= g(α)
1

A e−E/RT
(12)

n this case it is timet that corresponds toM in Eq. (6)and is a
unction ofα andT.g(α) corresponds tou and 1/(Ae−E/RT )
o v. This t then represents a matrix of values which m
lso be analysed by SVD. The method is still an NPK s
ecause the matrix oft values may be decomposed intou
ndv without prior knowledge of the functions that they r
esent. Interpolation has to be carried out along each s
xperimental curves, at one temperature, to find thet values
t standardα values. Againα from 0.01 to 0.99 in steps
.01 was used. A matrix oft values was made up and d
omposed by SVD. This time the log of the reciproca
hev vector values was plotted against 1/T, as the Arrheniu
lot, to obtainE. Theu vector was matched this time agai
escaled, theoretical integral functionsgt(α), for all of the
quations tested. The intercept of thev plot again apparent
aveA, but required correction as explained inSection 2.2.1
q. (8) was used as before but, because the reciproc
had to be plotted,Eq. (9) becameAc = A/g(α1), so A =

pwu(1)·g(α1). Also, if the value of correction factorF is
sed as inSection 2.2.2, instead ofEqs. (8) and (9), then
as to divide the initial value of the pre-exponential cons

o obtain the true value ofA, i.e.A = Ap/F.
he temperatures used were 476–481 K in steps of 1 K. A
sis was carried out as explained inSection 2. The plot of ln(v
ersus 1/Tis shown inFig. 2. Minus the gradient of the lin
imesR, gave the value ofE the activation energy. The valu
n the first column ofu were plotted againstα in Fig. 3, to-
ether with each rescaled theoretical equation in turn. T

or Eq. (13)should, of course, be perfect, as is shown. A
as also made off(α), for the experimental data (theu val-
es) againstft(α), for each theoretical equation in turn. T
esult was again a perfect correlation forEq. (13), as shown i
ig. 4. Once the best-fit equation was decided to be (13
aluef(α1) for the first point, i.e.f(0.01), could then be foun
he initial intercept gave a value ofAp as 6.3182× 1013 s−1.
hen treated according toEqs. (8) and (9), this gave a val

f A of 1.0119× 1013 s−1. The results inTable 1are in good
greement with the starting values for the simulation.

ig. 2. Differential analysis of isothermal data. Arrhenius plot of ln(v), i.e.
n(rate) vs. 1/Tfor simulated isothermal data for mechanism A2, i.e.Eq. (13).
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Fig. 3. Differential analysis of isothermal data (f(α) vs.α). The data is sim-
ulated from mechanism A2, i.e.Eq. (13). The theoreticalf(α) are also for
mechanism A2, i.e.Eq. (13). The experimental and theoretical data are su-
perimposed: (�) experimentalf(α); (—) theoreticalf(α) (rescaled values).

Under some circumstance the corrections implied in
Eqs. (8) and (9)may not be required. Some kinetic equations
that are used for simulation, or happen to fit experimental
data, have finite values for gradient atα = 0 which also hap-
pen to equal unity. It may then be that data is included forα

= 0 in the matrix, i.e.α1 = 0. Under these circumstances the
value ofu(1) would be 1 andf(α1) = 1, so the intercept from
the Arrhenius plot gives the value ofA directly. Examples of
this are for equations such as:

dα

dt
= k(1 − α)n, n = 1,2,

1

2
,

2

3
,

1

3
,

4

3
(14)

However, other equations like:

dα

dt
= kαm, m = 1,

1

2
,

2

3
,

3

4
(15)

Also all of the Avrami–Erofeev types and most diffusion
types have gradients of zero atα = 0. The SVD algorithm
fails if a row of values of gradients are all zero. Also, a value

F
o A2,
i
p
t

of f(α1) of zero inEq. (9)would be meaningless. Data was
also simulated for equation F1, i.e. dα/dt= k(1−α). The in-
terpolation forα values was continued down toα = 0.0. The
value ofE obtained was 129.989 kJ/mol and the value ofA
obtained was 0.9973× 1013, directly from the intercept, with
no use ofEqs. (8) and (9), or multiplication of thev values
by u(1). However, multiplication byw was still carried out.
In practice, since the kinetic function would not be known
at the start, it is not possible to use this approach for some
equations. Even if the equation that fits is suspected before-
hand, it would not be good practice to use the finite gradient
atα = 0 because, at zero time in an isothermal experiment, the
sample cannot have reached the correct isothermal decompo-
sition temperature. Indeed it might not be possible to produce
accurate data at a point as low asα = 0.01, and calculation
should be postponed until the temperature has settled to a
constant value. The whole calculation should then be started
at a higherα value.

