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Abstract

The non-parametric method of kinetic analysis using singular value decomposition of a matrix of data values, as proposed by Nomen and
Sempere, is applied to isothermal experiments. It is demonstrated that a correction has to be applied to obtain the value of the pre-exponential
constantA. The differential analysis method is extended to integral analysis and, when tested using simulated data, shows very accurate
retrieval of the starting values of activation energy and pre-exponential constants. A set of data for the decomposition of calcite under vacuum,
treated isothermally was taken from the ICTAC study of kinetic methods. The results obtained agree reasonably with those reported from the
study.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction analysis of the data may be by a differential or integral calcu-
lation. These experimental techniques and two calculations
The use of the non-parametric method of analysis, using may thus be combined to give four overall methods. In gen-
singular value decomposition (SVD) of a matrix, has been de- eral terms, the non-isothermal experiment is easier to carry
scribed by Sempere, Nomen and S¢trad]and commented  out (with less doubt about the sample temperature), but is the
on by Sewry and Browfb]. The technique was also one of more difficult to analyse by an integral calculation.
those used in the ICTAC kinetics projg@]. A recent pa- The NPK technique, as described in Rdfis:5], seems
per byévadhk et al.[7] has applied the NPK method to the to be specifically only applied to one of the four methods
crystallisation of anatase in amorphous 7i@he values of described above, namely non-isothermal experiment and dif-
activation energy and pre-exponential factors obtained com-ferential calculation, but was developed from the analysis
pare favourably with those obtained by conventional analysis of a set of isothermal experiments. There is no reason why
methods. the general principles should not be applied to the other two
The application of kinetics in thermal studies may be di- methods. This study is to extend the technique to the all of
vided up by (a) technique for the experiment and (b) method the methods.
of analysis. Under (a) the experiment may be carried out un-  In Part 1 isothermal experiments will be studied and non-
der isothermal or non-isothermal conditions. Under (b) the isothermal ones in Part 2.
Integral calculations are to be preferred over differential
* Present address: 4 Hazelbadge Close, Poynton, Stockport SK12 1HD,9n_eS’ because the data, as o_btalned from a 'Fhermal ba_lance’
UK. Tel.: +44 1625 874850; fax: +44 1625 874850. is integral in nature and requires no processing. The differ-
E-mail addressrogerheal@yahoo.com (G.R. Heal). ential calculation requires the determination of the gradients
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Table 1
Isothermal experiments
Sample Starting simulation values Analysis results Isoconversional method
Input E (kJ/mol) InputA (s71) OverallE (kJ/mol) A(sh) E (kJ/mol) A(sh)
Differential analysis
Simulated A2 130.0 1.6 10% 130.039 1.0119x 103 129.891 0.9728¢ 103
Calcite in vacuum - - 221.9 1.44x 101 211.7 2.98x 1010
Integral analysis
Simulated A2 130.0 1.6 1018 130.0008 1.0005x 103 As above As above
Calcite in vacuum - - 223.6 1.2010 As above As above

Table of activation energies and pre-exponential factors found by analysis using SVD and Isoconversional Arrhenius plot. The results from the simulated dat:
are given to more significant figures than would normally be justified to indicate the precision of the retrieval of the starting figures.

possible equations have been suggested and details of their

1.00
M derivation given10-12]. If several experiments are carried
0.80 1= — }é&! outat various temperatures, tHemay be replaced according
L 0.60 f to the Arrhenius equation:
% ’ do
0.40 % — =Aae 8 () )
f dr
0.20 ,f‘f whereE is activation energy anéithe pre-exponential factor.
0.00 \ . . . The purpose of kinetic analysis is to filil A and which
0 1000 2000 3000 4000 5000 6000 kinetic functionf(«) is being obeyed, the so-called kinetic
Times triplet. Eg. (2)may be rewritten as:
Fig. 1. Isothermal decomposition of calcite at 585 (data from d_ot — h(T)f(a) (3)
CCVISO.TXT[6]): (A) experimental data; (—) fitted line; (- - -) derivative dr

eurve. Here, h(T) is a function of temperature and represents

Ae E/RT The experimental variables ar@ndT. The prin-
of the raw data. Since data from a thermal balance is inher- ¢iPlé of the NPK method is to separate the effects of the
ently ‘noisy’, the process of differentiation by a curve-fitting expgnmental vanablles on atotal set of Qata, leading the sep-
routine leads to an exaggeration of the ‘noise’ into random aration of the function#i(T) andf(e). This should lead to
fluctuations and enhanced error in the res[8t8]. This is completely independently finding the valuestoandA and
illustrated inFig. 1, which is taken from the data used in the functiorf(e). To carry this out, a matrik has to be filled
the ICTAC kinetic study[6], and is for the decomposition with values of de/dt. The rows correspond to different values
of calcite at 535C. The experimental or integral data looks ©Of @ and the columns correspond to different temperatures.
reasonably smooth. The differentiated data, shown as a mairfEach columniis thus derived from one experiment. The basis

peak, has developed fluctuations appearing as several supef2f the NPK method is that the set of daidilues inM may
imposed peaks. be separated into two independent functibasdh without