4.2. Isothermal data by an integral analysis

The method was applied to the same simulated data as
above generated fromEq. (13). The Arrhenius plot produced
was similar toFig. 2 for the differential treatment, but with
a different ordinate scale. This also illustrates the fact that
t
c plot
t
a tion
w
f
i
t
E -
b the
p than
t

F -
l r
m su-
p ).
ig. 4. Differential analysis of isothermal data. Experimentalf(α) vs. the-
reticalf(α) (rescaled values). The data is simulated from mechanism

.e. Eq. (13). The theoreticalf(α) are also mechanism A2, i.e.Eq. (13): (�)
oints wheref(α) is rising; (+) points wheref(α) is falling; (—) best fit line

o all the points.
hese plots do not directly give the value ofA from the inter-
ept. The method of fitting the correct equation was to
he integral version of the kinetic equation,g(α) versusα,
ttempting to find a coincidence for a theoretical equa
ith the experimental result, as shown inFig. 5. Like the dif-

erential analysis, a perfect fit was found forEq. (13). The
nitial value forAp was 3.857× 1014 s−1, very different from
hat for the differential analysis. Calculating the valueA from
qs. (8) and (9)gave 1.0005× 1013 s−1. A rather large num
er of significant figures have been quoted to illustrate
recision of the method and it proves to be more precise

he differential method above.

ig. 5. Integral analysis of isothermal data (g(α) vs.α). The data is simu
ated from mechanism A2, i.e.Eq. (13). The theoreticalg(α) are also fo

echanism A2, i.e.Eq. (13). The experimental and theoretical data are
erimposed: (�) experimentalg(α); (—) theoreticalg(α) (rescaled values
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5. Testing with experimental data

5.1. Isothermal data by a differential analysis

The analysis described was applied to the set of data from
the ICTAC kinetics project[6] for the isothermal decompo-
sition of calcite under vacuum (CCVISO.TXT in the nomen-
clature used in the paper). This was chosen because of the
amount of comment on the analysis of this data that has been
published[6,15–18]. The experiments were conducted at 550,
540, 535, 530, 520 and 515◦C. One set of data is shown in
Fig. 1. The differential plots for the other temperatures were
like Fig. 1, showing similar fluctuations. The Arrhenius plot
in Fig. 6was reasonably straight. Attempts to match thef(α)
experimental values against theoretical showed that the fluc-
tuation produced in the differentiation had been transmitted
to the values in matrixu, so appear inFigs. 7 and 8. The choice
of the correct equation was difficult but, from the appearance
of Fig. 7, it looks as if kinetic equation A5 (mechanism 17

F
l uum
(

F
f
f
d
v

Fig. 8. Differential analysis of isothermal data. Experimentalf(α) vs.
theoretical f(α) values for isothermal data for calcite under vacuum
(CCVISO.TXT[6]). The theoreticalf(α) are for mechanism A5, i.e.Eq. (16):
(�) points wheref(α) is rising; (+) points wheref(α) is falling; (—) best fit
line to all the points.

Fig. 9. Integral analysis of isothermal data.g(α) vs.α values for isothermal
data for calcite under vacuum (CCVISO.TXT[6]). The theoreticalg(α)
are for mechanism A5 orEq. (16). The experimental and theoretical data
are superimposed: (�) experimentalg(α); (—) theoreticalg(α) (rescaled
values).

from Ref.[12]), Eq. (16)would be the nearest fit.

dα

dt
= A e−E/RT (1 − α)[− ln(1 − α)]1/3 (16)

5.2. Isothermal data by an integral analysis

Extending integral analysis to the CCVISO.TXT data pro-
duced an activation energy and a final value forA close to
those by differential analysis. The test for the equation fitting
gaveFig. 9. Equation A5 as still the best fit, except at higher
ig. 6. Differential analysis of isothermal data. Arrhenius plot of ln(v), i.e.
n(rate) vs. 1/Tfor isothermal data for calcite decomposition under vac
CCVISO.TXT[6]).
ig. 7. Differential analysis of isothermal data.f(α) vs.α for isothermal data
or calcite decomposition under vacuum (CCVISO.TXT[6]). The theoretical
(α) are for mechanism A5 orEq. (16). The experimental and theoretical
ata are superimposed: (�) experimentalf(α); (—) theoreticalf(α) (rescaled
alues).

α. ComparingFig. 9 to Fig. 7, all trace of the fluctuation
shown in the differential analysis has gone.

6. Conclusions

Table 1shows that, for simulated data, the methods de-
scribed retrieve the values ofE and A with reasonable
precision. The precision is greater for integral analysis as
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compared to differential analysis. Identification of the cor-
rect kinetic equation was clear for this simulated data. For the
experimental data, the differential method of analysis shows
a fluctuation in the value of activation energy caused by the
process of differentiation of the original data. The theoretical
fitted much more clearly if integral analysis was used.
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