The analysis of each method will be studied in turn. Sim- @nY prior knowledge of their connection tq the experimental
ulated and experimental data was analysed using computeMariables. A consequence of the method is that In(h) plotted
programs developed from these methods. The results for2gainst 1/Tleads to an activation energy ahthay be used

isothermal experiments are showriliable 1. to find the fit to a kinetic model. . .
The matrixM may be written in matrix notation as:

j N | M =fhT (@)
2. Isothermal experiments—differential analysis
wheref is a vector containing values f{fr) andh is a vector

2.1. Applying SVD containing values ofi(T).
The procedure known as SVD (singular value decompo-
The basic kinetic equation is: sition) takes a matrix such & and decomposes it into three
matrices.
da
PG @D M=—uwT (5)

whereq is fraction reacted at timg k the rate constant and  If there aren experiments carried out atemperatures ana
f() the kinetic equation obeyed, inits differential form. Many values ofx chosen, theM is (m,n) in size,U is (m,n), V is
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(n,n) andW is a vector of size (n). In this application only one
element inW is significant,W(1), all other elements being
near to zero. This also means that only the first columns of
andV'T are significant and all other elements may be ignored.
These sub-sets af andV are then vectors and may be called
u andv. Similarly W(1) may be calledv. The equation for

M then becomes:

M = uwv

(6)

If M is filled with de/dtvalues at sets of and tempera-
ture, then, after decomposition, contains information on
the variation of(«) with « andv contains information on the
variation ofAe~£/RT with respect to temperature.

17

Ip. The antilog of this igh,. Then this single quantity has to
be corrected by multiplying by andu(1) to restore the scale
and to give a corrected intercefss.
From Eq. (7)the intercept, when 1/€quals zero, In(& is
In(A) + In(f()), which leads to:
Ac = Af(a1) )

To be able to find the correct value Afnow requires the
functionf(«) to be known. The finding of the value éfhas

the matrixM one line at a time. Since is constant across
one line, then from the log form d&q. (2):

da E

In <dt) = In(A) + In( f(c)) RT @)
Then a plot of the left-hand side versus BiveskE from the
gradient and In(A) + In(f(«)) from the intercept. The function
f() has to be known to enable the particulao be inserted
andA to be found.

In the present case, plotting the logarithm of the values
of v against 1/T, then using an Arrhenius analysis, allows
activation energ¥ to be found from the gradient.

2.2. Correction of the value of A after finding the
function f(«) that fits

The previous papers on this subjgtt5,7] imply that
the intercept of this plot is In(A), the pre-exponential con-
stant. This is not so. The relative values\virare correct,
so the correck is found. However the absolute values in
v are not correct to yield\. The scale of the quantities in
bothu andv are lost in the array decomposition process. A
similar decomposition method is described in the book by
Malinowski and Howery13]. The important point that they
make on page 47 of their bod&k3] is that transformation

In the present study, the vectorcontains the function of
a values giving the correct shape when plotted againbtit
the scale is wrong. Rescaling to match the various theoret-
ical curves fi(«), for each of the possible kinetic equations
allows a match to be made and a choice of equation. The
value off(«) was determined at the mid-point in the exper-
imental data inu. Also the mid-point value ofi(x), from
the theoretical equations was found. The ratio of the mid-
point in f(«) to the mid-point inf;(«) was called correction
factor F. The theoretical data was multiplied IByto make
the curves match perfectly at that point. The rescaling was
carried out in this way so that, on stepping through the set
of theoretical equations, the experimental points remained at
the same place on successive graphs. An alternative test is
to plotu (f(o) experimental) values againfgfe) (values for
the theoretical equations) which should form a straight line if
the experimental and theoretical equations match. These tests
were then repeated for each theoretical equation in turn. A set
of 28 kinetic equations to be used was taken from reference
[12].

2.2.2. Correction Method 2

In theory, the correction factd¥ also gives the corrected
pre-exponential constant. Instead of correcfjfg) to match
f(a), the reverse could be carried out, i.e. dividfg) values

of row and column factors to new reference axes is required by F should give values that matd{f). The new quantity
to be the next step, before the results can be used. This may(«)/F gives rescaled valuesofTo preservé&qg. (6)then they

be thought of as a rescaling ofandV. In the present case
this is simplified because there is only a single valué/ii)
and the fact thati andv are vectors, not two-dimensional
matrices. If all the values i are multiplied byw and by a
single value fromu, then this restores the scalewfo that
of the original de/dtvalues. This is just applyingg. (6)to
single values in the vectors. The obvious valuaudb use
is u(1). This refers to the value corresponding to the first
value, i.eaq.

2.2.1. Correction Method 1
The simplest method is to plot the original values of In(v),
without correction, against 1/nd to only correct the result-

values have also to be multiplied Byi.e.M = (u/F)w(vF).
Combining Egs. (8) and (9)producesA = Apwu(1)/f(cr1).

The factorF then has the same value &s(1)/f(c1). Thus
multiplying the initial value of pre-exponential factor Iy
gives the true value o4, i.e.A = AjF. This works very well
forthe simulated data, where the experimental and theoretical
plots match exactly.

To summarise, Method 1 derives a correction factorfor
fromw andu(1), while Method 2 derives the correction from
the matching of experimental and theoretia) curves. For
experimental data, such as Hig. 7, accurate matching is
too difficult, soF would only be very approximate. In this
case the use of Correction Method 1 uskgs. (8) and (9)s

ing intercept as above. The plot yields a provisional intercept Preferred.
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2.3. Interpolation along the data curves 4. Testing with simulated data

The datarequires differentiation and several methods were A computer program was written in Fortran 77 to carry out
tried and tested to see if the corresponding smoothing of thethe analysis. This included a standard SVD algorithm taken
original data produces results that compare correctly with the from the Netlib repository14]. Also used, was a generator
original data. In some cases a cubic equation fit, changing to aprogram to simulate isothermal data.
quadratic fit near the top end, was good enough. Thisworked  The floating-point variables were declared as double pre-
well enough for simulated data, but experimental data was cision to increase precision. Thevalues transferred from
better treated by a polynomial fit, where the degree of the the simulation generator program to the analysis program,
equation and the number of points used, above and below thevia data files, were given to 20 significant figures. This is, of
fitted position, could be varied. course, far more precise than any thermal balance can pro-

The treatment requires that dafdtdetermined at corre-  duce, but was thought necessary to be able to prove how
sponding values af for all the data curves. For this purpose accurately the starting valuesBfandA were recovered.
the gradients were calculated at standard valuaes fodbm

0.01 0 0.9 in steps of 0.01. 4.1. 1sothermal data by a differential analysis

Datafor several of the kinetic equations mentioned in Refs.

3. Isothermal experiments—integral analysis [10-12]was created and tested using the above theory. The
) activation energ¥ used in the simulation in most cases was
3.1. Applying SVD 130 kJ/mol and the value @fwas 133s1.

o o An example given is for equation A2 (mechanism 14 from
If Eq. (1)is integrated at constant temperature this gives: Ref, [12]), which is, in differential form:

do /‘ d
—— = [ kdt or g(a) =kt (10) 2 A E/RT (1 _ o) In(1 — a)Y/2
7@ a4 Ae Q- a)[—In(1-—a)] (13)
Varying temperature for a set of curves gives: The temperatures used were 476—-481 K in steps of 1 K. Anal-
ERT ysiswas carried out as explainedaction 2. The plot of In(v)
gla) = Ae t (11) versus 1/Tis shown inFig. 2. Minus the gradient of the line,

timesR, gave the value d the activation energy. The values
in the first column ofu were plotted against in Fig. 3, to-

1 gether with each rescaled theoretical equation in turn. The fit
t= g(a)m (12) for Eq. (13)should, of course, be perfect, as is shown. A plot

was also made d{«), for the experimental data (theval-

Inthis case itis timéthat corresponds td in Eq. (6)andis a ues) againsk(«), for each theoretical equation in turn. The
function ofa andT. g(«) corresponds ta and 1/(Ae~ £/RT) result was again a perfect correlationar. (13), as shownin
to v. Thist then represents a matrix of values which may Fig. 4. Once the best-fit equation was decided to be (13), the
also be analysed by SVD. The method is still an NPK study valuef(xy) for the first point, i.ef(0.01), could then be found.
because the matrix dfvalues may be decomposed inio The initial intercept gave a value 6§ as 6.3182« 1088571,
andv without prior knowledge of the functions that they rep- When treated according tqgs. (8) and (9), this gave a value
resent. Interpolation has to be carried out along each set ofof Aof 1.0119x 10'3s~1. The results imable lare in good
experimental curves, at one temperature, to find tredues agreement with the starting values for the simulation.
at standardv values. Againx from 0.01 to 0.99 in steps of
0.01 was used. A matrix df values was made up and de-

This may be transposed to:

-0.7

composed by SVD. This time the log of the reciprocal of N

thev vector values was plotted againsT 1as the Arrhenius 08

plot, to obtainE. Theu vector was matched this time against \

rescaled, theoretical integral functiogge), for all of the 209

equations tested. The intercept of thelot again apparently - \\

gaveA, but required correction as explaineddaction 2.2.1. -1

Eqg. (8) was used as before but, because the reciprocal of \\

v had to be plottedEq. (9) becameA; = A/g(c1), SOA = -1.1

Agwu(1)-g(cs). Also, if the value of correction factdf is 2.07E-03 2.08E-03 2.09E-03 2.10E-03 2.11E-03
used as irSection 2.2.2, instead &fqgs. (8) and (9), then it 1Temperature (K”)

has to divide the initial value of the pre-exponential constant

. . Fig. 2. Differential analysis of isothermal data. Arrhenius plot ofJn{.e.
to obtain the true value d&, i.e. A= Ap/F. o ! Pt

In(rate) vs. 1/Tor simulated isothermal data for mechanism A2 Ee. (13).
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Fig. 3. Differential analysis of isothermal daféx) vs.«). The data is sim-
ulated from mechanism A2, i.&q. (13). The theoreticd{«) are also for
mechanism A2, i.eEq. (13). The experimental and theoretical data are su-
perimposed: (A) experiment{ly); (—) theoreticaf(«) (rescaled values).

Under some circumstance the corrections implied in
Egs. (8) and (9nay not be required. Some kinetic equations
that are used for simulation, or happen to fit experimental
data, have finite values for gradientat 0 which also hap-
pen to equal unity. It may then be that data is includedxfor
= 0 in the matrix, i.ea; = 0. Under these circumstances the
value ofu(1) would be 1 and(«1) = 1, so the intercept from
the Arrhenius plot gives the value Afdirectly. Examples of

T

0.20

0.40

T

alpha

this are for equations such as:

do 12
— =k(1- )" =122, =
s l1-o)", n=12 53
However, other equations like:
da 123

== — ko™ —-1.2-. 2. =

a " MT 3y

Also all of the Avrami—Erofeev types and most diffusion
types have gradients of zero@t= 0. The SVD algorithm
fails if a row of values of gradients are all zero. Also, a value

0.60
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0.80

)

4
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Fig. 4. Differential analysis of isothermal data. Experimefia) vs. the-
oreticalf(«) (rescaled values). The data is simulated from mechanism A2,
i.e. EQ. (13). The theoreticd{x) are also mechanism A2, i.Eq. (13): (0)
points wherd{(«) is rising; (+) points wheré«) is falling; (—) best fit line

to all the points.

0.05

T

0.10

f(alpha) Theoretical

0.15

of f(u1) of zero inEq. (9)would be meaningless. Data was
also simulated for equation F1, i.e. dafdk(1—«). The in-
terpolation fore values was continued down éo= 0.0. The
value ofE obtained was 129.989 kJ/mol and the valuedof
obtained was 0.9978 103, directly from the intercept, with

no use ofEgs. (8) and (9), or multiplication of thevalues

by u(1). However, multiplication byv was still carried out.

In practice, since the kinetic function would not be known
at the start, it is not possible to use this approach for some
equations. Even if the equation that fits is suspected before-
hand, it would not be good practice to use the finite gradient
ato =0because, at zero time in an isothermal experiment, the
sample cannot have reached the correct isothermal decompo-
sition temperature. Indeed it might not be possible to produce
accurate data at a point as lowas 0.01, and calculation
should be postponed until the temperature has settled to a
constant value. The whole calculation should then be started
at a highew value.

4.2. Isothermal data by an integral analysis

The method was applied to the same simulated data as
above generated frofeq. (13). The Arrhenius plot produced
was similar toFig. 2 for the differential treatment, but with
a different ordinate scale. This also illustrates the fact that
these plots do not directly give the valuefofrom the inter-
cept. The method of fitting the correct equation was to plot
the integral version of the kinetic equatiag() versuse,
attempting to find a coincidence for a theoretical equation
with the experimental result, as showrFig. 5. Like the dif-
ferential analysis, a perfect fit was found f6q. (13). The
initial value forAp was 3.85% 10t s1, very different from
that for the differential analysis. Calculating the vaiigom
Egs. (8) and (9yave 1.0005« 10351, A rather large num-
ber of significant figures have been quoted to illustrate the
precision of the method and it proves to be more precise than
the differential method above.

0.25
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o
—
[&)]

g(alpha)

e
o
o

e

(@]

[&]
I

0.00 £ \ : . .
0.00 0.20 0.40 0.60 0.80
alpha

1.00

Fig. 5. Integral analysis of isothermal datf{d) vs.«). The data is simu-
lated from mechanism A2, i.&q. (13). The theoreticaj(«) are also for
mechanism A2, i.eEq. (13). The experimental and theoretical data are su-
perimposed: (A) experimentg(«); (—) theoreticab(«) (rescaled values).
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5. Testing with experimental data 0.14
0.12 AAA%
5.1. Isothermal data by a differential analysis _ ﬁ'«‘
£ 0.10 /
o +_z-
The analysis described was applied to the set of data from § 0.08 = .
the ICTAC kinetics projecf6] for the isothermal decompo- & 506 T+++++/7 -
sition of calcite under vacuum (CCVISO.TXT in the nomen- £ ++++ “
clature used in the paper). This was chosen because of the & 004 /
amount of comment on the analysis of this data that has been 0.02 ++*+
published6,15-18]. The experiments were conducted at 550, 0.00 ’ . . . ‘ , ,

540, 535, 530, 520 and 52&. One set of data is shown in
Fig. 1. The differential plots for the other temperatures were
like Fig. 1, showing similar fluctuations. The Arrhenius plot

in Fig. 6was reasonably straight. Attempts to matchftag

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

f(alpha) Theoretical

Fig. 8. Differential analysis of isothermal data. Experimerfia)) vs.

experimental values against theoretical showed that the fluc-theoretical f(o) values for isothermal data for calcite under vacuum
tuation produced in the differentiation had been transmitted (CCVISO-TXTIED. Thetheoreticall«) are for mechanism AS, I.&q. (16):

h | . . i 7 and 8. The choi (A) points wheré{(e) is rising; (+) points wheré(«) is falling; (—) best fit
tothe values in matriu, so appearifrigs. 7and 8. The choice jine to all the points.
of the correct equation was difficult but, from the appearance

of Fig. 7, it looks as if kinetic equation A5 (mechanism 17

0.25
0.20 [
0.00 A‘f
N 7 0.15 ‘&jg
o
- s
%o \ ® 0.10 m/
£ -1.00 \ 0.05 MM
0.00 T T T T
-1.50
\ 0.00 0.20 0.40 0.60 0.80 1.00
alpha
-2.00
1.20E-03 1.23E-03 1.95E-03 1.28E-03 Fig. 9. Integral analysis of isothermal dagf) vs.« values for isothermal

1/Temperature (K'i)

Fig. 6. Differential analysis of isothermal data. Arrhenius plot of)n{.e.
In(rate) vs. 1/Tfor isothermal data for calcite decomposition under vacuum
(CCVISO.TXT[6)).

0.16
0.14

0.08
ol Nﬁ

f(alpha)

0.04 \AAQ‘}‘
0.02
EN
0.00 T T T T
0.00 0.20 0.40 0.60 0.80 1.00
alpha

Fig. 7. Differential analysis of isothermal datéx) vs.« for isothermal data
for calcite decomposition under vacuum (CCVISO.T[8]). The theoretical
f(«) are for mechanism A5 dEq. (16). The experimental and theoretical
data are superimposed: (A) experimef(@); (—) theoreticaf(«) (rescaled
values).

data for calcite under vacuum (CCVISO.TX®&]). The theoreticalg(«)
are for mechanism A5 dEq. (16). The experimental and theoretical data
are superimposed: (A) experimentlx); (—) theoreticalg(«x) (rescaled
values).

from Ref.[12]), Eq. (16)would be the nearest fit.
da

5 = A1 o)-In@ - )

(16)
5.2. Isothermal data by an integral analysis

Extending integral analysis to the CCVISO.TXT data pro-
duced an activation energy and a final value Aoclose to
those by differential analysis. The test for the equation fitting
gaveFig. 9. Equation A5 as still the best fit, except at higher
a. ComparingFig. 9 to Fig. 7, all trace of the fluctuation
shown in the differential analysis has gone.

6. Conclusions
Table 1shows that, for simulated data, the methods de-

scribed retrieve the values d& and A with reasonable
precision. The precision is greater for integral analysis as
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